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Abstract

UNIVERSITY OF MANCHESTER

ABSTRACT OF THESIS submitted by Robert Plant for the Degree of
Doctor of Philosophy and entitled Meson Properties in an Extended Nonlocal
NJL Model

Month and Year of Submission: March 1998

A nonlocal version of the NJL model is investigated. It is based on a separable
quark—quark interaction, as suggested by the instanton liquid picture of the QCD vac-
uum. The interaction is extended to include terms that bind vector and axial-vector
mesons. The nonlocality means that no further regulator is required. Moreover the
model is able to confine the quarks by generating a quark propagator without poles
at real energies. Features of the continuation of amplitudes from Euclidean space to
Minkowski energies are discussed. These features lead to restrictions on the model
parameters as well as on the range of applicability of the model. Conserved currents
are constructed, and their consistency with various Ward identities is demonstrated.
In particular, the Gell-Mann-Oakes—Renner relation is derived both in the ladder ap-
proximation and at meson loop level. The importance of maintaining chiral symmetry
in the calculations is stressed throughout.

Calculations with the model are performed to all orders in momentum. Meson

masses are determined, along with their strong and electromagnetic decay amplitudes.
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Also calculated are the electromagnetic form factor of the pion and form factors asso-
ciated with the processes yv* — 7% and w — 7%y*. The results are found to lead to a
satisfactory phenomenology and demonstrate a possible dynamical origin for vector—
meson dominance. In addition, the results produced at meson loop level validate the
use of 1/N, as an expansion parameter and indicate that a light and broad scalar state

is inherent in models of the NJL type.
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Chapter 1

Introduction

1.1 QCD

It is widely accepted that strong interactions are described by the theory of quantum

chromodynamics [1] (QCD). This is an SU(3) gauge theory of spin 3 quarks which
interact via the colour gauge field, the quanta of which are called gluons. The quarks
themselves have one of six different flavours, which are identical with regard to the
QCD Lagrangian, apart from their bare (current) masses. The non-Abelian nature of
the gauge group means that there are also purely gluonic interactions, arising from the
use of gauge—covariant field strengths. In perturbative calculations of the running cou-
pling in the theory, these gluonic self interactions cause the gauge coupling strength to
increase as the energy scale decreases. Hence the theory at low energies is intrinsically
non-perturbative. At high energies the theory is weakly coupled, a property known
as asymptotic freedom. Although the predictions of the theory have been successfully
tested in this regime, where the perturbative technique is a valid one, a wide variety
of alternative methods is required to probe the low-energy content of the theory.
There are several important features of strong-interaction physics which are

thought to be consequences of the dynamics in the low-energy regime. These fea-

tures should be reflected in any attempt to model the non-perturbative dynamics, if

15
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only by means of their phenomenological implications. One such feature is that of
dynamical chiral symmetry breaking. Apart from the current quark masses, the QCD

Lagrangian is invariant under the global chiral transformations,

(1 —=5)Y = Gi(1 —v5), (T +795)1 = G (1 + 95)1), (1.1)

where G; ® G, € SU(N;);® SU(Ny),. Since the current quark masses of the lightest
two (or three) flavours are small one might hope for this to be a useful approximate
symmetry at low energies, where the heavy—quark flavours are not relevant to the
physics. However, the observed spectrum of excitations above the vacuum state does
not exhibit chiral symmetry. The physical vacuum itself is therefore considered not
to be invariant under chiral transformations, the axial part of the chiral group being
a spontaneously broken symmetry. The required phase transition from the chiral
vacuum to the physical vacuum, which realizes only the vector part of the group,
is believed to be inherent in the non-perturbative sector of the theory. Associated
with this transition is the appearance of a Goldstone boson. In practice, the small
explicit chiral symmetry breaking, owing to the non-zero current quark masses, means
that the Goldstone state is manifested only approximately in the guise of the light
pseudoscalars.

Another important property of QCD is that of confinement, the requirement
that only colour—singlet composite systems of quarks and gluons can be observed as
asymptotic states. There being no proof that confinement must occur in QCD, the
property is postulated on the basis that no coloured states have ever been detected.
Qualitative arguments, based on the large N, limit [2] or on the assumed failure
of the cluster decomposition principle, indicate that confinement should be a non-
perturbative effect, associated with strong, long-range forces between coloured objects.
Some support for such ideas is provided by the phenomenological success of potential
and string models of hadrons as well as by lattice gauge studies.

One possible approach towards a practical description of low-energy strong physics

is the use of QCD sum rules [3], which aim to interpolate between the calculable

1.1. QCD



Chapter 1. Introduction 17

high-energy behaviour of the theory and low-energy phenomenology. Although this
technique has a firm theoretical footing, there may be uncertainties introduced by the
choice of formulation on the phenomenological side, while the results themselves can
exhibit significant dependence on the mass scale at which the matching is performed.
Another possibility is to attempt to simulate QCD on a lattice of space—time points [4].
In principle this approach could be a source of much information. However, it is very
intensive numerically and accurate results are difficult to achieve, not least because
of the uncontrolled approximations that are presently required in practice. Further,
there is as yet an incomplete understanding of systematic errors, such as finite—size
effects. Another method, which also explicitly encodes the full dynamical content of
QCD, is to work in the formalism of the Schwinger-Dyson equations [5]. This for-
malism consists of an infinite tower of coupled integral equations linking the n-point
functions of the theory to functions with fewer external lines. In order to make the sys-
tem tractable it must be truncated, with some ansatz chosen to represent the physics
neglected. The degree of approximation involved in that process is unquantified and,
for an ansatz with any pretensions towards being realistic, the numerical situation can
easily become prohibitive. The method does, however, have certain advantages over
the lattice approach, such as the transparent connection between dynamical chiral
symmetry breaking and the Goldstone character of the pion [6]. Yet another tech-
nique commonly applied is that of the effective chiral Lagrangian® where one works in
terms of mesonic degrees of freedom and constructs Lagrangians consistent with chiral
symmetry. Although such Lagrangians may contain many unknown coefficients, which
must be determined by appeal to experiment, they are nevertheless at worst useful
tools for elucidating the relationships between different physical processes.

Each of the methods outlined above is, at least in principle, capable of being
fully consistent with QCD. An alternative line of attack, however, is to operate in a

framework which relaxes that requirement from the outset. For instance, the starting

'which is discussed further in Appendix C.

1.1. QCD
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point could be to postulate some effective quark Lagrangian. In that style of approach
one aims to construct a model which incorporates some important aspects of the
low-energy QCD dynamics and yet with which actual calculations of observables are
reasonably straightforward to perform. Considered from a purely phenomenological
perspective, a model of that type should be capable of accounting for a wide range of
experimental data, hopefully with a more limited set of free parameters than would be
needed by a model formulated at the hadronic level. Moreover, one might hope that
by exploring a variety of such models of interacting fermions it may be possible to gain
some insight into the ways in which particular properties of the underlying dynamics
influence the resulting observables. A simple and early example of the approach is the
model of Nambu and Jona-Lasinio [7] (NJL) of which there will be a good deal more

to say later.

1.2 Overview

The main body of this thesis will present work on the development of a model of
interacting fermions. A simpler version of the model to be used was originally pro-
posed by Bowler and Birse [8] as a tractable dynamical model which shares several
features with low-energy QCD. Being based on a four—quark interaction vertex, it has
some similarities with the model of NJL. However, since the interaction of Ref. [8] is
taken to be nonlocal there are also some important differences. Amongst these are
features which eliminate the traditional problems of the NJL model whilst neverthe-
less retaining much of the simplicity that is its chief merit. The nonlocal model was
therefore suggested as one which offers an interesting improvement over the original
NJL Lagrangian. This thesis investigates the proposed model in some detail, extend-
ing the treatment of Ref. [8] by including interaction terms that bind the vector and
axial vector mesons as well as by developing a framework that enables electromagnetic
quantities to be calculated.

The enlarged model to be described here is referred to as the nonlocal extended

1.2. Overview
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NJL model, details of its definition and motivation being presented in Chp. 2. A part
of that definition is the specification of transverse vector and axial currents, which are
also discussed in that chapter. Calculations with the model will be performed to all
orders in momentum but to a finite order in the 1/N, expansion. Working initially at
leading order (LO) in 1/N,, the resulting forms of the quark and meson propagators
are presented in Chp. 3. In the following chapter, the means of coupling particles to
external currents are explained and various Ward identities, such as the Gell-Mann—
Oakes-Renner (GMOR) relation and that for the correlator of vector currents, are
demonstrated to hold. Determination of the model parameters and the resulting me-
son spectrum are discussed in Chp. 5, along with the evaluations of purely hadronic
meson decay modes. A variety of electromagnetic decays and form factors are cal-
culated and discussed in Chp. 6. In addition, that chapter includes descriptions of
how other identities are satisfied by the model calculations, specifically those for the
pion charge and the anomalous 7° decay amplitude. Since 1/N, is not a particularly
small expansion parameter, an obvious desire is to examine the corrections to the
model at next-to-leading order (NLO). In Chp. 7, the theoretical basis for doing so is
established, the extra contributions being given for the quark and meson propagators
and for the pion decay constant. There are useful cancellations which can be found
amongst the graphs contributing to the pion decay constant at NLO and these are
detailed in Appendix A.1. It is important to ensure that the NLO treatment remains
consistent with symmetry restrictions and to that end the GMOR relation is explicitly
verified in Chp. 7, drawing on results derived in Appendices A and B. Numerical re-
sults from the NLO analysis are given in Chp. 8. There is some additional discussion

and a summary of the findings in Chp. 9 where conclusions are also drawn.

Chiral Symmetry Constraints

In the work on the nonlocal extended NJL model, a considerable amount of attention

will be devoted to showing that the model calculations satisfy various identities which

1.2. Overview
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follow from chiral symmetry. Since the interactions in the model are constructed to
be chirally symmetric, such identities will provide useful checks on the calculations,
helping to verify that all of the relevant contributions to a process have been correctly
identified and evaluated. This is important to establish because a failure at any
stage to incorporate chiral symmetry correctly could greatly distort the results for
observables. The point is highlighted in Appendix C with a calculation of the rare
decay p — 4m. Although this decay mode of the p meson is yet to be observed, some
authors [9, 10] have recently expressed hopes that it might be possible to detect it in
forthcoming experiments. Following some general comments about the construction of
chiral effective Lagrangians, the appendix describes computations of the decay using
a variety of such phenomenological Lagrangians. The decay widths deduced from
all of these chirally-symmetric approaches are an order of magnitude smaller than
those which have been estimated in models that did not respect all of the symmetry
constraints [9, 10, 11]. The process therefore gives a dramatic illustration of the need
to make sure that such constraints are enforced.

Brief consideration will also be given in Appendix C to the possible implications
that a measurement of the p — 4x partial width could have for the effective La-
grangians used. In particular, comments will address the issue of whether the decay
might be able to test any of the phenomenological notions associated with the vector
mesons. Such notions will be amongst those probed within the context of the nonlocal
extended NJL model. In the remainder of this introductory chapter, it therefore seems
appropriate to draw the reader’s attention to some of those phenomenological ideas

which will be of particular relevance to the work.

1.3 Chiral Symmetry

The concept of chiral symmetry is a very powerful one, underpinning almost all of
the phenomenology which has been developed in low-energy strong physics. In order

for it to be so useful a principle it is necessary that the current quark masses be

1.3. Chiral Symmetry
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small. The symmetry is then almost satisfied by the QCD Lagrangian. The current
masses should be small in comparison with, say, the proton mass, which one might
reasonably consider to be a typical energy scale of the strong interaction. In the most
recent update from the Particle Data Group [12], the following values were quoted for

the current quark masses?:
m, = 2to8 MeV, mg = 5to 15 MeV, mg = 100 to 300 MeV, (1.2)

with the other three quark flavours being heavier still. The up and down flavours
of quark can therefore be regarded as light in the above sense. Going further, if the
strange quark were also incorporated then a three-flavoured chiral symmetry might
prove a useful tool. However, since the strange quark’s bare mass is significantly
larger, there are many practical applications where one would need to include appro-
priate symmetry-violating effects to obtain satisfactory results. While the study of
strangeness is an important subject in its own right, the attention of this thesis will

be focused on the lightest two flavours.

1.4 Constituent Quarks

Of the strongly-interacting states that have been so far observed there are two main
classes: mesons, the quantum numbers of which may be accounted for in terms of
those of an underlying gq pair; and (anti-) baryons, similarly described with a (g779)
qqq structure. For completeness, it should also be pointed out that there is some
tentative evidence for other possible structures in observed bound states, such as the
purely gluonic, gg molecules or hybrid ggg states. The concerns here are with the
mesons, being the simplest bound systems in which to attempt to model the internal

dynamical structure.

’In general, the values of the quark masses are dependent upon the renormalization
scheme adopted and the scale at which they are evaluated. The estimates quoted refer to a
mass—independent subtraction scheme, at a scale of O(1GeV).

1.4. Constituent Quarks
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The quarks referred to in the above categorizations of hadronic spectroscopy are
not to be identified with those elementary fields with masses of a few MeV (Eq. 1.2)
found in the QCD Lagrangian. Although sharing the same discrete quantum numbers
as those fields, the quarks that appear in simple spectroscopic descriptions are objects
with masses of a few hundred MeV. Effective masses of that order are required in
straightforward spectroscopic treatments of hadronic properties, such as their masses
and magnetic moments. It is postulated that the acquisition of such an effective
mass occurs as a consequence of the non-perturbative interactions of the bare quarks
with the non-trivial vacuum structure. The generation of masses for particles through
spontaneous symmetry breaking is a familiar phenomenon from the Higgs mechanism
of the electroweak model [13] and is well illustrated by the inclusion of fermions in the
linear sigma model [14]. More particularly, the simplest available order parameter for
dynamical symmetry breaking in QCD is provided by the matrix element (0[1t]0)q,
defined? by*

4

d'p
Wso(p)a (1-3)

where Sy(p) is the full two-point function dressed by the interactions of the theory

(O[[0) = ~iTr [

and evaluated at zero current quark mass. As throughout the text, the chiral limit of
a quantity is here denoted by the subscript zero. Now, the most general form of the

dressed quark propagator is

S7'(p) = (1 +a(p®))p — b(p°). (1.4)

For there to be a non-zero condensate in the physical vacuum, clearly it must be
that b(p?) # 0 to give a non-vanishing Dirac trace in Eq. 1.3. The existence of
a scalar term in Eq. 1.4 can be interpreted as an effective mass for the constituent

quark, the generation of which is therefore inextricably entwined with the spontaneous

3Strictly speaking, to give a complete definition, one should specify a particular renor-
malization scheme and the scale at which the scalar condensate is to be evaluated. Never-
theless the expression given is sufficient for the present purpose of supplying a suitable order
parameter.

