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Sensitivity to the closure method within CoMorph B Reading

Standard closure

- Mass-flux launched from any height just

depends on the local vertical instability -N2:

Minic = fV —NZ2pAz

- Cloud-base mass-flux is an emergent
property of the entraining-detraining
plume-model, not a closure variable!

CAPE closure

The cloud base mass flux is calculated based on the reduction to
zero of CAPE by convection over a given timescale Tc4pg
From the rate of changes in CAPE between t and t + At

CAPE (t) CAPE(t) — CAPE(t + At)
=

TCAPE At

The mass flux at the base of the plume is multiplied by the
scaling actor (a) to give convective mass flux that dissipates
CAPE at the prescribed rate

MPeY = o M,



Sensitivity to the closure method within CoMorph

Specification of a single value of T, 4pg throughout the simulation (1 and 3 hours)

W1: simulations of tropical cyclones
W2: convective responses to moisture tendency perturbations (Daleu et al., submitted)
W3: Diurnal cycle of shallow convection over land (Brown et al., 2002)

W4: Idealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004)
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W1: simulations of tropical cyclones: Atm-only N1280 (~10km resolution) B piveriyof

Reading
GPM 2021-04-19T06:00:00 CMorph 2021-04-19T06:00:00

The CAPE closure
reduces the occurrence
of excessively linear
features in comorph A
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W1: simulations of tropical cyclones: Atm-only N320 B8 Reading

GPM 2021-04-19T06:00:00 CoMorphA 2021-04-19T06:00:00

At coarser resolution
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University of

W1: simulations of tropical cyclones & Reading

Atm-only Typhoon Surigae
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Slight increase in intensity with CAPE closure
with little difference between the 2 timescales tested



Sensitivity to the closure method within CoMorph Univeriyof
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W2: Simulations of convection coupled to parameterized large-scale circulation (Daleu et al., submitted)

large-scale circulation parameterized using the
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Sensitivity to the closure method within CoMorph
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W2: Simulations of convection coupled to parameterized large-scale circulation (Daleu et al., submitted)
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CAPE closure B Rending

Specification of a single value of T.4pf throughout the simulation (1 and 3 hours)

Simulations of TCs—2> little difference between the 2 timescales tested
Convective responses to dry tendency perturbations = precipitating or non-precipitating equilibria depending on the
value of TCcAPE-

Let’s performed simulations with other variations on the CAPE closure.
Tcapg Varies vary throughout the simulations depending on the level of convective activity

Case3: w based CAPE closure: (the user supplies w,,.;+, depending on model resolution)

If Wiax = Werit, thentcapg 1s reduced as follows:
Werit

/ . / . .
T =T with T > convection model time step
CAPE™"CAPE [Wcrit+fwcape(Wmax_Wcrit)] CAPE

Case 7: large-scale vertical velocity based CAPE timescale

(a
—3~ forwpg >0 with convection model time step <Tcgapg < 4h

w
Tcapp(h) = {1

L 4 forw; s <0

where a = 0.069 and b = 0.7
(Analysis of the high resolution convection permitting simulations over West Africa and the Indian Ocean done for the CASCADE).



W3 Diurnal cycle of shallow convection over land (Brown et al., 2002)

Surface Fluxes (W m™2)
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Similar to those obtained in simulation using eight independent models (brown et al., 2002)



W1: Diurnal cycle of shallow convection
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CoMorph vs MONC results and those from Brown et al 2002:
Convection is triggered a couple of hours earlier
Cloud base height doesn’t go as deep as in MONC
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Cloud—top height (m)

over land (Brown et al., 2002)
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* Cloud emerges rapidly and reaches its maximum height earlier
 Larger cloud fraction throughout the simulation



W1: Diurnal cycle of shallow convection over land (Brown et al., 2002)

Height (km)
MW

=
T

MONC

13

15

17 19 21 23

Std Closure

&

13

15

17 19 21 23

Height (km)
"]
(=]

&

TcAPE

=3h

13

15

17 19 21 23

eight (km)

&

TCAPE =

1h

13

15

17 19 21 23
Time (UTC)

EEEN T T BT T T e

Sensitivity to the closure method within CoMorph:
fixed CAPE time scale TCAPE =3, 1 or 0.5 hours
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W1: Diurnal cycle of shallow convection over land (Brown et al., 2002)

Case3: w based CAPE closure:
If Wax = Werit, thenteapg is

reduced as follows:
Werit
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Sensitivity to the closure method within CoMorph:

Other variations on the CAPE closure: Case3: (w based CAPE closure) and
Case 7 (large-scale vertical velocity based CAPE timescale)
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and case 7 vs

* Cloud based height is relatively unchanged

* From hours 19
e cloud emerges further

* Cloud top height is slightly increased with CAPE closure with variable timescale.



W2: Idealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004) @ggvaers-mg
Memory function: M(4, ty, At) = P[R(4,ty) N R(A4,t, — At)] — P?[R(A4, ty, At)]
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W2: Idealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004)

Memory function: M(4, t,, At) = P[R(A,ty) N R(A, t,
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W2: Idealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004) B vy of

Memory function: M(4, t,, At) = P[R(A,ty) N R(A, t,
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* However, M(A4,t,, At) for CAPE closure and fixed or variable Tq4p is similar to that obtained in GA8



B3 Reading
Summaries
We explored the sensitivity to the closure method within CoMorph

1. simulations of TCs
* Slight increase in intensity of TCs with CAPE closure with little difference between the 2 timescales tested

2. Convective responses to moisture tendency perturbations (Daleu et al., submitted).
* The adjustment to the dry equilibrium is much quicker in the simulation using CoMorph and standard closure.
* The adjustment to the dry equilibrium is slower with CAPE closure.

*with precipitating or non-precipitating equilibrium depending on the value of the fixed CAPE timescale.

3. Diurnal cycle of shallow convection over land (Brown et al., 2002)

* MONC results are quantitatively similar to those obtained in Brown et al., 2002

* CoMorph with standard closure or CAPE closure triggers convection a couple of hours earlier

* Convection emerges rapidly with standard closure and less rapidly with CAPE closure
*slightly increase of cloud top height with CAPE closure with variable timescale

4- |dealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004)
* CoMorph with standard closure: the three phases of the memory function (found in MONC) occur, but at different
time after triggering of convection
* The 2"9 and 3™ phases do not occur with the CAPE closure
* The memory function is similar to that obtained in GA8
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What is Next?

Continue with the analysis

performed diurnal cycle of deep convection using CoMorph A with CAPE closure and default or lowest entrainment
rate.



W1: simulations of tropical cyclones

(coupled)
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Slight increase in intensity with CAPE closure
with little difference between the 2 timescales tested
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Thanks!

Any Questions?
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