
Differences in the evolution of seismic velocities
after the San Simeon and the Parkfield earthquakes
indicate that two different physical mechanismsmay
be responsible for the changes in crustal properties: (i)
damage of shallow layers and fault zone caused by
the strong ground shaking and (ii) co-seismic stress
change followed by the postseismic relaxation. These
results demonstrate that measuring small velocity per-
turbations from correlations of seismic noise can be a
useful tool for studying the continuous time evolution
of the stress regime in the vicinity of seismogenic faults.
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Atmospheric Warming and the
Amplification of Precipitation Extremes
Richard P. Allan1* and Brian J. Soden2

Climate models suggest that extreme precipitation events will become more common in an
anthropogenically warmed climate. However, observational limitations have hindered a direct
evaluation of model-projected changes in extreme precipitation. We used satellite observations and
model simulations to examine the response of tropical precipitation events to naturally driven changes
in surface temperature and atmospheric moisture content. These observations reveal a distinct link
between rainfall extremes and temperature, with heavy rain events increasing during warm periods and
decreasing during cold periods. Furthermore, the observed amplification of rainfall extremes is found
to be larger than that predicted by models, implying that projections of future changes in rainfall
extremes in response to anthropogenic global warming may be underestimated.

Predicting and adapting to changes in the
global water cycle expected to result from
global warming presents one of the greatest

challenges to humanity. Projections of tropical
precipitation through this century anticipate in-
creases in moist equatorial regions and indica-
tions of drying over the already-arid subtropics
(1–6), changes consistent with theoretical con-
siderations (7–9). Low-level moisture rises with
temperature at about 7%/K, as expected from the
Clausius Clapeyron equation (10, 11), fueling
comparable rises in heavy precipitation events
driven by moisture convergence (8). Mean pre-
cipitation and evaporation are constrained by the
slower rises in atmospheric radiative cooling to
the surface (7, 12, 13). This leads to a decline in

precipitation away from the convectively driven
regimes that the models achieve through reduced
water vapor mass flux and wind stress associated
with a weakening of the Walker circulation (14).
Observational evidence supports the findings that
moist regions are becomingwetter and dry regions
drier (3, 15, 16), but the overall response of the
models to the current warming trend appears under-
estimated (11, 15–17) and the cause of this discrep-
ancy may affect the fidelity of climate predictions.

Present-day changes in the tropical water cycle
are dominated by the periodic warming andmoist-
ening associated with El Niño Southern Oscil-
lation (ENSO). Figure 1 shows that warm ENSO
events (positive Nino-3 index) are associated with
higher column water vapor and precipitation,
whereas the reverse is true for cold events. This
variability provides a means for testing hypothe-
ses regarding how precipitation responds to a warm-
er climate. The contrasting mechanisms involved
in driving heavy and light precipitation necessi-
tate the examination of daily data (5, 18): We

compared daily precipitation from the Special
Sensor Microwave Imager (SSM/I) over the
tropical oceans (11) to multiple Coupled Model
Intercomparison Project 3 (CMIP3) models (19)
forced with present-day sea surface temperature
(SST) and with projected greenhouse gas con-
centrations for the 21st century.

The SSM/I data resolution was degraded to
2.5° by 2.5°, a resolution that is more comparable
with climate model grids. Each month of daily
precipitation maps was partitioned into 12 bins
ranging from the lightest 10% up to the heaviest
1% [supporting online material (SOM) text]. Be-
cause climate models struggle to simulate the
observed distribution of rainfall intensities (20),
we calculated changes in precipitation frequency
in each bin separately for the satellite data and for
eachmodel. Bin boundaries were calculated from
1 year of daily data for the models and the sat-
ellite data; the year chosen does not alter the
boundary rainfall intensity by more than 10%
(table S1). Deseasonalized anomalies in the fre-
quency of precipitation were calculated for each
bin. The percentage changes in precipitation fre-
quency, relative to the mean frequency for each
bin, were thus calculated for each bin everymonth.