4Here ‘Tr’ is used to denote a trace over flavour, colour and Dirac indices; the symbol ‘tr’
will later be used to indicate a trace over Dirac indices only.

1.4. Constituent Quarks
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breakdown of chiral symmetry. While it is obvious that this mass must run (since
asymptotic freedom demands that b(p*> — —o0) — 0), in many studies it is assumed
to be approximately constant over the low-energy range (up to ~ 1 GeV). Such an
assumption is not in conflict with many phenomenological consequences, but can be

a source of difficulties when imposed upon a dynamical model, such as that of NJL.

1.5 The Pions

Chp. 1.1 mentioned the important role played by the light pseudoscalar mesons which,
in the chiral limit, are the massless Goldstone modes associated with dynamical chiral
symmetry breaking. A simple early model which embodies chiral symmetry is the
celebrated linear sigma model of Gell-Mann and Lévy [14]. As well as pseudoscalar
fields for the pions, the model contains a scalar field which acquires a vacuum expecta-
tion value (—f,) and is thereby responsible for the spontaneous symmetry breakdown.
The ground state is degenerate with respect to pionic excitations that lie on the chiral
circle®, 02 + 2 = f2. An axial symmetry transformation acts to move the system be-
tween these degenerate states. Its effect can be parameterized by the matrix element

of the axial current, J&* = %ETW“%% between the vacuum and a single pion,

(015" (2)|7"(q)) = 01 frq"e ™" (1.5)

+ — lil/l

The above matrix element controls the weak decay of the charged pion, 7
(I = p,e) [15] from which a numerical value for the pion decay constant, fr, can
be determined. The quantity is a crucial element in any chiral model since it is the

physical value which sets a scale for the dynamical symmetry breaking process. Taking

the divergence of Eq. 1.5 gives
(010, 5" ()| (q)) = 6 famize ™", (1.6)

relating the pion mass to the explicit breaking of axial symmetry. The relationship

was further developed by Gell-Mann, Oakes and Renner [16] (GMOR) who derived

note that the convention is followed where an underscore denotes an isotriplet.
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the result
frm? = —m(0][0)o + O(m7), (1.7)

where m, is the average of the up and down current quark masses. A further assump-
tion is required to obtain Eq. 1.7, namely the partial conservation of the axial current
(PCAC). Although the current quark masses explicitly break the axial part of the
chiral group, its current is regarded as conserved in the first instance, the effects of
the actual symmetry breaking often being small corrections which can reasonably be
treated perturbatively. Eq. 1.6 implies that a suitably-normalized 9, J5* could be used
as the field describing an on-shell pion. Making the PCAC assumption then means
that an extrapolation of this operator from the pion mass shell to ¢ = 0 should be a
smooth one and hence that low-energy matrix elements of the axial current divergence
are dominated by the pion. Application of this notion can be very powerful. Its plausi-
bility may be justified a posterori from the successes of its many consequences. When
combined with current algebra (the commutation relations of the vector and axial
currents), there are a wide variety of soft pion theorems which can be deduced [17].
Interpretation of the scalar (sigma) meson in the linear sigma model is far more
controversial. The particle is excited by forces which act to restore a Wigner—Weyl
realization of chiral symmetry, its mass parameterizing the resistance of the vacuum
to such forces. However, since there does not exist an unambiguous physical state
to identify with the field, it remains the subject of debate. Such issues are discussed

more fully in Chps. 5 and 8.

1.6 The Vector Mesons

Although soft pion theorems provide much useful information about processes at the
lowest, energies there are important dynamical effects, not solely determined by sym-
metry considerations, which become relevant as energies increase. In the discussion of

such effects, the existence of more massive particles becomes significant. The lightest
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of these are the vector mesons. As is discussed in Appendix C.1, the exchange of such
resonant particles is the dominant contribution to pion dynamics beyond the lowest
energies. The vector mesons are also among the main ingredients in meson exchange
models of nuclear forces [18]. Although pion exchange accounts for the major part
of the long-range inter—nuclear force, inclusion of the w meson can help to explain
the short distance repulsion between nucleons. Furthermore, the particle is considered
to be responsible for part of the spin—orbit interaction. The p meson proves to be a
lesser, but still significant inclusion®, being relevant at comparable length scales of ~ 1
fm. The possibility of p — w mixing [19] is an interesting and much—debated aspect of
inter-nuclear forces, providing a mechanism [20] for observed charge-symmetry viola-
tions [21]. In addition, this mixing has been suggested as a potential source for CP
violation in B-meson decays [22].

The vector mesons are also highly conspicuous in discussions of the electromag-

" was first

netic couplings of hadrons. Indeed, the very existence of the w meson
proposed in 1957 [23] in order to interpret nucleon form factors®. The p resonance was
suggested on similar grounds shortly afterwards [28]. Since these particles have the
same discrete quantum numbers as the photon they can participate as intermediates
in electromagnetic interactions. This point soon lead to the phenomenological con-
cept of vector meson dominance (VMD) [26], the idea that such intermediate states
might actually make the dominant contributions to electromagnetic matrix elements.
The concept is perhaps most dramatically suggested by the pion form factor, which
is strongly peaked at the p meson mass [29]. Moreover, the variation with momen-

tum of this form factor, over a fairly wide range of ¢, can be well described using

simply a canonical p meson propagator. Experimental support for VMD can also be

6there are also contributions from combined 7p exchange which can have important con-
sequences [18].

Talthough named as p° by the author of the initial paper.

8 A tentative suggestion for a new, heavy meson to account for the phenomenological NN
spin—orbit force can also be traced back to that year [24]. However, it was not until three
years later that this was thought to be a vector state [25, 26] and treated seriously [27] in
that context.
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inferred from various other mesonic form factors [30], from electromagnetic meson de-
cays [31] and from photoproduction processes in nuclear physics [32]. The underlying
reasons for these successes are unclear. It is therefore of interest to examine whether
there might be any support for the concept within a dynamical framework such as
that of the nonlocal extended NJL model. VMD can be expressed more concretely as
the assumption of an identity between the electromagnetic current and the canonical

interpolating fields of the vector mesons [33],

Jhu(z) = _69p7pou($) — eguyw () + -+ (1.8)

where the dots refer to more massive vector resonances. The constants gy, parame-
terizing the coupling strengths between the photon and the vector mesons are to be
considered as being defined by the above field-current identity, Eq. 1.8. They can be
determined experimentally from the decays V' — eTe™. An essential point to note,
without which Eq. 1.8 would be invalid, is that a spin-1 field coupled to a conserved
current of necessity has no divergence itself, by virtue of its Proca equation®.
Another phenomenological concept, closely related to VMD, is that of a universal
coupling of the vector mesons [17, 34]. Electromagnetic gauge invariance requires that
the photon be universally coupled to all other elementary fields. The couplings to
composite states are complicated by associated form factors, but for a real photon
these simply reduce to the known charge of the state. Suppose now that one is pre-
pared to accept an extreme form of VMD where the field—current identity is saturated
by the lightest vector resonances. Since photon-hadron couplings then take place
exclusively via intermediate p and w mesons, it follows that the couplings of these
particles to strong states should themselves be universal. The statement will only be
true on the photon mass shell and strictly therefore universal coupling can only apply
to the interactions of the interpolating vector fields defined by Eq. 1.8 at the off-shell
point ¢ = 0. Away from that point, universality can only persist by means of appar-

ently improbable coincidences relating the strong and electromagnetic form factors of

9%the Euler-Lagrange equation for that field.
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various targets. With that basis, an extrapolation of the principle over a fairly large

interval of ¢, from zero to the on-shell vector meson mass, is highly dubious; it is

2

certainly far more implausible than the PCAC extrapolation from zero to m;. Sur-
prisingly, however, such a bold step turns out rather well from the phenomenological
perspective: relations between the resulting predictions for p — ete™, p — 77~ and
the phenomenological pNN coupling used in nuclear models [35] are reasonably well
satisfied. As with VMD, the reasons for the success of universality are not known, pre-
sumably lying in some approximate property yet to be unearthed from the dynamics.
Alternatively, there might of course just be some coincidence amongst the particular
vector-meson couplings whose values can be determined. This interesting question is
an issue which will receive some attention in the remainder of the thesis. Appendix C
includes comment on whether detection of the p° — 7+7~27% decay could in practice
probe the strength of the ppp vertex, which would then strengthen or weaken the

experimental support for universality. Also, Chp. 6 includes discussion on whether

universality might arise from within the nonlocal extended NJL model.
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Nonlocal Extended NJL Model

2.1 NJL Model

The Nambu-Jona-Lasinio (NJL) model [7, 36, 37] was described in the introduction
(Chp. 1) as a dynamical model which is very much simpler than QCD but which
shares several qualitative features with it. Most notably, the NJL model supports
a dynamically—broken chiral symmetry, with the pions as approximate Goldstone
bosons. Since such features have long been known in low-energy strong physics, the
model has been widely used as a starting point for the description of light mesonic
states as fermion—antifermion composites, predating QCD and retaining its popularity
to date. Viewed as a low-energy approximation to some underlying, strongly—coupled
fermionic theory, variations of the model have also been studied in the context of the
top-quark—condensate picture of a composite Higgs boson [38].

The original NJL. model is based on fermionic fields interacting through a local,
chirally-invariant, four-point vertex!. The local nature of the interaction produces a
great simplification of the corresponding Schwinger-Dyson and Bethe-Salpeter equa-

tions. The main defects of the model, however, are direct consequences of this locality.

!The precise form of the action is discussed in Chp. 2.3.
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Specifically, they are that the loop integrals diverge (and so must somehow be regu-
lated) and that the model is non-confining.

The absence of confinement in the NJL model occurs because the dynamically—
generated constituent quark mass is momentum independent. This fact imposes a
severe restriction on the range of applicability of the model, since a gg continuum
opens up at energies of twice the constituent mass. Only the pions lie unambiguously
below this threshold. The model also includes the chiral partner of the pion, which is
located on the threshold (indeed, just above it if one works beyond the chiral limit)
and may, if desired, include other mesonic states. Without confinement, however, and
with an otherwise reasonable constituent quark mass of ~ 300 MeV, the p meson and
other such states would lie above the gg threshold and so could decay into free gq
states.

Since the NJL model is non-renormalizable, in practice it is necessary to apply
some form of ultra-violet regularization with a cut-off parameter that remains finite.
The details of the scheme adopted must be regarded as a part of the specification of
the model. A variety of schemes have been used in the literature, such as hard three—
and four-momentum cut-offs, proper time and Pauli—Villars regulators. Although the
model does contain regularization-independent information [39, 40] and results with
the various regularization schemes have been found to be qualitatively similar [41], the
choice of any particular scheme lacks a sound physical motivation. A feature of many
of the schemes is that as well as the form of the cut-off, a definite momentum routing
must be specified for loop diagrams with two-or-more quark lines [42]. In practice
a symmetric routing is often implicitly taken in order to maintain Ward identities.
Another aspect of concern is that the regularization scheme must be specified yet
further if one wishes to calculate beyond leading order in the 1/N, expansion, a new
cut-off being required for meson loops [43, 44, 45].

The need for a finite regulator in the model is somewhat problematical in the

anomalous sector. If low-energy theorems for anomalous processes (such as that for

2.1. NJL Model
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7® — ~7) are to hold then a complete set of quark states is required. This can

be achieved by leaving the anomalous diagrams ad hoc unregulated [46] or else by
including additional terms in the Lagrangian in order to recover the anomalous Ward
identities [40]. Related problems occur in the presence of interactions of a vector
character [46, 47, 48, 49] if one attempts to apply the regularization prescription to

both the anomalous and non-anomalous sectors.

2.2 Variations on the Theme

Many attempts have been made to generalize the original NJL model [50] with the aim
of eliminating some of the unwanted features discussed in Chp 2.1 but retaining its
successful phenomenological aspects [36, 37]. One promising approach, which provides
some motivation for the model which is studied here, is suggested by the instanton—
liquid studies pioneered by Dyakonov and Petrov [51]. In that picture, the QCD
vacuum is viewed in terms of a liquid of instantons (and anti-instantons), the gluonic
configurations which connect topologically-distinct states within the vacuum. The
instantons induce an effective quark vertex of the 't Hooft structure [52, 53], which is
nonlocal but has a separable form. The separable nature of this interaction retains as
far as possible the simplifying features of a local model, with the nonlocality providing
a natural cut-off on all loop integrals. A similar class of model assumes a separable
dependence on the relative momentum of the Gg pair and has been studied in Refs.[54,
55, 56, 57].

Other models with simple interactions have been suggested based on various other
types of gluonic field configurations postulated within the QCD vacuum. For exam-
ple, Efimov and coworkers [58, 59] start with a constant (anti-) self-dual background
gluon field in Euclidean space and base their four-quark vertex on one-gluon exchange
within such a background. Yet another recent model [60] used a four-quark vertex me-
diated by a random colour matrix, as an attempt to simulate a strongly-fluctuating

background gluon field (see also[61]).
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It should also be mentioned that there are explicit studies of the QCD Schwinger—
Dyson equations based on one-gluon exchange forces between the quarks, often us-
ing effective gluon propagators [62, 63] (also see the review [5] and other references
therein).

The work here develops and further explores a model proposed by Bowler and
Birse [8]. It is based on a nonlocal, separable, four-quark vertex and is therefore
similar to the instanton-liquid model of Ref. [51]. The differences from the instanton
model are that more general choices of the interaction form factor and the possible
couplings are admitted. The particular choice of form factor which is adopted in
the numerical computations can lead to quark confinement, in the sense of a quark
propagator without poles at real energies. It also ensures the convergence of all quark
loop integrals, unlike that chosen in the separable model of Ref. [64]. Only the pions
and their scalar partner were studied in Ref. [8]. In the spirit of the extended NJL
model [37, 39, 40, 46, 65, 66, 67, 68, 69], other mesonic degrees of freedom, such as
the vector mesons, can be incorporated. Including these particles enables the role of
the confinement mechanism to be probed, since they have masses of around twice a

typical constituent quark mass.

