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CoMorph [ 1] is a new mass-flux cumulus parameterization scheme for use the o 6ol 600l 600! e M|
UK Met Office Unified Model (UM). It performs well in global model tests, with g
promising coupling to the large-scale circulation improving the development = e o
of emergent features such as the MJO. Here we focus on its closure formulation wool__. . | 000l . | qogol Yy
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by comparing against a traditional CAPE closure with fixed closure timescale /5t (K/d) A0 (K) &g (aika)
using some idealized test cases. Fig. 3 Change to RCE state induced by additional forcing (left column). CoMorph in single-
column mode. GAS8 is the previous convection scheme. MONC is used at Ax=Tkm.
The COMOfPh closure Previous UM scheme, GAS, is too top heavy. CAPE closure produces large changes
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o — s near cloud base. CoMorph is most similar to CAPE closure if using a long timescale
* Mass flux can be initiated from any N OM Z entrainmant (12h for a moistening perturbation, 3h for heating).
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(moist instability if there are pre-
existing clouds)
« No closure rescaling: intermittency is

Test Case 3: Memory in an idealized diurnal cycle

pressure / hPa

An idealized diurnal cycle with rapid onset of deep convection, asin [4].

avoided by using implicit-in-time as0]
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Test Case 1: DGW coupling with changing forcing
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RCE state coupled to a large-scale circulation derived from the damped-gravity Tim= 2t iggenng hou BRIeNE
wave (DGW) approach, <50 days. Then with additionally imposed moistening, O wo)t=5251 012
on days 50-100, and additionally imposed destabilization, on days 100+. [ 2]
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L5} | i Fig. 4 Memory functions for times after onset = probability of rain at both times t; and t, - At,
| referenced to probability of random occurrence. UM with Ax=10km and MONC with Ax=200m.
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05 1 ) 1 ) 1 CoMorph initially rains everywhere in the domain, but later develops finite duration
0 2D 50 75 100 125 150 of rain events, followed by local suppression, in good agreement with MONC. The

Time (Days) current UM scheme, or CoMorph with a CAPE closure fails to capture the suppression
phase. A long CAPE timescale (12h) can give far too much memory.

Fig. 2 Precipitation timeseries, normalized to RCE value. CoMorph in single-column mode.
MONC is a large-eddy code used at Ax =1km.

o CoMorph considers initiation of convective mass-flux level-by-level

CoMorph is more sensitive to the additional forcing than MONC. Can get similar

results from CAPE closure with ~3h timescale. A longer CAPE timescale (not shown) o [thas @ smoph evetvibion siieUE dmesiep lavel ol

gives excessive precipitation after >100 days. o Itdoes not perform a closure rescaling but we can add one to replicate the
behaviour of a traditional CAPE closure
Test Case 2: RESPO"SE to pertu rbation forcing  Inarange of idealised tests, the CoMorph closure often behaves similarly to a CAPE

closure with a relatively long timescale. Such timescales would not be practical for

RCE state with additional vertically-localised forcings, as in [3]. use in traditional schemes without the smooth evolution

o The corresponding timescale would have to be highly case dependent to replicate

200 : : 200 : : 200
o CoMorph, and the long timescales implied would be problematic for other cases
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