Figure 2 presents the percentage changes in
precipitation frequency in each bin for the SSM/I
data and models. These are comparable with re-
sults from the SSM/I data for 10 exact 10% bins at
the original and the degraded resolutions (fig. S1)
and for individual models (fig. S2). There is a co-
herent variability in observed very heavy precipita-
tion, with higher frequencies associated with warm
El Niño events (1988, 1991, 1997–8, and 2002–3)
and lower frequencies with cold La Niña events
(1989, 1996, and 1999–2000). Themodel ensemble
mean (Fig. 2B) shows qualitative agreement with the
satellite data for the heaviest rainfall bins; agreement
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is improved further by sampling only the wettest
20% of all model grid boxes (fig. S3), essentially
masking out much of the light rainfall in the mod-
els. However, whereas the frequency of the light
rainfall events (10 to 20% bin) tends to be anti-

correlated with the frequency of very heavy pre-
cipitation (95 to 99% bin) in the satellite data (r =
–0.51), the reverse is true for the models (r = 0.72).
Instead, a greater occurrence of very heavy rainfall
events in the models is at the expense of the heavy

rainfall events (70 to 80% bins) (r = –0.90), at odds
with the variations captured by the satellite data.

Observational evidence (11, 17) suggests that
mean precipitation and evaporation are currently ris-
ing at the rate expected from the Clausius Clapeyron
equation. Do observations and model simulations of
precipitation extremes also follow this simple ther-
modynamic relationship? To test this hypothesis, we
performed a Clausius Clapeyron (C-C) experiment
whereby data from 1 year of daily precipitation fields,
from the atmospheric component of the Geophysical
FluidDynamicsLaboratory (GFDL) coupled climate
model version 2.1 (21), were perturbed by 7% times
the local monthly mean Hadley Centre Sea Ice and
Sea Surface Temperature (HadISST)–observed SST
anomaly (22). This allows us to identify what com-
ponent of the precipitation response in models and
observations can be explained from C-C considera-
tions alone (Fig. 2C). The very heavy rainfall re-
sponse shows similarity to the satellite data and the
models, consistent with theory (8). However, the
changing frequency of precipitation in the heavy,
moderate, and light bins for the C-C experiment
cannot explain the observed or simulated variability.

Figure 3 shows observed and simulated time
series of the percentage anomalies in precipitation
frequencies for the three heaviest precipitation bins.

Fig. 2. Percentageanom-
alies of precipitation fre-
quency in bins of rainfall
intensity for (A) SSM/I
data, (B) climate model
ensemblemean, and (C)
C-C experiment (precipita-
tion increases at 7%/K).
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Fig. 1. Time series of (A) Nino-3 ENSO index (SST anomalies for 90° to 150°W, 5°S to 5°N region) and
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integrated water vapor (CWV) from passive microwave satellite data (Scanning Multichannel Microwave
Radiometer, SSM/I) and (B) precipitation (P) from GPCP and SSM/I (11).
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There are substantial fluctuations in precipitation
frequency anomalies in somemodels, but the mod-
el ensemble mean and satellite observations dem-
onstrate consistent variance (fig. S4) and coherent
variability in the heaviest rainfall bin (Fig. 3A) with
the El Niño events of 1987–88, 1991, 1994–95,
and 1997–98, coinciding with increased frequency
of the heaviest precipitation. In the second-heaviest
precipitation bin (Fig. 3B), the model ensemble
response displays positive correlation with the C-C
experiment (r = 0.62) as does the satellite data
(r = 0.61), albeit with greater variance (fig. S4).

The response of precipitation frequency to
changes in SSTwere quantified for the present-day
variability and comparedwith the response to global
warming. Linear fits between precipitation frequency
in each bin and tropical mean SSTwere constructed
(Fig. 4A). The heaviest precipitation bin displays a
dependence on SST two to three times greater than
themodel. The observed relationship is robust to the
processing applied to the satellite data; only by sam-

pling the wettest 20% of all model grid boxes does
the sensitivity of precipitation frequency to SST be-
gin to resemble the satellite observations (fig. S5).
Although moderate and light precipitation bins dis-
play a weak negative dependence on SST for the
SSM/I data, the model response is more strongly
negative for heavy rainfall (60 to 90%), and the
frequency of light precipitation (below 30th per-
centile) increases with SST. Because the statistical
significance is weak (only the 95 to 99 and 99 to
100% bins produce correlations with SST above
the 95% significance level for both models and
satellite data), the relationships are confirmed in-
dependently by compositing El Niño and La Niña
months separately. Figure 4B shows essentially the
same differences between models and observations,
albeit with a stronger sensitivity.