2.3 The Nonlocal Model

Formally at least, one can imagine integrating out gluonic degrees of freedom to leave
an effective action for QCD expressed in terms of quark fields only. As in the usual
NJL model, such an action is truncated to include only the simplest interactions
possible, keeping the two-body forces between quarks, as described by four-quark
vertices. Indeed, at leading order in 1/N,, all six-quark and higher interactions could
be absorbed into effective couplings for the four-quark terms, by replacing extra It
factors with their vacuum expectation values. This is just the procedure followed

in the three-flavour extended NJL model [68, 69] with a six-quark, U(1)4-breaking
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't Hooft determinant® [52]. If there is flavour asymmetry then the process induces
effective four-quark couplings that depend on the flavour channel. However, there is
no need to consider such effects in any detail since the present work specializes to two

flavours with isospin symmetry. The action may be written as
S = /d%@(x)(z@ —me)Y(z) + > / I d'%n Hi(x1, 22, 23, 24)

X (@) T7(23)0(22)Tiath(24). (2.1)
The object I' in Eq. 2.1 denotes Dirac, colour and isospin matrices. That the matrix
combinations between the quarks at z; and x5 are the same as those between x5, and
x4 is a consequence of parity and the Lorentz, flavour and colour invariance of the
action. Imposing SU(2),®SU(2),®U(1)y symmetry restricts certain of the possible

Dirac and isospin structures to appear in the combinations

Hi(1®1+iv7" @ ivst"), Hy(7#7° @ 9™ + Y957 @ 7u157"),

H5(Ta®7'a+i’)/5®i75), HG(O-[.LV®O-IJV _O';wTa®O-lea): (2'2)

whilst the strengths of the following interactions are unconstrained by symmetry con-

siderations:
Hy("" @ 7u),  Ha(h"v5 ® Yu5)- (2.3)

A wide variety of the models mentioned in Chp. 2.2 can be expressed in the above
form, differing according to the ansatz taken for { H;(z1, xo, x3,24) }. The original NJL
model, for instance, has H; ~ [d'z ], d(x — x,) and a constant coupling strength,
whereas one-gluon exchange models use H; ~ 6(x; — x3)0(x9 — x4)D(x1 — 23). The
present approach is motivated in part by the instanton-liquid model [51]. Within
the zero-mode approximation to that picture, there is a 2/Ng-point quark interaction,
which is of separable form. Recent lattice calculations offer some support for such
notions [71], suggesting that instantons do indeed dominate the vacuum gluon struc-

tures and showing also the importance of the zero modes to the quark propagator. In

2In fact, this six-quark interaction had been proposed several years earlier [70], albeit on
a purely phenomenological basis.
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momentum space, a separable interaction is one of the form

H;(p1,p2, p3,pa) = %(27T)4Gif(p1)f(pg)f(pg)f(p4)5(p1 + P2 — p3 — P4)- (2.4)

In the model of Ref. [51] the function f(p) has a particular form and for two flavours
of quark the relation G; = —Gj follows from the structure of the 't Hooft determi-
nant. Also present in that model is an interaction of tensor character but it is 1/N,
suppressed.

The model studied here is similar to that of Dyakonov and Petrov [51], in that it
is based on an interaction with the separable form (Eq. 2.4). However, a more phe-
nomenological attitude is taken towards the form factor f(p) and the allowed couplings
(Egs. 2.2 and 2.3). Only interactions in the colour—singlet channels are considered. A
unit matrix in colour space is therefore assumed to be implicitly included whenever
a matrix combination I'{ is written. The G, coupling (in the ladder approximation)
produces the pions and their isoscalar scalar partner, 0. Couplings in the spin-1 chan-
nels, G, G5 and Gy, are responsible for the p, a;, w and f; mesons. Including the
G5 coupling also allows the model to describe an isovector scalar and an isoscalar
pseudoscalar meson. The lowest—lying meson with quantum numbers corresponding
to the former is a((980), whilst the latter is a non-strange state with the quantum
numbers of the n and 7/, to be referred to as n*.

The analysis does not include the possible tensor interactions, described by the
coupling Gg. As can be seen from the following identity these can contribute in the

(axial) vector channels:

v

_ 2T _ — _ _
(wo-;ww)Q = q—;(wam%w-w%ﬂqﬂw + wU“a%%w-wUuﬁ%qﬁwa (25)

g being an arbitrary four-vector and 17" the transverse projector,

14

q"q
W v
" =¢ 2

(2.6)

Such couplings were discussed in Ref. [68]. They give rise to anomalous magnetic—

moment couplings of the vector mesons to constituent quarks®. In the absence of any

3The piece of axial character in Eq. 2.5 would constitute an independent channel since
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strong phenomenological need for such an effect these terms can be safely omitted.
For the sake of simplicity, all of the possible independent interactions are assumed
to contain the same form factor, differing only through the constant coupling strengths,
{G;}. In the analytic work, no assumptions are required about the detailed behaviour?
of the form factor. Of course, a specific choice must be made to obtain numerical

results. As in Ref. [8], the form factor is taken to be Gaussian in Euclidean space®,

fpr) = exp(—py/A?). (2.7)

This choice was shown to be able to give quark confinement. In fact, the possibility
of taking a different A for each of the independent couplings has also been examined®.
Doing so does not lead to any very significant effects. This is because the main
qualitative features are dominated by the form of the quark self-energy which, in the
ladder approximation, depends only on the (G; interaction.

To give a complete specification of the model, there are two additional choices
which have to be made. One of them concerns an ambiguity in the transverse vector
and axial currents of the model. This is a general feature of any theory with a nonlocal
action. Its resolution is described in the next section. The other decision concerns the
analytic continuation of amplitudes from Euclidean to Minkowski space. Numerical
evaluations are performed in Euclidean space because the form factor (Eq. 2.7) is
defined for Euclidean momenta. Since the quark propagator of the model contains
poles at complex energies, it follows that the usual Wick rotation of the integration
contour [72] is not an appropriate continuation above a certain value of the energy of an
external line. Any theory of this type therefore requires an alternative continuation

prescription above that energy. The method which is followed, along with further

its potential mixing with the transverse axial state vanishes in the flavour symmetric case.

41t is necessary only that the form factor vanishes at large Euclidean momentum so that
surface terms may be discarded when integrations by parts are performed.

5The Euclidean conventions used are that p° = ipsp and P = —p,, so that pk = —(pk)E
and [d*p =i [d'pg.

6Note that there are then some straightforward modifications which one must make to
various of the analytic expressions to be presented.
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discussion of these issues, is presented in Chp. 3.3.

2.4 Nonlocal Currents

The usual, local expressions for the vector and axial currents do not satisfy the correct
continuity equations when one uses the equations of motion derived from the action of
Eqs. 2.1 to 2.4. The continuity equations for these local currents contain terms which

arise as a direct consequence of the nonlocality of the action. For example,
%%(@(af)v”w(x)) = —i > [ 11, d'en Hi(21, 22, T3, 24)

X ()T () (2) Tiath(24) (6(x — 23) — 6(x — 1)) (2.8)

In order to obtain symmetry currents with the same divergences as the corresponding
local currents in QCD, and hence to maintain the corresponding Ward identities,
one has to introduce additional, nonlocal terms into the currents. A Noether-like
method of construction for these nonlocal terms was developed” in Ref. [8]. The
procedure consists of substituting for the differences of delta functions in equations

like 2.8 according to the identity
R o
Mw—m}—&x—m):/(MEX@&x—@, (2.9)
0

z(A) being some arbitrary path from z; to z5. The right—hand side of Eq. 2.8 can then
be expressed as a divergence and a suitable conserved current defined.

The divergence requirement for a current determines its longitudinal component
which is, therefore, a path-independent object. In Ref.[8] the choice of path was
irrelevant since the authors were interested only in the longitudinal component of
the axial current, so as to determine the pion decay constant. The transverse part
of a current, however, is sensitive to the particular path chosen for z(\). Indeed,
ambiguity in the transverse current is a feature of any method used to construct

a (partially) conserved current corresponding to a nonlocal action. If one wishes

"Some alternative, but more cumbersome, methods are also mentioned in that reference.
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to consider electromagnetic processes, as in Chp. 6, then it is necessary to assume
some form for the transverse current. This assumption is an additional part of the

specification of the model. In subsequent calculations, the straight line ansatz [8],
2(A) = (1 = XN)aq + Azo, (2.10)

is used, since it respects both Lorentz and translational invariance. In practice, several
of the electromagnetic observables evaluated in Chp. 6 turn out to be dominated by
the local piece of the vector current and so should not be very sensitive to the choice
of path.

The nonlocal terms in the currents, induced by the nonlocal nature of the action,
are given by the momentum-space expressions presented below. (Note that where
momentum derivatives with respect to p; &= p; occur, then the combination p; F p; is
understood to be held fixed.) In the isoscalar vector current, the nonlocal pieces are

all of the structure
1 _ _
J(lj') - W ;Gi/gd%n w(pl)Fféw(m)?ﬁ(m)ﬂmw(m)

xorp+a-pi-m) [ A F@) ) £+ 20)f (pa =+ D), (21)

A(p1 + p3)
which is referred to as type I. The sum over G;(I'$ ® Q;,) in Eq. 2.11 runs over the

same combinations of couplings and Dirac and isospin matrices as those found in the
action (Eqs. 2.2 and 2.3).
The isovector vector current also has nonlocal contributions of the type-I struc-

ture. In this case the isospin and Dirac matrices appear in the combinations®

Gi(T°® 1+ ivs @ iy57%), Go(V' @ 1T + 775 @ 1 57T?),
G3(v'7" @ V), G4V 57" ® Y5),
Gs(1® 7" +iy57" i), Ge(0vaT" @ 0" — 0,6 ® V4T?). (2.12)

8 Although the G interaction will not appear in the calculations, the corresponding terms
in the nonlocal currents are nonetheless stated. Note that a tensor interaction must be
considered in a description of vector states at NLO in 1/N,, a vertex of that character being
generated from the Fierz rearrangement of the other couplings (see Chp. 2.5).
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Another type of nonlocal structure also arises in this current,

; abc

J(lj'l) - ﬁ;@'/l;[délpn D(p1)TFT"% (p3) U (p2) QiU (pa)
1 0
[ o005 i a0 )

) () o+ a0 (s + Aq>] 51+ o+ 0~ ps— pa). (2.13)

a(pl - p2)u

The above type-II structure contributes in those interaction channels corresponding

to isovector states. The Dirac matrices appear in the combinations

G1(ivs ® i7s), G2(7 ® 1 + 7" ® % s),

Gs(1®1), —Gg(0pa @ 0"7). (2.14)

Turning now to the isovector axial current, the type-I terms are again present.

They involve the matrix combinations

Gie"* (19 ® i57"), Ga(1"95 @ Wt + 9" ® WsT"),
Gs(V" 7" @ 1), G4(V' 7" ® 1s),s
G56abc(i’y57'b ® 7°). iG66“bC(a,,ay57'c ® o’ b). (2.15)

There are no type-II pieces in this current, but a third kind of nonlocal structure does

J(MIH) = @ ;Gi/gd4pn Y(p) T (p3) 1 (p2) Lot (ps)
) 000 ) 5 a0 1 )
—f(pl)f(m)mf(pz +Aq) f(ps — q+ )\Q)] 6(p1 +p2+q—ps—ps). (2.16)

The relevant terms in this case are

Gi(ism* @ 1), Goe™ (v v57¢ @ 7,7°),

G5(i’Y5 X Ta), ZGg (O'VQ’YE,TQ ® O',,a). (217)
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It is straightforward to see that a dependence on the path variable, A, does not
appear in the longitudinal components of the currents. Since Lorentz invariance de-
mands that the interaction form factor depends only on the square of its argument,

one has, in the case of type-I contributions,

0

qum (01 + ) f(ps —q+ Ag).  (2.18)

flor+2q) f(ps — g+ Ag) = %%f
The A integral in q”J(’j_) is therefore trivial, and produces a difference in form fac-
tors. Similar results can be seen to hold for the longitudinal components of the other
nonlocal structures (Eqs. 2.13 and 2.16).

Useful checks on the above expressions for the currents are provided by various
Ward identities which follow from (partial) current conservation. Several of these
identities are demonstrated explicitly in Chps. 4 and 6. In the case of the axial
current, an extension of the arguments in Ref. [8] can be used to show that the Gell-
Mann—Oakes—Renner (GMOR) relation [16] holds (Chp. 4.2). For the vector currents,
checks are made that the two—point correlator of vector currents is purely transverse
(Chp. 4.4), that the ygq Ward identity is satisfied (Chp. 4.3), that the pion charge is
unity (Chp. 6.2), and that the low-energy theorem for the anomalous decay 7% — vy
is satisfied (Chp. 6.3).

2.5 Fierzed Interactions and Currents

When the action of Eq. 2.1 is used at leading order in the 1/N, expansion the anti-
quark located at xy is always associated with the quark at x3 whilst the position x5 is
similarly linked to x4. Working with a four-quark vertex beyond LO, however, there
are contributions to be included where this will no longer be the case. These are
known as the Fock or “exchange” terms and may be isolated by first performing a
Fierz transformation on the action. Such contributions are then easily extracted by

using the Fierzed action in just the same way that one uses the original action at LO.
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The Fierzed action of this model consists of the following terms:

4]1Vc (G1 — 2G5+ 2G4 — G5+ 12G6) (1 ®@ 1 + 957" @ i577),

41ch (=2G2 + G5 + Gy) (7" @ 7" + 757" @ V1),

4Nc(—2G1 +6Ga + Gs + G4 — 2G5) (7, ® v*),

41ch (2G1 + 6G2 + Gs + Gy + 2G5) (Vu¥5 © 175),

4]1Vc (—G1 — 2G5+ 2G4+ G5 — 12G6) (T° @ T +irys ® 173),

8]ch (Gh — G5 — 4Gg) (04 @ oM — 0, T @ oM T7). (2.19)

The nonlocal terms in the vector and axial-vector currents of the model also
involve four quark fields and so will also be subject to such effects at NLO. These
Fock pieces in the currents will introduce further ambiguity through the definition of
their transverse parts. One way of isolating a suitable set of terms would be simply
to construct nonlocal current terms from the Fierzed action of Eq. 2.19 with exactly
the same method as was described in Chp. 2.4 for deducing the nonlocal LO currents
from the standard action (Eqs. 2.1 to 2.4). This method of determining the Fock
terms of a current will be called the Fierzed-action method. It leads to nonlocal
current structures of the same forms as those presented previously (Egs. 2.11, 2.13
and 2.16), with the appropriate matrix insertions obtained by replacing the coupling
constants in the original sets of insertions by the corresponding combinations in the

abe(7¢ ® iy57?) in

Fierzed action. So, for example, the presence of the type-I term Gie
the axial current constructed from the original action implies that there is a type-I
Fock term of (4N,) Y (Gy — 2G5 + 2G4 — G5 + 12G¢) e (7¢ @ iy570).

