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Introduction and background
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Motivation

Friction reduces growth rates of baroclinic waves by up to
50% (Valdes and Hoskins 1998)

Improved surface winds and minimum pressure (Doyle
1995) from increased drag due to coupling with surface
waves

Precipitation and long-range moisture transport require
evaporated moisture to be ventilated into free troposphere

The boundary layer must mediate interactions with surface

But what are the interaction mechanisms?
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Role of friction: Ekman pumping
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Potential vorticity

PV =
1
ρ

ζ ·∇θ

Natural analogue of vorticity for a baroclinic system

Conserved for adiabtic, frictionless flow

Given a balance condition, PV can be inverted to deduce
the full dynamics

Conversely, PV generation reveals action of friction or
diabatic processes

High PV must be associated with high stability
(stratosphere) or high vorticity (usual in troposphere)
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Baroclinic instability

+ve anomaly of PV (eg descent of tropopause) implies a
cyclonic circulation

Warm temperature anomaly at surface equivalent to +ve
PV anomaly (via the boundary condition for the inversion)

Co-operative interaction of surface and tropospheric
anomalies amplifies a baroclinic wave

Strength of interaction governed by static stability
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Main airflows
Main flows in a system-relative frame:
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Baroclinic wave simulations
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Simulation set-up
Investigations based on simulations of real cases with Met
Office Unified Model

And also idealized simulations of “baroclinic waves”
(most of the results today from these)

These simulations are over ocean only

Use a baroclinically-unstable initial state, which is zonally
symmetric and based on the mean atmosphere in
northern-hemisphere winter

Start with small perturbation with wavenumber six

Can be run with a dry atmosphere, and with or without a
boundary-layer mixing scheme
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Initial conditions
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Fixed SST equal to lowest-level atmospheric temperature in
initial conditions
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More than baroclinic instability
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Effects of the boundary layer
Control simulation, T+60

950mb

Simulation with no boundary layer turbulence, T+60.

930mb

Simulations with (left) and without (right) boundary layer, of
storm of 30/10/00
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Latent heat release

Mid-level latent heat release produces +ve PV anomaly

Associated cyclonic circulation enhances system
development
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Latent heating can dominate

By inversion, can
measure contributions
to the circulation

A diabatic PV anomaly
drives the
intensification

Interacts constructively
with tropopause feature

System does not de-
velop without latent
heating
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Diabatic and frictional effects
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1. Does Ekman pumping explain the frictional effect?

2. How reliant is the latent-heating effect (and precipitation)
on a boundary-layer moisture source?
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The role of friction
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Baroclinic effects

Ekman pumping is barotropic mechanism, but cyclones
are baroclinic!

Evolution of PV due to friction,

DP
Dt

=
1
ρ

∇×F ·∇θ

Consider evolution of depth-integrated PV, [P] over
boundary layer,

D[P]

Dt
= −(term ∼ wEkman)−

1
h

whPh − (term ∼ vsurf · vT )
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Baroclinic PV generation?

NS temperature gradient in basic state, implies westerly
thermal wind

Cyclonic circulation implies frictional PV generation to the
north of a cyclone (dark shading)

and PV destruction to the south (light shading)
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Baroclinic PV generation?

Should also account for EW temperature gradients
induced by the wave

And frictional turning of the wind within the boundary layer

Expect PV generation to the north and east of a cyclone
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Baroclinic PV generation

Rate of PV generation at day 4 of a simulated dry baroclinic
wave
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Transport of generated PV

PV at σ = 0.98 (left), σ = 0.955(centre) and σ = 0.92 (right)
after 6 days of a simulated dry baroclinic wave
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Transport of generated PV

Negative low-level PV in vicinity of low

generated by Ekman mechanism

remains localised

Positive PV North and East of low:

generated by Baroclinic mechanism

advected out of boundary layer on warm conveyor belt
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Effect on cyclone development

Cross-section through
low centre

Thin PV anomaly, as-
sociated with enhanced
static stability
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Zonal-mean stability

Mid-level feature
associated with dry
intrusion

Baroclinic frictional
effects increase
low-level stability over
the low centre

Reduces the strength
of coupling between
tropopause-level PV
feature and surface
temperature wave
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Comparison with Ekman effect
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Modified Eady model
with Ekman-pumping
included shows a
reduction in growth rate
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similar level of
reduction

Both effects together
can reduce growth rate
by ∼ 50%
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Effects of boundary-layer friction

PV attributed to frictional generation at T+24 in FASTEX IOP15

Barotropic term on 900mb. Baroclinic term on 850mb.
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The role of boundary-layer
moisture transport
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Moisture source for a cyclone

Precipitation occurs mainly in the ascending air on the
warm conveyor belt

In the WCB footprint area, boundary layer is stable (warm
air moving over relatively cool surface) and evaporation is
weak

So where does the moisture come from?
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Moisture transport

Schematic based on boundary-layer moisture budget analysis:

Divergence from high and convergence towards low within the
boundary layer necessary to supply WCB with moisture
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Ventilation mechanisms

Warm-conveyor belt
and shallow convection
behind cold front
ventilate similar
amounts of moisture
from the boundary
layer

Rainfall rate closely
matches warm-
conveyor belt ven-
tilation: moisture is
precipitated out quickly
and efficiently
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Convectively-ventilated moisture
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Consider two tracers
emitted at surface

One of them is not
passed through
convection scheme

Difference reveals that
convectively-ventilated
air is advected pole-
wards and towards the
cold front
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Initial moisture content
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Final moisture content

Compare final states with no initial moisture (left) and standard
initialization (right)

25N 35N 45N 55N 65N
1000

800

600

400

200

Pr
es

su
re

 (h
Pa

)

5

5

5

10 10

10

15
15

15

15

20
20

20

20

20

25
25

25

25

25

30
30

30

30

30
30

35 35

35

35

40

40

40

40

40

45

45

45

45

45

50

50

50

50

55

55

55

60

60

60

65

65

65

70

70
70

75

75

75

75

80

80
80

(b)

25N 35N 45N 55N 65N
1000

800

600

400

200

Pr
es

su
re

 (h
Pa

)

510
10

15

15

15

15

15

20

20

20

20

20

20

25

25

25

25

25

30
30

30

30

30

35
35

35

35

40

40

40

40

40

45

45

45

45

50

50

50

55

55

55

60

60

60

65

65

65

70

70

70

75
75

75
75

80 80
80

80
80

(a)

Climatological-mean mid-latitude moisture distribution can be
regenerated in one wave lifecyle (14 days)
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Scalings for moisture transport
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Like
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based on temperature
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main evaporation
occurs

But steeper because
latent-heat release
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Conclusions I
Boundary layer friction dampens extratropical cyclones by
two mechanisms:

1. Ekman spindown: a barotropic mechanism the
directly reduces cyclonic circulations

2. Baroclinic PV generation and ventilation: an indirect
mechanism that reduces the coupling between upper
and lower levels

Both mechanisms are robust
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Conclusions II
Moisture source for WCB precipitaion may be well away
from cyclone

Shallow convection is also an important means of
moisture ventilation from the mid-latitude boundary layer

Scalings can be developed for these ventilation processes

Is it possible to develop a “bottom-up” analysis of changes
to the water cycle in a changing climate?
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Conclusions III

Mid-latitude cyclogenesis is far from a dead, textbook
subject

Many important aspects of cyclones can only be
understood by unravelling the interactions between
large-scale, boundary-layer and moist dynamics
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