It is possible that changes in atmospheric circu-
lation associated with ENSO may affect the calcu-
lated relationships because during El Niño there tends
to be a drying over land and moistening over oceans

(16, 23). To test this hypothesis, we recalculated the
relationships in Fig. 4, A andB, for the entire tropics
(land and ocean) by using model data. Because dif-
ferences to the ocean-only calculations are small, we
can conclude that enhanced oceanic ascent during
El Niño plays only a minor role in determining rela-
tionships between precipitation frequency and SST.

Can the changes in precipitation frequency be
explained by thermodynamic considerations? The
linear regression between precipitation frequency and
changes in SST for the C-C experiment (Fig. 4C)
shows reduced occurrence of light precipitation and
increased frequency of very heavy precipitation, as
expected were precipitation to be simply scaled by
a constant factor (SOM text and fig. S6). This re-
sponse is consistent with the model-simulated re-
sponse of the heaviest precipitation but does not
capture the changes for other rainfall intensities
(Fig. 4A). The SSM/I response of the very heavy
precipitation frequency appears larger than expected
from C-C changes; this remains theoretically possi-
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ble because moisture convergence in the tropics is
itself determined by latent heat released via pre-
cipitation (7, 18).

What implications do the differing precipitation
responses in models and observations have for cli-
mate prediction?With the GFDLCM2.1 fully cou-
pled climate model (21) scenario A1B (19), we
considered the periods 2001–2005 and 2101–2105
(Fig. 4D). The simulated response shows an in-
creased frequency of very heavy and moderate
precipitation at the expense of light and heavy pre-
cipitation. Even accounting for the negative direct
impact of CO2 increases on precipitation (7, 24)
(SOM text), the response of the heaviest precipi-
tation to warming is lower than that expected from
C-C and compared with the present-day simula-
tions (fig. S6). This raises the question of how
climate model predictions of precipitation can be
successfully evaluated. Nevertheless, the apparent
underestimate of model-simulated response of the
heaviest precipitation to SST changes compared
with satellite data over the period 1987–2004 may
indicate that climate projections also underestimate
this response.

This study used natural climate variability to
demonstrate a direct link between a warmer climate
and an increase in extreme precipitation events in
both satellite observations and model simulations.
Although the models qualitatively reproduce the ob-
served behavior, the rate of amplification of extreme
rainfall events to atmosphericwarming is found to be
weaker in the models compared with observations.
Similar discrepancies have been noted in global-mean
trends in precipitation and evaporation (11, 15–17).
It also implies that model projections of future

changes in extreme precipitation events in response
to global warming may also be underpredicted. Of
equal concern to water-depleted land regions are
the responses of light and moderate precipitation
on the periphery of convection (1–4, 25), which
also appear poorly captured by model simulations
of the present-day climate. Given the potential so-
cial and economic implications of these findings, it
is crucial to establish whether the discrepancy can
be explained by inadequacies in the observing sys-
tem (26), by the representation of decadal changes
in aerosol-driven radiative forcing and associated
surface flux changes (27–29), or by deficiencies in
model parametrizations and simulation of current
rainfall distributions (20).

References and Notes
1. G. Meehl et al., in Climate Change 2007: The Physical Science

Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change
(Cambridge Univ. Press, Cambridge, 2007), pp. 747–845.

2. R. Seager et al., Science 316, 1181 (2007); published
online 4 April 2007 (10.1126/science.1139601).

3. C. Chou, J. Tu, P. Tan, Geophys. Res. Lett. 34, L17708 (2007).
4. J. D. Neelin, M. Munnich, H. Su, J. E. Meyerson, C. E. Holloway,

Proc. Natl. Acad. Sci. U.S.A. 103, 6110 (2006).
5. S. Emori, S. J. Brown, Geophys. Res. Lett. 32, L17706 (2005).
6. G. A. Meehl, J. M. Arblaster, C. Tebaldi, Geophys. Res.