An alternative and equally obvious approach towards finding the Fock terms
of the model’s currents would be just to make a Fierz transformation of the LO
currents already derived. This procedure is referred to as the Fierzed—current method.

Through its application one encounters new types of nonlocal structure. The Fierz

transformation swops the roles of the ¢ (p3) and (py) fields. If the momenta are then
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relabelled so that ps <+ p4, the resulting nonlocal terms will have different types of
form—factor structure. It becomes convenient to define new nonlocal structure types,

IV and V, as:

vy = Gy £ G f TLa'ne Blon 000 () )

<[ [f<p2>f<p3> y £+ 4= A)f (0t — )

P1 + p4)u

+f(p1) f (pa) flp2+ ) f(ps — g+ Aq)] 6(p1 +p2+q—ps—ps), (2.20)

(p2 + p3)u

vy = ﬁ;Gi/gd%n D(p0)TF 7Y (p3) ¥ (p2) Qiath (Pa)

< [ oo

mf(pa —q+ Aq)f(ps — Ag)

+f(ps) f(pa) fo1+q—Ag)f(p2 + Aq)] S(pr+p2+q—p3s—pa). (2.21)

9
a(pl - p2)u

The matrix combinations in the type [ to V currents which constitute the Fock terms
within the Fierzed—current method are given below.

For the Fock terms of the isoscalar vector current only the type-IV structure is
relevant. Apart from an overall symmetry factor of a half, the insertions appearing
in this case are just the same as those in Eq. 2.19, the Fierzed action. This result
highlights the difference between the Fierzed—action and Fierzed—current methods of
construction, which lies in the identity of the fields which one connects via the z(\)
path (Eq. 2.9). In the Fierzed-action method, one first swops the roles of the 1(ps)
and 1 (p,) fields and then connects the 1(p;) to the ¢)(p4) field, ending up with the
type-1I structure after relabelling. In the Fierzed—current method, however, the order
of operations is reversed, a path being established to link the ¢ (p;) and ¢ (p3) fields
followed by the rearrangement which swops the roles played by ¢ (ps) and ¢ (py). There
can be no a priori physical reason to prefer one of these schemes over the other, since
they are equally natural ways of arriving at suitable exchange currents. For purely
practical reasons, however, the Fierzed—action method may prove the more useful

when one wishes to perform NLO calculations involving transverse currents. This is

2.5. Fierzed Interactions and Currents



Chapter 2. Nonlocal Extended NJL Model 41

simply because the nonlocal structure types I to III are retained, IV and V not being
required. One can therefore often write down an appropriate NLO diagram very easily,
merely by changing the overall coefficient in the expression for a corresponding LO
diagram.

Calculation of the nonlocal Fock terms in the currents by the two methods de-
scribed above does at least provide a useful check on the algebra of the Fierz transfor-
mations. The longitudinal components, of course, are dictated by continuity require-
ments and so should be identical in the two cases. For the isoscalar vector current

such an equivalence is straightforward to verify, by noting the identity
0 (1) (TF @ Qia) = 4u {1y (TF @ Qia) + ¢T3y (Qua @ TF). (2.22)

The calculations of the Fock terms in the isovector currents can be similarly checked,

with the aid of the following identities:

Qi(rry = =20 {111y,

quj(”V)(F? ® Qia) = un(lj')(F;'l ® Qia) - QMJ(LLI)(Qia ® F?), (2-23)

where j(“v> is defined to be the nonlocal structure of type-V (Eq. 2.21) but omitting
the 7% matrix and j(”H) is to be understood as the type-II structure (Eq. 2.13) without
the matrices 7° and 7¢ and the overall factor of €.

It remains to state the Fock terms of the isovector currents within the Fierzed—

current approach. In the isovector vector current, there are the following type-III

terms:
S;Vc(Gl 492G — 2G4 — Gs + 12Gg) (7" @ 79),
8]1\70(_G1 + 2G5 — 2G4 + G5 — 12G5) €™ (insm° @ iy579),
8]1Vc(2G2 =G5 = G e (7’ @77 + 13T @777,
161Nc (G = G5 = 4Gs) € (a7’ © 0777°), (2.24)

2.5. Fierzed Interactions and Currents



Chapter 2. Nonlocal Extended NJL Model 42

together with the type-IV terms

1 o
5N (—G3+ Gy) (TR 1+ iy ® 175),
1
N (—G1 +2Gy + G35+ G4 — G5) (77" ®9"),
1
v (G1+2G2 + Gy + Ga+ G5) (1,757 ©7775), (2.25)

and the type-V insertions

411\@ (Gr — G5 +12Go) (1@ 1 — i75 ® i),

4]1\[0 (=G + 4G5 — G5) (7, ® 1),

41ch (G1 + 4Gy + G5) (775 @ 775),

8]1\[6 (Gr — G5 — 4Gg) (00n ® 0. (2.26)

The Fock terms of the isovector axial current include insertions into the type-I struc-

ture,
1 be( o in b i C o b
4N0(G1 — G5 + 12G¢) €”(1° @ iys7’ + iy57° @ 1),
4]1VC(G1 — 4Gy + G5) (7 @ Y57 — 178 @ YY),
4]1VC(G1 +4G2 + G5) (T @71 — 1 @7Y),
8;\[0(—G1 + G5 + 4Gg) € (0,075 ® 077°), (2.27)

along with pieces of type-III structure,

411\@ (Gh = 2Gs + 2G4 — Gs + 12Gi) (in57° @ 1),

411\@ (Gr +2Gs — 2G4 — Gs + 12Gi) (7 @ iys),

411\@ (2G — G — Ga) €™ (157" @ 7/7°),

SL]'VC(G1 Gy — 4Gy) (057" @ 0¥, (2.28)
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and the following type-IV terms:

1 , .
5N (—G3 + Gy) €™ (ism* @ 79,
1
AN (Gl + GQ + G3 + G4 + G5) (’YI,Ta X ’YV'}/E,),
1
AN (—Gl + GQ + G3 + G4 — G5)(’7y X ’7”757'&). (229)

2.5. Fierzed Interactions and Currents



Chapter 3

Quark and Meson Propagators

3.1 Quark Propagator

An essential ingredient of the calculations with the extended nonlocal NJL model
is the dressed quark propagator. It is constructed by means of the corresponding
Schwinger-Dyson equation (SDE). Initially at least, this equation is treated in the lad-
der approximation, truncating the one-quark irreducible kernel with just the tree—-level
interaction. This is equivalent to working at leading order (LO) in a 1/N, expansion.
In order to define such an expansion for a model based on four-quark interaction ver-
tices, the coupling constants must be designated as quantities of some particular order
in N.. In the 1/N, expansion of QCD [2, 73], the large N, limit is defined by allowing
the number of colours to tend to infinity but with the product ¢g?N, being held con-
stant. Setting {G;} to be of order N ! is therefore consistent with the interpretation
that the four-quark interaction is generated through one gluon exchange. There is,
however, no need to appeal to that prejudice. Sufficient justification for adopting this
choice for the order of {G;} is that it is necessary in order to produce the same large
N. scaling of observables (such as the meson masses and couplings) as in QCD.

Fig. 3.1 gives an illustration of the diagrams that are summed in the ladder

approximation. In terms of a momentum—dependent quark “mass” m(p) defined from
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G
—©— +

Figure 3.1: The Schwinger-Dyson equation for the quark propagator in the ladder
approximation.

the dressed quark propagator by

S7'p) = —m(p), (3.1)

the LO SDE can be written as

Ak ¥+ m(k)

2 k(! (32)

m(p) = mc+z‘G1f2(p)TY/ (

The dressing at this order occurs only through the interaction in the isoscalar scalar
channel, as described by the coupling G;. The integral in Eq. 3.2 is very similar to
that appearing in the quark condensate (defined in Eq. 1.3), differing only through the
presence of the interaction form factors, f2(k). In the original NJL model there are no
such form factors and so the condensate and SDE integrals are identical. With both
the local and nonlocal models, however, it is clear that the dynamical generation of a
quark mass is intimately connected to the appearance of a non-zero condensate'. In
the numerical treatment of the model, loop integrals like that in Eq. 3.2 are evaluated
in Euclidean space, since the form factor has been defined for Euclidean momenta.
Physical results are then obtained by analytically continuing back to Minkowski space.

Notice that the separable nature of the interaction produces a great simplification

since the dependence on the external momentum p factorizes out of the loop integral.

Tt is possible in principle with a nonlocal model to have a dynamical quark mass without
producing a non-zero condensate. For this to occur in a separable model f2(k) would have
to change sign at some point, a situation that is hardly physically plausible.
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The solution to the LO SDE can therefore be written in the form
m(p) = m. + (m(0) — m.) f*(p). (3.3)

Hence to obtain the full LO quark propagator it is necessary to determine only the
constant m(0). This can be done straightforwardly using iterative methods. In prac-
tice it is convenient to use Eq. 3.2 to determine the parameter GG for a given value of
mo(0), the zero-momentum quark mass in the chiral limit. This requires a single inte-
gral to be evaluated. With the choice of a Gaussian form factor, the Gauss-Laguerre
technique (taking p?% as the non-trivial integration variable) is eminently suitable for
performing such integrals, which converge with only a moderate number of abscissae.
If a non-zero current quark mass is introduced, it is a simple matter to iterate from
mg(0) to find the solution for m(0).

The denominator of the quark propagator, p?> — m?(p?), does not have a zero at
positive (Minkowski) p? if m(0) is sufficiently large?. This property provides a suffi-
cient, although not strictly a necessary [5, 74|, condition for confinement. Although
there are still poles in the quark propagator, they are shifted into the complex p? plane.
Such behaviour is by no means uncommon in models of quark confinement based on
the solution of a Schwinger-Dyson equation [5, 63, 75, 76] in the ladder approxima-
tion. Because of the simplifications due to the separable interaction, the present model
provides a convenient setting in which to investigate some of the practical implications
of this mechanism for confinement. As pointed out by Lee and Wick [77] (see also
Ref. [78]), particles which have a complex mass of this type should not be admitted
as asymptotic states if one is to have a unitary S-matrix. When amplitudes have
been defined in Euclidean space, the prescription for analytically continuing them
back to Minkowski space must respect this requirement, as described in more detail

in Chp. 3.3.

2The absence of a pole at a spacelike momentum, which would indicate tachyonic be-
haviour, is guaranteed if the running quark mass is always positive (i.e., if the interaction
form factor is real).
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3.2 Meson Propagators

The meson masses and vertex functions are found using the Bethe—Salpeter equation
(BSE). This can be considered in its homogeneous or inhomogeneous form. As is usual
in studies of NJL-like models, it is dealt with here in the framework of the latter, which
provides a normalization for the on-shell vertex function. In order to maintain Ward
identities [79] one must use an truncation scheme which is consistent with that applied
to the SDE (Chp. 3.1). In the case of the BSE, the ladder approximation entails
keeping just the tree-level couplings from the action in the two-quark irreducible
scattering kernel. The separable nature of the interaction allows the gq scattering

matrix, 7', to be written in the form

T(p1,p2,p3,01) = [[ f(Pn) (b1 +p2— 3 — pa) T(a), (3.4)

where the total momentum of the g pair is denoted by ¢ = p; — p3 = ps — p2. The
LO BSE, shown schematically in Fig. 3.2, may be conveniently expressed in terms of

T as
T(q) =G+ GJ()T(q), (3.5)

where G is simply a matrix of the coupling constants from the action (Eqgs. 2.1 to 2.4)

and .J(q) is composed of the loop integrals
4

Ty = iTr | (3754

In the above equation the notation py = p + %q has been introduced. The quark

F ) £ (p-)TiS(p-)T;S (p4). (3.6)

propagators to be used in Eq. 3.6 are the dressed propagators obtained by solving the
ladder SDE.
The mesonic bound states are located at the poles of T. These can be determined

from the equation

det(1 — GJ(q)) = 0. (3.7)

Symmetry restrictions on the possible form of the interactions mean that the

matrix G is diagonal with respect to flavour and Lorentz structures. The full scattering
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= g © )
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Figure 3.2: The Bethe—Salpeter equation for gq scattering in the ladder approximation.

matrix, however, is only block—diagonal, since there may be certain non-zero off-
diagonal elements of .J. In particular there is a non-vanishing loop integral which
leads to mixing between the pseudoscalar and longitudinal axial channels. This ma;
(and n* f1) mixing is an example of the partial Higgs mechanism that is discussed in
Appendix C.3 in relation to effective Lagrangians of 7, p and a; mesons. It produces
an axial as well as a pseudoscalar component in the vertex function of the pion (and
n*). In the flavour symmetric case there is no analogous mixing between the scalar and
vector channels. This can be seen from the fact that the integrand in the corresponding
element of J (Eq. 3.6) is odd under p — —p. The absence of such a potential mixing
means that the longitudinal vector channel is quite independent of the scalar one. It
is therefore important to check numerically that a pole does not develop in the former
channel, since that would be unphysical.

For later ease of reference, the various non-zero elements of .J are labelled as

follows for the Dirac matrices inserted:

Jss: 1®1, Ty s Tuw(¥ ©9"), Ty o q 2 (—id @ id),
Jpp i 175 ® 15, Jap : my (—idys ® is), Jpa: my ' (ivs @ idys),
Tha s T (¥ ® "), Tia s mz (=idlys © i), (3.8)
where T, is the transverse projector defined in Eq. 2.6. Working in the above basis

the mixing elements are equal, J4p = Jp4.

