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Introduction and background
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Motivation L

@ Friction reduces growth rates of baroclinic waves by up to
50% (Valdes and Hoskins 1998)

@ Improved surface winds and minimum pressure (Doyle
1995) from increased drag due to coupling with surface
waves

@ Precipitation and long-range moisture transport require
evaporated moisture to be ventilated into free troposphere

@ The boundary layer must mediate interactions with surface

@ But what are the interaction mechanisms?
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Role of friction: EKman pumping L
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Potential vorticity
PV = %g .06

@ Natural analogue of vorticity for a baroclinic system
@ Conserved for adiabtic, frictionless flow

@ Given a balance condition, PV can be inverted to deduce
the full dynamics

@ Conversely, PV generation reveals action of friction or
diabatic processes

e High PV must be associated with high stability
(stratosphere) or high vorticity (usual in troposphere)
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Baroclinic instability L
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e +ve anomaly of PV (eg descent of tropopause) implies a
cyclonic circulation

e Warm temperature anomaly at surface equivalent to +ve
PV anomaly (via the boundary condition for the inversion)

@ Co-operative interaction of surface and tropospheric
anomalies amplifies a baroclinic wave

@ Strength of interaction governed by static stability
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Main airflows L

Main flows in a system-relative frame:
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Baroclinic wave simulations
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Simulation set-up L

@ Investigations based on simulations of real cases with Met
Office Unified Model

@ And also idealized simulations of “baroclinic waves”
(most of the results today from these)

@ These simulations are over ocean only

@ Use a baroclinically-unstable initial state, which is zonally
symmetric and based on the mean atmosphere in
northern-nemisphere winter

e Start with small perturbation with wavenumber six

@ Can be run with a dry atmosphere, and with or without a
boundary-layer mixing scheme
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Initial conditions L
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Fixed SST equal to lowest-level atmospheric temperature in
initial conditions
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More than baroclinic instability
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Effects of the boundary layer L

Control simulation, T+60 Simulation with no boundary layer turbulence, T+60.
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Simulations with (left) and without (right) boundary layer, of
storm of 30/10/00
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L atent heat release L
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e Mid-level latent heat release produces +ve PV anomaly

@ Associated cyclonic circulation enhances system
development
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—ADP (850mb) (m)

Latent heating can dominate
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Diabatic and frictional effects L
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1. Does Ekman pumping explain the frictional effect?

2. How reliant is the latent-heating effect (and precipitation)
L on a boundary-layer moisture source?
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The role of friction
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Baroclinic effects L

e Ekman pumping is barotropic mechanism, but cyclones
are baroclinic!

@ Evolution of PV due to friction,

DP 1
—-=-0xFE-06
Dt p

e Consider evolution of depth-integrated PV, |P| over
boundary layer,

D[P 1
# = —(term ~ Wgkman) — Hwhph — (term ~ Vg - V)
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Baroclinic PV generation?

@ NS temperature gradient in basic state, implies westerly
thermal wind

@ Cyclonic circulation implies frictional PV generation to the
north of a cyclone (dark shading)

@ and PV destruction to the south (light shading)
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Baroclinic PV generation? L
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@ Should also account for EW temperature gradients
Induced by the wave

@ And frictional turning of the wind within the boundary layer

@ Expect PV generation to the north and east of a cyclone
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Baroclinic PV generation L
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Rate of PV generation at day 4 of a simulated dry baroclinic
wave
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Transport of generated PV L
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PV at 0 = 0.98 (left), 0 = 0.955(centre) and o = 0.92 (right)
after 6 days of a simulated dry baroclinic wave
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Transport of generated PV L

@ Negative low-level PV in vicinity of low
a generated by Ekman mechanism
e remains localised

@ Positive PV North and East of low:
a generated by Baroclinic mechanism
o advected out of boundary layer on warm conveyor belt
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Effect on cyclone development

@ Cross-section through
low centre

Sigrmna

@ Thin PV anomaly, as-
sociated with enhanced
static stability
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Zonal-mean stability L
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Comparison with Ekman effect

— Frictionless
— Ekman Pumping
Increased
'y — Both changes
e
g
0
[§
¥ 1+ -
£
3
0
0
0.5+ -
//
| A R R R
0 5e-07 1e-06 1.5e-06 2e-06 2.5e-06 3e-06

Zonal Wavenumber (i%)

Modified Eady model
with Ekman-pumping
iIncluded shows a
reduction in growth rate

Increased N2 shows a
similar level of
reduction

Both effects together

can reduce growth rate
by ~ 50%

D00 . . .
The University of Reading Boundary layer controls on extratropical cyclone development — p.25/3

1



Effects of boundary-layer friction L

PV attributed to frictional generation at T+24 in FASTEX IOP15

10 1.0
08 | —.0.8
06 0.6
04 04
02 02 R
0.0 00 E
02 -0.2
04 -04
06 -0.6
48 -08
0 W 0 K Al T | 30 <1
L Barotropic term on 900mb. Baroclinic term on 850mb.

@ The University of Reading Boundary layer controls on extratropical cyclone development — p.26/3



The role of boundary-layer
moisture transport
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Moisture source for a cyclone L

@ Precipitation occurs mainly in the ascending air on the
warm conveyor belt

e Inthe WCB footprint area, boundary layer is stable (warm
alr moving over relatively cool surface) and evaporation is

weak
@ So where does the moisture come from?
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Moisture transport

Schematic based on boundary-layer moisture budget analysis:

Large-
scale
motions

Convection

—
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Turbulent Fluxes

Divergence from high and convergence towards low within the
boundary layer necessary to supply WCB with moisture
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Ventilation mechanisms L
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Convectively-ventilated moisture L
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Initial moisture content L
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Final moisture content L

Compare final states with no initial moisture (left) and standard
Initialization (right)
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Climatological-mean mid-latitude moisture distribution can be
regenerated in one wave lifecyle (14 days)
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Scalings for moisture transport L

@ Scalings with changes
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Conclusions | L

@ Boundary layer friction dampens extratropical cyclones by
two mechanisms:

1. Ekman spindown: a barotropic mechanism the
directly reduces cyclonic circulations

2. Baroclinic PV generation and ventilation: an indirect
mechanism that reduces the coupling between upper
and lower levels

@ Both mechanisms are robust
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Conclusions II

@ Moisture source for WCB precipitaion may be well away
from cyclone

@ Shallow convection is also an important means of
moisture ventilation from the mid-latitude boundary layer

@ Scalings can be developed for these ventilation processes

@ Is it possible to develop a “bottom-up” analysis of changes
to the water cycle in a changing climate?

D00 . . .
The University of Reading Boundary layer controls on extratropical cyclone development — p.36/3



Conclusions Il L

e Mid-latitude cyclogenesis is far from a dead, textbook
subject

e Many important aspects of cyclones can only be
understood by unravelling the interactions between
large-scale, boundary-layer and moist dynamics
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