Lett. 32, L18719 (2005).
7. M. R. Allen, W. J. Ingram, Nature 419, 224 (2002).
8. K. E. Trenberth, A. Dai, R. M. Rasmussen, D. B. Parsons,

Bull. Am. Met. Soc. 84, 1205 (2003).
9. I. M. Held, B. J. Soden, J. Clim. 19, 5686 (2006).
10. B. J. Soden, D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf,

X. Huang, Science 310, 841 (2005); published online
6 October 2005 (10.1126/science.1115602).

11. F. J. Wentz, L. Ricciardulli, K. Hilburn, C. Mears, Science
317, 233 (2007); published online 30 May 2007
(10.1126/science.1140746).

12. L. Bengtsson et al., Tellus 59A, 539 (2007).
13. R. P. Allan, J. Geophys. Res. 111, D22105 (2006).
14. G. A. Vecchi et al., Nature 441, 73 (2006).
15. X. Zhang et al., Nature 448, 461 (2007).
16. R. P. Allan, B. J. Soden, Geophys. Res. Lett. 34, L18705 (2007).
17. L. Yu, R. A. Weller, Bull. Am. Met. Soc. 88, 527 (2007).
18. P. Pall, M. R. Allen, D. A. Stone, Clim. Dyn. 28, 351 (2007).
19. G. A. Meehl et al., Bull. Am. Met. Soc. 88, 1383 (2007).
20. E. M. Wilcox, L. J. Donner, J. Clim. 20, 53 (2007).
21. T. L. Delworth et al., J. Clim. 19, 643 (2006).
22. N. A. Rayner et al., J. Geophys. Res. 108, 4407 (2003).
23. K. E. Trenberth, A. Dai, Geophys. Res. Lett. 34, L15702 (2007).
24. F. Yang, A. Kumar, M. E. Schlesinger, W. Wang, J. Clim.

16, 2419 (2003).
25. C. E. Chung, V. Ramanathan, Geophys. Res. Lett. 34,

L16809 (2007).
26. F. R. Robertson, D. E. Fitzjarrald, C. D. Kummerow,

Geophys. Res. Lett. 30, 1180 (2003).
27. M. I. Mishchenko et al., Science 315, 1543 (2007).
28. M. Wild et al., Science 308, 847 (2005).
29. V. Ramanathan et al., Nature 448, 575 (2007).
30. Thanks to theWorld Climate Research Programme for enabling

the Program for Climate Model Diagnosis and Intercomparison
model archive (www-pcmdi.llnl.gov). R.A. was supported
by the UK Natural Environment Research Council grants
NE/C51785X/1 and the National Centre for Earth Observation.
B.S. was supported by grants from National Oceanic and
Atmospheric Administration Climate Prediction Office and
NASA Energy and Water Cycle Study. Global Precipitation
Climatology Project (GPCP) data were extracted from
www.ncdc.noaa.gov; SSM/I data were provided by Remote
Sensing Systems. Comments by K. Hodges and two
anonymous reviewers helped to improve the manuscript.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1160787/DC1
Materials and Methods
SOM Text
Figs. S1 to S7

21 May 2008; accepted 29 July 2008
Published online 7 August 2008;
10.1126/science.1160787
Include this information when citing this paper.

Fig. 4. Observed (black) and simu-
lated (blue) percentage changes in
precipitation frequency (P%) per K tem-
perature increase over the tropical oceans
calculated from (A) linear regressions,
(B) El Niño minus La Niña, (C) the C-C
experiment, and (D) the global warm-
ing response in the GFDL CM2.1–coupled
model with A1B scenario forcings (19)
using 2101–2105 minus 2001–2005
daily data. Also shown in (A) and (B)
are the simulated changes for land and
ocean (dotted line). Vertical lines in (A)
and (B) denote T1 standard deviation
from all the individual models. Error
bars in (A) and (C) represent T1.96 stan-
dard errors for the linear fits plotted only
where the correlation coefficient is greater
in magnitude than 0.4 (the two-tailed
test 95% confidence limit assuming 22
degrees of freedom). Also shown in (D)
is the C-C response (red line; 7% times
the local SST increase for 2101–2105
minus 2001–2005).
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