To describe the coupling of an on-shell meson to constituent quarks one represents
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the relevant channel of T, near to the corresponding pole position, as

Vig) ®V(q)

2 2 !
—q

(3.9)

m

where V(q) and V(q) are referred to as the vertex functions for the meson in the
initial and final states respectively. In the above expression any polarization indices
have been suppressed. The homogeneous BSE is written in terms of such vertex
functions and is only satisfied at an on-shell point. Off mass shell any decomposition
into vertex and propagator which one might make in a channel of T becomes purely a
matter of convenience — the off-shell vertex function and meson propagator are not
themselves well defined, only the combination occurring in 7' being meaningful. From
the homogeneous BSE the relationship between the vertex functions of the initial and
final states can be found?®, V' = 1°V1~% For the particles of interest, these functions

are:

Vilq) = (gﬂqq - mglgwqqgi)mfﬁaa Volq) = Goqqs
VpS(q) = gpqq¢s7'aa Vais(q) = 9a1qq¢S’Y57'aa Vis(q) = gwqq¢5:
Vi (@) = (Gnrqq — m;*lgn*qqﬁ)i%a Vao (@) = Gaggq™"  (3.10)

For all particles except the pseudoscalars there is no mixing, and so each has a single
coupling constant g;4, to describe its on-shell coupling to quarks. These couplings are
related to the corresponding loop integrals (Eq. 3.6) by

1 d.J;;
(1 S )
Jina (=1 dg?

, (3.11)

q2=m?

where S is the spin of the meson. The couplings of the pion to quarks, g4, and gr4q,
are given by

2 e (1 - G2J£A(m2)) -~ - GngJpA(mQ)

g’]’l’qq - 1 D (mQ) ; 9rqq9rqq = D (m2) s

3See, for example, Ref. [55] where the authors work initially with a general interaction
kernel for fermion—anti-fermion scattering.

(3.12)
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where the prime indicates a derivative with respect to ¢ and the pseudoscalar—axial

determinant D, (q?) is defined to be
Dx(¢%) = (1= GuJpp(a)) (1 = G2T54(6%)) = G1GaT3p (0. (3.13)

Similar expressions hold for the couplings of the n*, with G5 and G4 playing the roles

of GG; and (G5 respectively.

3.3 Loop Integrals

When expressed in Euclidean space, the loop integrals appearing in the ladder BSE
(Eq. 3.6) take the form

d4p 2 4) 20 )ti; (0%, ¢, p - @)
(P +m3)(p> +m?)

Tij(a%) NM/ : (3.14)

where ¢;; is the appropriate Dirac trace and all momenta are to be understood as
Euclidean. The symbols m4 are introduced here as a shorthand for the quark mass
evaluated at p.. Consider such an integral evaluated at some timelike momentum, ¢ =
(0,4go). Operating with a confining parameter set, each quark propagator considered
as a function of energy has four poles at complex energies corresponding to a pair of
complex—conjugate poles in p?. As qq is increased these poles in S(p.) are translated
parallel to the imaginary p4 axis. For any given value of |p|, there is a value of ¢, for
which poles of the p_ and p, quark propagators meet on the real p, axis, pinching
the contour of integration. For larger values of ¢y the poles cross this axis and may
contribute an imaginary part to the propagator in the meson channel, depending
on the prescription used to continue the integral beyond the pinch point. Such a
configuration of the poles is shown in Fig. 3.3.

The usual prescription for an analytic continuation of amplitudes from Euclidean
to Minkowski space is based on a Wick rotation of the integration contour [72]. This
procedure would indeed give rise to an imaginary part of the meson propagator, corre-
sponding physically to the opening of a threshold for the decay of a meson into other

states. As was explained in Chp. 3.1 that situation is inappropriate here.
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Figure 3.3: The pole structure of .J loop integrals in the ps plane. On the left-hand
side of the figure, the pole positions at ¢y = 0 are indicated. The open boxes denote
the poles of the p_ propagator and the filled circles those of the p, propagator. The
right—hand side of the figure shows the deformed integration contour, beyond the pinch
point. The arrows here indicate the directions in which the poles move as g increases.

A legitimate continuation, suitable for energies where the integration contour
becomes pinched, was originally suggested by Cutkosky et al [78]. It amounts to the
deformation of the integration contour displayed in Fig. 3.3. Whilst the prescription
ensures that the resulting meson propagator does not develop an unphysical imaginary
part above the pseudo—threshold energy where the contour becomes pinched by the
complex poles, it does mean that the propagator cannot be analytically continued past
that point. Since the method is not unique, the choice of continuation prescription
must be regarded as an additional assumption that forms part of the specification of
any model with a quark propagator of this type. The suggestion of Cutkosky et al.
is adopted in the present calculations having been shown in Ref. [78] to be consistent
with the requirements of unitarity and macrocausality.

As discussed by both Cutkosky et al. [78] and Lee and Wick [77], microcausality
violations can occur in models with a Euclidean metric and states of complex mass.
However, in order for such violations to be measurable, Lee and Wick [77] have es-

! where the

timated that one would need to create a wave packet of width < ~~
complex mass is M + %W- In any event, microcausality in this model is intrinsically
broken by the use of an action with nonlocal interactions.

In the numerical evaluations of quark loop integrals, one can take a contour in py
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that runs along the real axis. For energies |¢y| above the pseudo—threshold, following
the prescription of Cutkosky et al. means that one must also include contributions
from the residues of the poles that have crossed the axis. For a given external energy
these contributions are required at zero three-momentum up to a maximum value at
the pinch point. At larger three-momenta the integration contour in the p, plane is just
the real axis. Both the naive integral over Euclidean four-momentum in Eq. 3.14 and
the residue contributions diverge at the pinch point, although these divergences cancel
to leave a finite result [78]. This cancellation occurs at the level of the integrated result
rather than at all values of three-momentum flowing round the loop. In numerical
work one therefore needs to regulate the two contributions when evaluating them
separately. An accurate knowledge of the locations of the poles in the quark propagator
(and hence of the pinch point) is clearly a prerequisite of any regulating method. Tt
can be efficiently acquired by applying the simplex technique [80] to minimize the

modulus of p% + mZ(pg).

P4,
R, Ry

Ry Rs

> |p|

Figure 3.4: In evaluating the naive integral over Euclidean momenta the integration
region is divided as in the figure, the pinch point being at the centre of the circle. The
situation for negative values of p, is obtained by a reflection in the |p| axis.

The method of regularization actually used involves dividing the region of inte-
gration as shown in Fig. 3.4. A function with the same divergence as the naive integral
is subtracted from it when p lies within a radius A of the pinch point. The remainder
is then integrated over the circular region according to the robust method of Sag and

Szekeres [81]. A similar function is used to cancel the divergent part of the residue
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contribution when |[p| is less than A from its pinch value and is chosen to cancel exactly
with the piece that has been cut out of the naive integral. Both the regulated and
unregulated parts of the |p| integral over the residue contributions are evaluated with
the NAG routine DOTAJF. This routine uses an adaptive strategy, concentrating its
efforts over any regions where the integrand behaves poorly. Since the regulated inte-
grands are necessarily the difference of two large numbers the decision to use robust
methods is one dictated by safety considerations.

The other integrations required in the evaluation of .J are of the naive integrand
over the regions labelled R, ... R4 in Fig. 3.4. The semi-infinite range of integration
in Ry ... R3 together with the particular form factor chosen (Eq. 2.7) strongly suggests
that these regions be dealt with in terms of p% and an angular variable, integration
over the former being performed using the Gauss-Laguerre technique. The angular
parts of these integrals are treated adaptively, which proves to be useful in Ry owing
to the shape of that region near to the angular limits. Integration over R, is done
with the NAG routine DOIFDF which transforms the region onto a circle and then
uses the Sag and Szekeres method.

Each of the numerical integrations that are summed to give the value of .J(q)
depends on the regularizing parameter A. An important check on the regularization
used (and on the accuracy of the integration routines themselves) is that the overall
results obtained should be independent of A. This does indeed prove to be the case
for a wide range of values, although the results become somewhat less accurate when
A is small (S 20 MeV). At small A the contributions from Rj ... R;3 are dominant.
However, these are difficult to evaluate accurately if they include some of the area close
to the pinch point, in which the integrand may be badly behaved. A good description
of the offending area requires many local integrand evaluations, a procedure which is
not well-suited to the Gauss-Laguerre routines. In practice, the accuracy of evaluating
J(q) is found to be best with A ~ 150 MeV.

It should be noted that the quark propagator of the nonlocal model has in fact
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many complex—conjugate pairs of poles. Such an analytic structure is also found in the
pion propagator of the NJL model within the proper time regularization scheme [82].
In the present model these additional poles occur with both confining and non-
confining parameter sets and are found at large momenta. Since their positions depend
on the detailed behaviour of the form factor for large momenta, they are regarded here
as being unphysical artifacts of the model. With the parameter sets selected for the
calculations that are detailed in Chps. 5 and 6, the next set of poles would result in
another pseudo-threshold at energies of ~ 2 GeV. The model is not intended to be
credible at such momenta. Indeed, in Chp. 5.1 a more stringent upper limit is im-
posed on the range of applicability of the model. Hence, the extra poles do not pose

a practical problem.
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Ward Identities and

Electromagnetism

4.1 Couplings to the Axial Current

The electromagnetic or weak decay constant of a meson is given by the matrix element
between the vacuum and that meson of the appropriate current. In a nonlocal model
of the type considered here, there are contributions to such matrix elements arising
from both the usual local current and the nonlocal pieces discussed in Chp. 2.4. Both
of these must be included in order to maintain related Ward identities, which follow
from current conservation. The contributions from the nonlocal part of the current
are generated by closing one of the 1)I't) structures in on itself and using the other to
forge the link to the meson. The corresponding diagrams are shown in Fig. 4.1.
Consider for example the pion decay constant, defined through Eq. 1.5. The loop
integral arising from the local part of the axial current is very similar to J4p, except
that only two (rather than four) form factors are present. One must also include
a nonlocal contribution generated by the G(iv57% ® 1) term with type-III structure
(Eq. 2.16) in the axial current. As was described by Bowler and Birse [8], this diagram

can be written as a sum of terms, each of which factorizes into two loop integrals. One

%)
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e

Figure 4.1: Coupling of a particle to an external current. V' denotes the particle’s
vertex function (Eq. 3.9).

of these is somewhat similar to that in the scalar quark condensate, whilst the other
has a pseudoscalar insertion and a pion vertex function. It is convenient to refer to
the loop integrals involved as being one-quark or two-quark, according to the number

of quark propagators they contain. The contribution of this diagram to f; is

iGy d'k Te[k+m(k?)]  d'p TeVa(q)(p_ + m_ )7 (b, +my)
I I

2mz S (2m)t k2 —m2(k?) J (2m)! (P} —mi)(p2 —m?)

<F(pe) ) [ £ ) (P2 (0) + £2(0)) = F) f () F(R) (Fk+ )+ F(k— )] (4.1)

In the extended version of the model there is another nonlocal contribution, which
is induced by the term Gy (7" ® 7v,7v57) with type-I structure (Eq. 2.11) in the axial
current. In this case, the one-quark loop has a vector insertion. Although the vac-
uum expectation value of 17”1 vanishes by Lorentz invariance, a non-zero integral
is produced by a combination of form factors which is anti-symmetric in the loop

momentum. The contribution of the diagram to f, is

-, [ kTR D] o (k) - Fik - o)

2m2 J (2m)* k2 — m?(k?)

() 2 (=) (4.2)

/ d4p Trv; (Q) (st + m*)'Yu'YE)Ta(YSJr + m+)
(2m)4 (p% —m?i)(p2 —m2)

These pieces of f, arising from the nonlocal current are significant numerically and

are needed in order to satisfy the Gell-Mann-Oakes-Renner relation, as demonstrated

in the next section.
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In the numerical evaluation of integrals like those in Eqs. 4.1 and 4.2, there are
two non-trivial integration variables. When the external energy lies below the pseudo—
threshold (see Chp. 3.3), the Gauss—Laguerre technique enables such integrals to be
performed quickly and accurately. The integration variables used in such routines are
p; and p?, with p, having been defined to be in the direction of g.

A determination of the coupling strength of the a; particle to the transverse axial
current requires the calculation of diagrams very similar to those concerning f.. The
contributing terms from the nonlocal current are also those relevant to the a; case.
There is, however, an important difference from the analogous nonlocal diagrams for f,
in that the integral over the path variable A for the transverse current is non-trivial. In
general therefore, a numerical integration over A is also required. In practice though,
with a Gaussian form factor (Eq. 2.7), such integrals can be performed analytically,
being expressed in terms of error functions. In the type-I nonlocal structure (Eq. 2.11),
A appears only in the form factors associated with one of the loops. Hence, a diagram
induced by a term of this structure is the product of two separate loop integrals. This
is not so for contributions induced by type-II (Eq. 2.13) or type-III (Eq. 2.16) terms
in the current, where the integrals for the one- and two-quark loops do not factorize.

For those diagrams generated by a type-I term, the numerical situation is that
of a product of two two-dimensional integrals, the integrand of one containing the
analytically—derived combination of error functions. If the external energy is below
pseudo—threshold then these integrals are performed by Gauss-Laguerre methods as
above. Otherwise they must be computed with residue contributions included, as
discussed in Chp. 3.3. The diagrams generated by type-II or type-III terms in the
nonlocal transverse current have a coupled—-integral structure. Using the analytical
result for the ) integration then necessitates a four-dimensional numerical integral. It
therefore becomes more efficient to treat the A integral numerically. At each value of
A, the integrand is a product of two two-dimensional integrals each of which can be

dealt with in the usual fashion. The A integration is itself straightforward since the
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integrands that have been considered vary only very slowly in this variable.

4.2 GMOR Relation

The GMOR relation (Eq. 1.7) was shown to hold at LO in Ref. [8], where a version
of the model was used which had only the G; coupling. In this section the proof is
extended to allow for the other possible couplings in the action (Eqgs. 2.2 and 2.3), again
at LO. When the model is considered at NLO (Chp. 7), the corrections introduced
are also shown to be consistent with the GMOR relation. As a trailer for some of the
arguments and cancellations invoked in that case, the much simpler LO proof with
only the Gy coupling is revisited below. The method differs from that of Ref. [8], being

based on the identity

dys = S~ ()5 + 15 o) + (my + m_)7s. (4.3)

Taking the diagram for the coupling of the pion to the local axial current and
contracting it with g, gives an expression for its contribution to fym2. The local
current gives rise to a factor of ¢vys; which can be replaced by the right-hand side of

Eq. 4.3 to give

ifpm2 = %NcNf [/ ngp;Alf(p+)f(p—)(m+ +m_)trysS (p-)v5S (p4)
+f (gjfiﬁ (0)(f(p+ ) + f(p — 0)trS(p) |, (4.4)

where, in the absence of mixing, ¢4, is determined from Eq. 3.11. In the nonlocal
contribution to the decay constant (Eq. 4.1), the ladder SDE (Eq. 3.2) simplifies the
piece which has a factor of f2(k) since it allows one to replace G times the & loop
by —i(m(0) — m.). A cancellation can then be seen to operate between this piece and
the first of the integrals in Eq. 4.4, leaving only 2m, from the factor of (m, + m_)
that appears in Eq. 4.4. It is just this process of cancellation between a local-current

diagram and part of a nonlocal contribution which is so useful in the analysis of the
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more complex diagrams at NLO. Recalling the definition of Jpp (Eqgs. 3.6 and 3.8) in

order to simplify the remaining part of Eq. 4.1, one has

. d'p
it = megeag NNy [ 5530 (0)f (0 )5S (0 )5S (1)

%f(p)(f(pﬂLq) + f(p— )trS(p). (4.5)

To deduce the GMOR relation now requires only the chiral expansion of Jpp(q).

