University of

Reading

Evaluating the CoMorph Parameterization using
iIdealised simulations of the two-way coupling

between convection and large-scale dynamics

C.Daleu! | R.Plant! | A Stirling? | M. Whitall?

1Department of Meteorology | 2UK Met Office

Introduction Vertical profiles 0

We present a new methodology to test the interactions of convection T o _Rr_.
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Response as a function of the strengths of moistening stimuli
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A combination of the momentum and thermodynamic equations. Fig.6 a) Scatter plots of AP=(P — Prcy) and E, = f(%)pm dp/g. b) scatter plots of P versus CRH. The solid black, grey
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combination of perturbations Above the threshold, the increase of precipitation with CRH is more

abrupt in the SCM than in the CRM and observations (CoMorph
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