NN (1= GrTpr(e) |

It is straightforward to verify the result' of Bowler and Birse that

<Ew>0 ¢’ 4 2
m0(0)2 - GlZ—ﬂO + (’)(q ,mc), (46)

where Z is defined as ¢Z,,(G2 = 0). An explicit expression for Z, in the chiral limit

1- G1JPP(Q) = —-Gim,

was originally presented in Ref. [8] and is:

1 2N.N; [ d*pr mo(pr)? — my(pr)mo(pe)p% + (my(pe))*p%
™ me(0)2 ) (2m)! [pE + mo(pr)?)? ’

a prime denoting differentiation with respect to the square of the momentum argument.

(4.7)

Substituting the expansion of Eq. 4.6 into Eq. 4.5 and evaluating the integrals in the

chiral limit one arrives at

f7r0 - mO(O); (48)

gﬂ'qu

which is the equivalent of the Goldberger—Treiman relation [83] in the model. Using
this relation in Eq. 4.6, which is set equal to zero at the pion pole, produces the GMOR
relation.

The pion mass and decay constant are altered by mixing with the longitudinal
axial-vector component of the G5 interaction (see Chp. 3.2). The above proof is now
developed to incorporate those effects, the other couplings in the extended model
having no impact at LO.

To calculate the pion mass at leading order in the current quark mass, the pion
determinant (Eq. 3.13) must be expanded up to first order in m, and ¢?. Expanding

the Jop and J%, integrals appropriately gives

1-
JPA:\/q72<IG_§IG>+"'a

INote that the ladder SDE is called upon to obtain the expression quoted.
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—1  3I4
Jhi=—+224.. 4.9

where the dots refer to irrelevant higher—order terms and the following integrals have

been defined:
d'p f(e)ms* > (v)
(2m)* [ph + mi(pe)]?
o= v, [ s s (og)
(2m)* [pk +mi(pE))?
By substituting the chiral expansions of Eqs. 4.6 and 4.9 into the pion determinant

I, = 4N.N; /

I

(4.10)

one finds that
meX

2 - _ ) 4.11
my m0(0)2 <77b77/">0a ( )
where X is
G 3G218> ( 1~>2 1 ( G 3G218> !
X =(14+2_ Is— =1 S O I . (412
( 3G, 2 lGQ s3') Tz, Tag, 2 (4.12)

The GMOR relation will therefore be satisfied by the extended model under the con-

dition
2 mO(O)2

= ) 4.13
70 X ( )

Now, if one uses the expansions of the J integrals in the definitions of g.,, and
Grqq (Eq. 3.12) then, at leading order in the chiral expansion, these couplings to quarks

are found to be

g2 =X Jraq _ Gom (I — %fﬁ)
mqq0 ) Iraqo (1 n QGTZI — BGTZIS)

TR (4.14)

Notice that since g?rqqg = X, the condition of Eq. 4.13 is simply the modified Goldberger—
Treiman relation in the extended model.

The calculation of f, in the extended model can profitably be decomposed into
two parts. The first consists simply of the same contributions as when G, = 0,
although allowing for the change in the g4, coupling. In the remaining part a factor

of grqq 1s extracted, so that

Jr
f7r = =

N frlay—o + Tnaql- (4.15)
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Using Eq. 4.8 for f,¢ at G5 = 0 together with Eqs. 4.12, 4.14 and 4.15, the Goldberger—

Treiman condition may be rewritten as

myo (0) gﬂ'qu <Z7r0 >
[ = = —1)4+--- 4.16
Z7r0 gﬂ'qq X ( )
mo(0 1-
METOY AT AT (417

Finally, it is necessary to make an explicit calculation of [, at leading order in
the chiral expansion, from those additional contributions to f, which are generated by
non-zero GGo. Considering the diagrams already present without the G5 interaction,
such contributions come from the extra covariant in the pion vertex function. From

the coupling of the pion to the local axial current one obtains

1 [ @) |3

Lo =
loc ™ . 4m0(0)+4

Iemqo(0)] . (4.18)

There is also a similar contribution originating from the two-loop diagram where the
one-quark loop has a scalar insertion (Eq. 4.1). However, this contribution turns out
to be sub-leading in the chiral expansion. The remainder of [ comes from the entirety
of the nonlocal diagram given in Eq. 4.2. With the assistance of Eq. 4.14 the first

term in its chiral expansion is found to be

—1 [ (W) = e (0) + LTmo(0)] (4.19)

l =
non-loc My 4m0 (0) 4 9

Adding together Eqs. 4.18 and 4.19 does indeed produce the expression on the right—

hand side of the condition of Eq. 4.17, thereby establishing the proof.

4.3 Couplings to the Vector Current

The couplings controlling the electromagnetic decays of the vector mesons can be cal-
culated in a similar manner to the pion decay constant, discussed in Chp. 4.1 above.
Again the nonlocal contributions are numerically important and are essential if re-
lated Ward identities are to be satisfied. An example of such an identity is presented

in Chp. 4.4 below, where the correlator of two vector currents is shown to be purely
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transverse. There is, however, an alternative approach towards calculating the cou-
plings to the vector mesons. One can instead work with a general formulation of the
dressed vqq vertex in the model. That vertex is described in some detail in this sec-
tion since it is a necessary ingredient in the calculation of many other electromagnetic
observables.

Since the coupling of dressed quarks to the photon is unknown?

one is obliged
to take some ansatz for it in order to calculate electromagnetic processes. A popular
scheme in the literature [85, 86, 87], sometimes called the impulse approximation,
involves a dressed vqq vertex only, neglecting irreducible couplings of the photon to

more than two quarks. The vgq vertex itself is chosen to be of the Ball-Chiu [88] form,

the chief virtue of which is that it is a simple solution of the Ward-Takahashi identity

¢"Tu(p,q) = Sp'(p+) — Sp'(p-), (4.20)

where ¢ is the photon momentum flowing away from the vertex, I',, and p is the
momentum flowing through the vertex. (The isospin structure has been suppressed
here.) For a quark propagator without wavefunction renormalization the Ball-Chiu

vertex is
Pt
(p-q)

It ="+ (m— —my). (4.21)

With the nonlocal NJL. model studied here, use of the impulse approximation
does not provide an appropriate prescription for the calculation of electromagnetic
observables. For example, as is discussed in Chp. 6.2, it would not produce the
correctly-normalized value of the pion charge. In this model, the electromagnetic
couplings are completely specified once a particular ansatz has been chosen for the
nonlocal part of the vector current. The uncertainty inherent in the construction of
the transverse part of the current is discussed in Chp. 2.4. Despite this, gross features
of the nonlocal current would remain unchanged with different path ansatze.

The various pieces of the full vqq vertex within the treatment of the extended

2 Although some numerical work on a BSE for the yqq vertex has been attempted by
Frank [84].
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/é\ : + /%

+ A + ﬁ
Figure 4.2: The dressed vqq vertex. T denotes the gq scattering matrix in either the
transverse or longitudinal vector channel.

nonlocal NJL model are shown diagrammatically in Fig. 4.2. From the local current,
there is simply a contribution to I',, of the usual form, 7,. The nonlocal current induces
contributions where there is a closed one-quark loop, similar to those appearing in the
pion decay constant and described in Chp. 4.1. In the electromagnetic case, the
diagram where the closed loop has a scalar insertion can be simplified by using the

ladder SDE (Eq. 3.2) to express it as

—(m(0) = m,) /01 dAa% 2(p+ (A — 1)q). (4.22)

Together with the local contribution, this would constitute the full vertex in a version
of the model without vector mesons. Since the Ward-Takahashi identity of Eq. 4.20
imposes an important constraint on the form of the vertex it should be verified in the

present approach. To do so, one uses the following identity, which is a special case of
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Eq. 2.18:

d

q”aipujﬂ(p + (A= 3)g) = an(p + (A= 3)a). (4.23)

The A integral involved in ¢#T,, is then seen to be trivial, and hence the Ward identity
is indeed satisfied by the sum of v* and Eq. 4.22.

In the extended model, with vector-meson degrees of freedom, there is another
contribution to I', that involves a one-quark loop. This has a vector insertion and is
given by

d*k 4
27‘()4 k? _

_z‘%f(p)f(p+)G2NcNf/( kz(kQ) /01 dA%f(k—qu/\q)f(kH\q). (4.24)

In addition, there are pieces which contain the propagator of an intermediate gq state in
the vector channels. As isillustrated in the final two graphs of Fig. 4.2, the propagation
of such intermediates is described by the 7' matrix of the ladder BSE (Eq. 3.5), which
may be coupled to the vector current via local or nonlocal loops. The contribution to

', from the longitudinal channel is

M GNN, () f(ky)
Zqu(p_)f(er)l — GoJE,(q) / (2m)* (k2 — m2) (k32 — m?%)

xtely (k, ) (Ko +m_)d(k, +mo), (4.25)

while the transverse channel gives

oy GNN; kRS
Z(” - q?)f 00T i | R )

xtel (k@) (K- +mo )y (K, +ma), (4.26)

where f‘u(k, q) is the two-quark-irreducible ygq vertex consisting of the sum of , and
Eqs. 4.22 and 4.24. In these expressions, m4 denotes the quark mass evaluated at k.

To check that the additional contributions in the extended version of the model
(Egs. 4.24 to 4.26) remain consistent with the Ward identity for the vertex, note first
that the quark propagator is unchanged. Hence, the sum of the local piece and Eq. 4.22

still saturates the identity. In the contribution of the expression 4.24 to ¢*T',,, Eq. 2.18
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enables the integration over the path variable to be performed. This part of ¢TI, is

then

Ak Ag-k
2m)* k2 — m?(k?)

i
1) )N [

FR)(F(k+q) = f(k—q). (4.27)
The purely transverse piece in Eq. 4.26, which involves a propagating p meson, is
obviously irrelevant in the Ward identity. Thus cancellation must occur between
Eq. 4.27 and the piece coming from Eq. 4.25. To demonstrate this explicitly, one
needs the result for q“f‘u. This is given by the sum of Eq. 4.27 and the expression on
the right-hand side of Eq. 4.20. Using this fact, the contribution to ¢*I', from the

longitudinal Gq intermediate states (Eq. 4.25) can be expressed as

. d'k_tr(fd+m_ —mi) (K +m )bk, +my)
A 10050-) | [ e M O S e
. &k gk GaN.N
~GaIl0) [ i g/ B S+ a) = q))] e 4B
The Dirac trace in the first line of the above expression may be written as
A(g- k)0 = m2) — d(g- k(R - m?). (4.29)

Hence, in each of the resulting terms of Eq. 4.29, one of the factors k2 — m?% can be
cancelled with the denominator of the integral. Shifting the integration variable from &
to ky as appropriate, then the first integral inside the square brackets of Eq. 4.28 may
be cast into the same form as the second, demonstrating the required cancellation.

Note that the above discussion of vector—meson contributions to the dressed vqq
vertex has referred to the presence of the G5 coupling in the isovector interaction
channel. The results in the isoscalar channel are completely analogous, with the
replacement of Gy by Gj.

For the purpose of practical calculations, it is convenient to collect together the

various contributions to the vertex into the following form:
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Lu(pra) = 1@+ (% . qq—”i) F0-)f (02) Ble?)

=20 [\ o+ (O~ D)o+ (- D). (4.30)

where the prime denotes a derivative with respect to the square of the momentum
argument and the flavour structure is reinstated by using the charge matrix () =
5(7®+%). The function B(¢?) accounts for the presence of vector mesons in the model
and is given by

B@) = 5 (PBAe) + 3 B30 ) (4.31)

where the functions B;(q?) are:

Bi(q*) = {1 - Gi3$v(q2)} {A( %) +iG, NNf/ &'k e _fgzg;{;?_) ]

x [(4m_m+ — 4+ +§ (kQ - (q;)2>>
S (0= S Paweeo-pg] b a

and the A;(¢?) in the above equation originate from the one-quark loop with a vector

insertion and are given by

ae?) = S ENN [
X /01 dX (f'(k+Aq) f(k — g+ Xg) + f(k + ) f'(k — g+ M) (4.33)

Writing A4;(¢?) and B;(¢?) in Euclidean space and then performing an integration
by parts in Eq. 4.33, one finds that B;(0) = 0. This is simply a consequence of the

differential form of the vertex Ward identity, Eq. 4.20,

L (5.0) = Q7 (). (4.34)

Hence, in processes where the photon is on-shell, the ygq vertex is unchanged by the

existence of vector-meson degrees of freedom in the model.
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Returning to the issue of coupling an on-shell vector meson to the vector current,
the amplitude can be calculated from a quark loop linking the meson vertex func-
tion to that part of the yqq vertex which does not include the contribution from the
propagating transverse vector channel (Eq. 4.26). Attempting to include that piece of
the vertex would cause the amplitude to diverge. Diagrammatically, it would merely
amount to the addition of another bubble onto the vector-meson chain (see Fig. 7.3).
Since the expression 4.26 is purely transverse, the Ward identity for the vertex still

holds.

4.4 Vector—Current Correlator

This section presents a proof that the model satisfies a Ward identity requiring the
correlator of a vector current with an arbitrary current, .J, to be purely transverse.
The diagrams to be considered are analogous to those discussed in Chps. 4.2 and 4.3
regarding the coupling of a meson to the vector or axial current. The proof constitutes
a further useful test of the general procedure for the couplings of currents, as well as
providing a check on the result for the nonlocal vector current constructed in Chp. 2.4.
Suppressing any Dirac or isospin indices that might be associated with .J, the correlator
is defined as:

a — 4 iqx a
I (q) = z/d ze' (0| T{V, (z).J(0)}]0), (4.35)
with vector—current conservation implying the Ward identity
¢"IT7, = 0. (4.36)

In the analysis that follows, use of the isovector vector current is assumed when writing
the expressions, and so .JJ must also be of isovector character to obtain a non-zero
correlator. In the isoscalar case, one proceeds in exactly the same way but with all 7
matrices set to unity and with the coupling constant G5 replaced by Gj.

The diagrams relevant to the correlator are shown in Fig. 4.3. The first diagram

appearing in that figure shows a two-quark loop which couples .J to the local part of
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Figure 4.3: Diagrams contributing to the vector—current correlator.

the vector current. It makes the following contribution to ¢"II¢(¢q):

e tp Trm b+l p
2 )k )

In writing the above expression, I'; has been used to represent the matrix insertion

(4.37)

into the loop due to the J current. Note that it has components in the flavour, colour
and Dirac spaces.

The second diagram in Fig. 4.3 shows the direct coupling of .J to nonlocal terms
in the vector current. A diagram of this form is generated by the G1(7® ® 1) type-I

term (Eq. 2.12) in the current and contributes the following to ¢*IIf(q):

Gy [ d'k Te(fem() , ' Ter(5 +m )0, +m,)
3 | Gy — iy L0 Gy o o = )

(£ (00) = (). (4.38)

The expressions given in Eqs. 4.37 and 4.38 are the only LO contributions in a version
of the model which has just the G| coupling. They should therefore cancel with each
other, since the Ward identity of Eq. 4.36 must hold in that version. The Dirac trace

in Eq. 4.37 may be simplified with the help of the identity

=0 —my) = (b —m_)+ (my —m_). (4.39)

Each of the first two terms on the right-hand side of Eq. 4.39 enables one to cancel

a factor of a quark propagator in the corresponding integrals. On translating the
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integration variables, the resulting contributions from these two terms can be seen to
cancel with each other. Furthermore, since the k integral of Eq. 4.38 is known from

the ladder SDE (Eq. 3.2), the sum of Eqs. 4.37 and 4.38 becomes

d4p TI‘T +m,)FJ(]gS++m+) Cm
s @ ey )

d4p Trr“(]é +m_ )L (p, +my)

— 2 (m(0) - m) / T TR e 37 ey (F(p2) = FP(p-))  (4.40)

which is zero, as required.

If an interaction in the vector channel, (G5, is included in the model then there are
additional diagrams involved in the correlator. One such diagram is similar to that
of Eq. 4.38 but with a vector rather than a scalar insertion into the one-quark loop.
It is generated by the Go(7” ® 7,7%) type-I term in the vector current. The other
additional diagrams (see Fig. 4.3) involve intermediate vector states, described by the
T matrix of the ladder BSE. When the intermediate Gq state is connected to the local

part of the vector current it produces a contribution to ¢*II(q) of

-1 Go / d'p Trdr*(p_ +m_)dr' (B, +m.)
2 1= GyJyy(q) ) (2m)t  (p2 —m2)(pF —m3)

" / d'k Trdr®(K_ + m(k_))T, (K, + m(ky))
@m)* (k2 —m?(k)) (k3 — m? (k)

The integral over p in the above expression may be rewritten by substituting from

flpo)f(p-)

fROf(R). (441)

Eq. 4.39 for the ¢ insertion coming from the contraction of ¢* and the local current

(i.e., the insertion associated with the isospin matrix 7). One then obtains

1 G 'k Tedr (k. +m(k )Ts(k, +m(ks))
2¢° 1 - Gyt (4) / B (R rR ) (B — () ) Oh)

d*p Trr(p_ + m,);ziT”(lzﬁJr +my)
X{/ ) (

fps)f(p-)(my —m_)

2m)t (p2 —m2)(pi —m3)
d'p Trrdrb(p + m(p?))
+/ en) P —m2 () o) (fo+a) - flp- q))} : (4.42)

Consider now the diagram which is generated by the nonlocal G{(7* ® 1) type-I term
and has an intermediate longitudinal vector state. This diagram cancels the contri-

bution coming from the first of the p integrals in the expression 4.42. The origin of
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that piece was the term m, — m_ in the ¢ identity used in writing Eq. 4.42. Hence,
this process of cancellation between a nonlocal diagram with a scalar insertion and an
analogous local-current diagram is identical to the one described above which operates
between Eqs. 4.37 and 4.38.

Taking stock, there remains a piece from Eq. 4.42 as well as the two diagrams
induced by the nonlocal type-I structure Go(7” ® v,7%). These diagrams contribute
the following to ¢"TIf(q):

Gy [ dp Tt mG?)
22 ] (27)" p2 — m2(p?)

[k Tt mON e i)
@ (2 — (R — m(k5)

o) (fo+a) - f(p—19)

f(k-)f(ky) (4.43)

and:

iGy Gy / d'p Trd(p +m(p*))
2(¢%)? 1= G (q) / (2m)t p? —m?(p?)

" / 't Trgr(f_ +m(-)dr"(f, +m(l4))
@m)t (2 =m2(L)) (6 —m*(y))

/ d'k Trdr’(k_ +m(k))Ts(K, +m(ky))
@m)t (B2 —m?(k)) (k3 — m?(ky))

Using the fact that the ¢ integral in Eq. 4.44 is by definition (Eqs. 3.6 and 3.8) just

o) (fo+9) - flp—1a)

FRo) ()

fE)f (ky). (4.44)

6™ I (q), (4.45)

the sum of Eqs. 4.43 and 4.44 can be seen to cancel with the remaining piece of

Eq. 4.42, thereby completing the proof.
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Numerical Results — Hadronic

5.1 Numerical Fits

The nonlocal extended NJL model, as defined in Chp. 2, has seven parameters which
must be fixed from experimental information. They are: the current quark mass (m..),
the range of the form factor (A) and five interaction coupling constants. Considering
first the couplings GG; and G5 only, the quantities chosen for fitting the model param-
eters are m, = 140 MeV, f, = 93 MeV and m, = 770 MeV. At LO, these quantities
do not depend on the remaining three couplings. This leaves one parameter undeter-
mined which may be used to characterize each of several parameter sets investigated.
This parameter is taken to be mg(0), the zero-momentum quark mass obtained in the
chiral limit of the ladder SDE (Eq. 3.2).

The above approach to fixing the parameters is convenient in that it can be
performed with a reasonably straightforward fitting procedure. One begins by selecting
the desired value for the chiral quark mass and guessing the values of A and m,.. From
the chiral limit of the ladder SDE, the G coupling is immediately deduced. The

current quark mass can then be introduced into the SDE which is solved by iteration

2

>) (see Eq. 3.7) whereupon all

to obtain m(0). G is calculated as the inverse of J{,(m

of the relevant model parameters are established in order for f, and m, to be found. A

71



Chapter 5. Numerical Results — Hadronic 72

and m, are then adjusted and the process repeated until the correct pion observables
are produced.

Once a fit parameter set has been determined from the above prescription then
the remaining three couplings may be fixed independently to reproduce the mass of
the corresponding meson: G5 is set by requiring m,, = 783 MeV; G4 by my = 1282
MeV; and G5 by m,, = 982 MeV. The meson masses are given by Eq. 3.7, whilst f;
is set by the coupling of the pion to the axial current (Eq. 1.5) and is calculated as
described in Chp. 4.1. The contributions to f, from the nonlocal part of the current
are significant: the scalar and vector loop pieces described in that chapter accounting
respectively for ~ 35% and ~ —10% of the total value.

In terms of mg(0), the possible fits have a restricted range. Having a coupling
strong enough to realize confinement requires that mg(0) 2 270 MeV. Below that value,
the model should only be used up to an energy corresponding to the appearance of
the gg continuum at twice the value of the (purely real) quark pole. In fact only a
very limited range of non-confining sets are possible because the empirical masses of
the vector mesons are located in this continuum for mg(0) S 250 MeV.

An upper limit on the acceptable values for m(0) is imposed by the behaviour of
the meson propagators above the pseudo-threshold energy (Chp. 3.3). The dramatic
changes in behaviour which can occur beyond this point may be seen in Figs. 5.1
and 5.2, where the denominators of the propagators in various scattering channels are

plotted for a fit parameter set with mg(0) = 300 MeV (set C of Table 5.1).
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Figure 5.1: The figure shows the denominator of the propagator in the sigma channel,
1—G,Jss, along with the pion determinant defined in Eq. 3.13, as functions of timelike
meson momentum. Also displayed are the denominators of the p and a; propagators,
1 — G2 J{y 44 scaled by a factor of 10.
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Figure 5.2: The figure shows the denominators of the propagators in the longitudinal
channels, 1 — Ga.J{y 4 4, as functions of timelike meson momentum.
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With the parameters used to draw Figs. 5.1 and 5.2, the pseudo—threshold occurs
at an energy of 895 MeV. At larger values of mg(0) this energy decreases. As suggested
by the behaviour in Fig. 5.1, for large enough mq(0) two additional poles appear in
the transverse—vector channel above the p pole. Such a situation is shown in Fig. 5.3.
The first of these extra poles has a residue of the wrong sign to describe a physical
particle. Although one might be willing to consider parameter sets with the extra
poles, provided that they lie well above the energies of interest, in practice this is

possible only for values of mg(0) within a very narrow range', ~ 320 to 330 MeV.
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Figure 5.3: The figure shows the denominator of the transverse-vector propagator,
1 — GoJLy,, as a function of timelike meson momentum, for a set of parameters where
mo(0) is unacceptably large.

A pronounced change in behaviour beyond the pseudo-threshold is also observed
in the longitudinal-vector channel (Fig. 5.2) and seems to be important in ensuring
that no poles are present in this channel. An unphysical pole does occur, however, in
the pion propagator (Fig. 5.1). This unwanted pole is located between 1.3 and 1.45

GeV, depending on the parameter set used. As is implied by Fig. 5.2, its origin is the

! Above this range, the minimum in Fig. 5.3 occurs at a positive value and so the vector
meson becomes an unfeasibly heavy state.
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behaviour of the longitudinal axial scattering channel (which changes sign near to the
unphysical pole). Since this channel appears in the pion determinant (Eq. 3.13) due
to ma; mixing, the extra pole would not be present in a minimal version of the model,
with the G interaction only. One should only attempt to use the extended model
at energies below the position of the unphysical pole. Note that although there is a
similar pole in the n* propagator, it lies at a higher energy than in the pion case.

In this and in subsequent chapters, numerical results are presented for parameter
sets which lie near each edge of the acceptable range for mg(0). From evaluations with
some other parameter sets, the variation of results over the full range has been found
to be generally monotonic; where it is not, the dependence on mg(0) is fairly weak.
Specifically, results are quoted for mg(0) = 280 MeV (henceforth referred to as set
A) and 320 MeV (set B)?. Details of these parameter sets are given in Table 5.1. For
completeness, the parameter set at mg(0) = 300 MeV is also defined in that table (set
C). This is a set in the middle part of the range, using which many of the figures have
been drawn.

Values of the zeroomomentum quark masses calculated with these parameters at
non-zero m, are also quoted in Table 5.1. They indicate that the effect of non-zero m,
in the ladder SDE is a significant one, a current mass of ~ 10 MeV causing the zero—
momentum dynamical quark mass to increase by ~ 50 MeV. It is thus worth examining
the related issue of deviations of f, and m, from the values which would be obtained
at leading order in the chiral expansion. Evaluating the pion quark coupling with m,.
set to zero and then using the Goldberger—Treiman relation of Eq. 4.8 gives the values
for fro in Table 5.1. The shifts in f, induced by the current quark mass are therefore
seen to be appreciable, as might be anticipated from the shifts in the dynamical mass.
In contrast, the GMOR relation stands up quite well, the entries m, (GMOR) in

Table 5.1 giving the pion masses at leading order in m.. Such observations suggest

2Note that set B, having mg(0) close to the maximum admissible value, contains unphys-
ical poles in the transverse vector channels of the type discussed earlier. The first of these
occurs at an energy of 1575 MeV in the isoscalar channel and so lies above the unphysical
pole in the pion channel.
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Parameter Set A | Set B| Set C
mo(0)(MeV) 280 320 300
m(0)(MeV) 326 370 347
m.(MeV) 8.4 11.0 9.6
A(MeV) 995 846 918
G1(GeV2) 37.1 57.6 46.1
Gy (GeV~2) —5.70 | —6.53 | —6.57
G3(GeV™2) —-5.20 | —5.86 | —5.99
G4(GeV~2) —0.80 | —4.14 | —2.24
G5(GeV2) 2.57 4.76 3.34

Fro(MeV) 84.6 | 85.1 | 85.0
m-(GMOR) (MeV) | 143.6 | 143.2 | 143.3

Table 5.1: Values of the model parameters, fitted as discussed in the text. Also shown
are the pion decay constant in the chiral limit, the pion mass predicted by GMOR
and the dynamical quark mass.

that the restoring forces against deviations from the chiral circle are rather weak in
this model. Associated with such a softness of the vacuum, one would expect to find
a light sigma meson. This does indeed prove to be the case, as is discussed shortly.

In the chiral limit, the model quark condensate is —(206MeV)? and —(189MeV)?
for sets A and B respectively. With non-zero current quark mass, the condensate
integral is quadratically divergent. If it is regulated by subtracting the perturba-
tive condensate, slightly higher values of —(212MeV)? and —(193MeV)? are obtained.
These are similar in size to values for the condensate estimated from QCD sum rules [3].
However, one should bear in mind that the condensate in QCD is a quantity which de-
pends upon the renormalization scale and so one ought to be careful about comparing
it directly with the value obtained in a model of this type.

Table 5.2 lists the positions of the first few sets of poles in the quark propagator.
Since it is only the first group of poles which is considered to have physical relevance,
the model should only be used up to a maximum energy of twice the real part of the
second set of poles. This limit is at 2.3 GeV and 1.9 GeV for the parameter sets A
and B respectively, and so is sufficiently far above the upper limit imposed by the

unphysical pole in the pion channel not to be of practical concern.
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Set A Set B
4496 + 130: +404 4+ 2574
+1168 £ 7904 +962 4 7024

+1242 + 10052
+1463 £ 1240z

+1488 + 11552
+1742 + 14362

Table 5.2: Positions of the lowest four sets of poles in the quark propagator. The
values given are of v/p? in MeV.

5.2 Meson Spectrum

In Table 5.3, the calculated meson masses are given, along with their on-shell couplings
to quarks, as defined in Egs. 3.11 to 3.13. As described in Chp. 5.1, in some instances

the empirical masses have been used to fix model parameters.

Set A Set B
Particle | Mass | gigq Jiqq Mass | Gigq Jiqq
T Fit | 3.44 | 0.0739 Fit 3.91 | 0.0715
o 443.2 | 3.51 - 465.8 | 4.06 -
p Fit | 1.12 - Fit 1.11 -
a 946.8 | 1.13 - 1061.5 | 2.27 -
w Fit | 1.07 - Fit 1.05 -
fi Fit | 0.89 - Fit 2.51 -
ag Fit | 0.75 - Fit 1.71 -
n* 874.9 | 0.83 | 0.190 899.4 | 2.36 | 1.448

Table 5.3: The calculated meson masses (in MeV) and the couplings of the mesons to
quarks.

The scalar isoscalar state is rather light. For comparison, the mass of the corre-
sponding particle in the NJL model [36, 37, 66, 67] is m2 = m2 + 4m?, where m is the
mass of the constituent quark. Interestingly, the ¢ mass in the nonlocal model varies
only slowly with the dynamical quark mass.

There are a number of analyses of low-energy nm scattering which have attempted
empirical determinations of the mass of the scalar isoscalar meson. However, the issue

has remained a contentious one owing to the very strong coupling between this state
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and the two-pion channel. While some analyses find masses of O(1 GeV) [89], others
indicate a much lighter state [90]. The sigma masses of this model, like those in the
NJL model, are compatible with the latter. Phenomenologically, however, it is perhaps
a more important point that the coupling of the model scalar meson to two pions is
qualitatively strong (in Chp. 5.3 it is shown to be comparable to that for a particle of
equivalent mass in the linear sigma model). Tt is therefore eminently plausible that the
1/N,. corrections (which include two-pion intermediate states) to the scalar isoscalar
channel could prove very significant. The results that have been obtained from a full
NLO treatment of the nonlocal model are presented in Chp. 8.

The calculated a; mass in the nonlocal model is somewhat smaller than the ob-
served 1230 MeV [12]. In the case of parameter set A, it lies a little below the pseudo—
threshold, but for most of the range of admissible m(0) it is above that energy. The
p-a1 mass splitting is found to increase with increasing dynamical quark mass, although
not so rapidly as suggested by the NJL [66, 67] expression mzl = mf, + 6m?, obtained
from the derivative expansion of the bosonized model. As a consequence of the upper
bound on the constituent mass, which follows from the effect of the pseudo-threshold
on the transverse-vector channel, it is not possible to reproduce simultaneously the
empirical values of both the p and a; masses in the ladder approximation. Since the
ay meson is a very broad resonance this is not altogether surprising, NLO diagrams
(such as one with a pr loop) being potentially important for an accurate description
of the channel.

Since there are important flavour—mixing effects in the isoscalar pseudoscalar
sector, a realistic calculation for these mesons would require a three—flavoured version
of the model. The n* mass in the two—flavour model should not therefore be directly
compared with experiment. It is nevertheless somewhat reassuring to note that this
mass lies between the physical 7 and 1’ masses of 547 and 958 MeV respectively.
Another possibly important feature in the description of the state is the effect of axial-

pseudoscalar mixing with the longitudinal f; channel. Indeed, in a Bethe-Salpeter
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study of a three-flavour model [91], the ¢v; term in the vertex function of the n
was found to make significant contributions to both its mass (~ 70 MeV) and decay
constant (~ 30 MeV). A similar effect has also been observed in the NJL model [68].
In the present model, if the f; particle is omitted by setting G4 to zero, then the n*
mass with parameter set A is reduced by around 20 MeV, whereas with set B it falls
by over 110 MeV. These rather different behaviours are another consequence of the
dramatic changes in the meson propagators which can occur at the pseudo—threshold.
When Gy = 0, the n* mass lies below the pseudo-threshold energy for the full range
of admissible parameter sets. For non-zero G4, the mixing acts to increase the n*
mass and for parameter sets with mg(0) 2 310 MeV the mass is pushed above the
pseudo—threshold, where the effect can be greatly enhanced. In addition, the gradient
of the determinant D,. (cf. Eq. 3.13 and Fig. 5.1) changes significantly above the
pseudo—threshold with the result that for these parameter sets the coupling of the n*

to quarks is considerably stronger.

5.3 Hadronic Decays

At leading order in 1/N,, the three-meson vertices are calculated from a quark loop
with insertions of three vertex functions. In this section results are presented for those
inter—-meson couplings which correspond to physical decay amplitudes. In such cases
all of the mesons are on-shell, where the vertex functions (and hence the mesonic
couplings) are unambiguous.

For an initial state of momentum ¢ decaying to particles with momenta ¢; and ¢,
the quark propagators in the triangular loop are evaluated at p+ %q and p+ %(QQ —q1).
If the initial state has a mass which is greater than twice the real part of the quark
pole, then its decay modes will be sensitive to pseudo—threshold effects. By analogy
with the loop integral in the BSE for that particle, residue contributions must be
taken into account in the three—point diagrams (see the discussion of Chp. 3.3). It is

also possible that further residue contributions would be required were a final-state
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Figure 5.4: 1 — 2 meson decays. There is also a similar diagram where V; < V5.

particle to lie above the pseudo—threshold energy. However, such a situation is not
encountered in practice for any of the amplitudes considered.
The meson couplings that have been evaluated are defined by the following matrix

elements:

<7Ta(ql)7rb(q2)|0-(Q)> = _gaﬂﬂ'éab;
<7Tb(Q1)7TC(QQ)‘Pa(Q)> = igpwﬁabc(tb €E—(q1- 6)7
(0(g)7"(@2)]af(9)) = 3iGaron0™(q1 - € = ga - €),

*

(0"(a)7 ()10 (@) = € (Garpr (€, €ar) = harpr (@2 - ;) (@2 €0,)).  (5.1)

The numerical values calculated for the above couplings are given in Table 5.4, along
with the corresponding decay widths. Working in the rest frame of the initial state
particle, the integrations have been performed in terms of the variables p, (in the
direction of ¢), [p| and 1 (the angle between p and ¢;). If the angular integration is
done first then the result can be treated analogously to an element of .J(¢) (as described
in Chps. 3.3 and 4.1). The variation of the integrands with 1 tends to be dominated
by a factor of sin coming from the Jacobian. It has therefore been advantageous to
choose this as a weighting function in the NAG routine DO1ANF which evaluates the
1 integral by approximating the other factors with a Chebyshev series over adaptive

intervals.
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Set A Set B
Coupling Value | Width(MeV) || Value | Width(MeV)
Gomn (MeV) 1438 108.0 1625 135.1
9prr 5.52 126.0 0.26 114.0
Garon 10.65 74.0 11.77 116.4
Gopm(MeV) || 2174 44.0 4604 376.2
ha, pe(GeV1) || 18.19 - 10.87 -
R —0.048 - —0.087 -

Table 5.4: The on-shell three—meson couplings, as defined in Eq. 5.1. Also presented
in the table are the corresponding partial widths. R is the ratio of the d- to s-wave
amplitudes in a; — pr and is specified in Eq. 5.2.

If the sigma meson of the model is to be interpreted analogously to the scalar
particle of the linear sigma model then its coupling to two pions should be strong.
Whilst the values in Table 5.4 do not indicate a particularly broad state, the width is
appreciably reduced by the small available phase space. A useful comparison, however,
is provided by the prediction for the two-pion coupling ¢,.. from the linear sigma
model [14]. In that model, the coupling is gyrr = (m2 — m2)/f, which, for the sigma
masses of parameter sets A and B, gives ¢, = 1901 MeV and 2122 MeV respectively.
These values are ~ 30% larger than those quoted in Table 5.4, indicating that the
coupling to pions of the scalar meson in the nonlocal NJL model is qualitatively similar
to that of the linear-sigma-model particle. As mentioned previously, this strong
coupling highlights the importance of going beyond LO in 1/N, in the description
of the scalar channel.

The calculated p meson decay width compares reasonably well with the empirical
value of 151 MeV. In contrast, the equivalent LO calculation in an extended NJL
model, using the physical p mass, significantly underestimates the decay rate [92, 93].
Even with the improved description of the nonlocal model, it is not possible to choose
model parameters that reproduce both the empirical mass and decay width of the p
in the LO approximation. Note, however, that if the model parameters for a given

mg(0) are refitted to the empirical value of g, rather than to the p mass, then the
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results for observables are not qualitatively different from those of the original fit. For
instance, this procedure would increase the p mass itself by ~ 20 to 60 MeV.

The coupling g4,,~ 1s not a direct observable, although the process it describes
would be involved in the physical decay of a; — 3mw. The partial widths for a; — om
found in this model are similar to those estimated from the extended NJL model?® [94]
and from Weinberg’s mended realization of chiral symmetry? [95]. In contrast, the
Particle Data Group [12] quotes an experimental upper bound on the final state (7 7) g
of ~ 0.7% of the total a; width of ~ 400 MeV. The strong couplings obtained here
suggest that the model may not be consistent with this experimental result. However,
the situation is far from clear. The two-stage process a; — om — 37 would have to
be integrated over various momenta of the intermediate scalar resonance, where the
ajom and orw couplings may reduced from their on-shell values. A hint that this may
indeed be so is provided by the onm loop integral, which vanishes® when the total
energy is around 800 MeV (see also Chp. 8.6). Furthermore, there is an amplitude for
the 7(nm)s final state originating from a direct, four—point a; — 37 diagram which
has not been calculated. Although this contribution has been estimated to be small
from the first term in the derivative expansion of the extended NJL model [67], higher
order terms in the expansion are liable to be important for processes involving the
a1. Hence, it remains plausible that the direct contribution might conspire to cancel
some of the amplitude due to the intermediate scalar state. As is discussed in Ref. [96]
however, such a cancellation is not required by any underlying principle such as chiral
symmetry.

The dominant decay mode of the a; is to pm. Although the parameter set B

3The authors of the cited reference quoted I'(a; — om) ~ 60 MeV.

4On the basis of which it is predicted that I'(a; — om) = 27%I‘(p — ) = 53 MeV.

% As noted previously, the couplings a;om and o for an off-shell sigma meson are not well
defined. Each could be multiplied by an arbitrary function so long as the product of the two
couplings and the sigma propagator is preserved. However, although the magnitude of an off-
shell coupling is undetermined, any zeros in the corresponding loop integral must indicate
that the coupling has genuinely vanished. The statement in the main text is therefore
independent of the extrapolation scheme used.
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does produce a credible, broad width, with set A the state seems to be very narrow.
Since the final state has a combined mass of 910 MeV, the allowed phase space for
the decay is drastically reduced at the model a; masses as compared to the empirical
mass. Using parameter set A, the a; mass is only 946.8 MeV and so the small decay
width of 44 MeV may simply be a consequence of the phase—space suppression.

In order to examine whether the a;pm coupling is reasonably well described by
the extended nonlocal NJL. model, it is here compared with the description of the
same process using a phenomenological mesonic Lagrangian. The CCWZ formalism
(see Appendix C.4) offers a particularly convenient basis for the comparison since
the a; mass in that framework can be set to any desired value without violating the
constraints of chiral symmetry. A suitable Lagrangian is one obtained by converting
the simplest Lagrangian of the massive Yang-Mills scheme (Appendix C.3) into its
CCWZ equivalent and then adjusting the a; mass®. The relevant interaction vertices
are included in the Lagrangian of Eq. C.11, with the Yang-Mills couplings being given
in Eq. C.13. They yield the predictions gu,,r = fr'(94(qa, - ¢x) + 93(q, - ¢x)) and
haypr = [ (92 — g3). Taking fr = 93 MeV, m, = 770 MeV and Z% = 1/2 to be the
parameters specifying the original massive Yang-Mills Lagrangian, together with the
empirical a; mass, gives a broad state of width 490 MeV. Using the a; masses found
in the model with parameter sets A and B, the effective Lagrangian gives very much
smaller widths, 23 and 132 MeV respectively. This suggests that the small widths
calculated in the nonlocal model are largely due to the the small a; mass rather than
any underestimate of the coupling strength.

The amplitude for the decay a; — pm is a mixture of s- and d-wave components.

In terms of the decay parameters defined in Eq. 5.1, the ratio of the d- to s-wave

6The same conclusions are reached if one starts from the simplest Lagrangian for 7, p and
a; mesons in the hidden-symmetry formalism [97]. The a;p7 interaction terms in the CCWZ
representation of both models are generated from the gauge-covariant kinetic terms in the
original representations. These contain AAV structures, which become interactions of the
appropriate form after the shift in the axial field induced by diagonalization (Appendix C.3).
With the minimal Lagrangians of both schemes one therefore has g3 = g4 due to the structure
of the original kinetic terms, with g3 being set by the mixing parameter.
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amplitudes is
(Ep - mp)ga1p7r + ‘Qp|2ma1ha1p7r
\/_

R=— ;
(Ep + Qmp)galmr + |qp‘2ma1 hamﬂ

(5.2)

where E, and q, are the energy and three-momentum of the p, in the a; rest frame.
This quantity has been determined by the ARGUS collaboration [98] from 7-decay
data to be —0.11 £+ 0.02. The effective Lagrangian approach discussed above requires
higher—order couplings in order to obtain a non-zero h,, ,» and so this ratio provides a
test of such higher—order effects. From the values of R given in Table 5.4, the ratio for
the parameter set A is seen to be rather low whereas the value for set B is consistent
with the observed one. Overall, it is set B that provides the better description of both

the a; mass and its hadronic decays.
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Numerical Results —

Electromagnetic

Additional tests of models in which mesons are constructed as gg composites are
provided by electromagnetic decays and form factors that probe the internal meson
structure. In order to calculate such processes it is necessary to specify the photon—
quark coupling, which requires additional assumptions to be made about the form
of the nonlocal current. This was discussed in Chp. 2.4. The resultant coupling in
the nonlocal extended NJL model and the means of calculating the electromagnetic

decays of the vector mesons were described in Chp. 4.3.

6.1 Meson Couplings to Currents

The photon-vector-meson couplings are defined by

(01.7"[p)

ab_p
—Gpy0"€L,

(0] JHlws) = —guyet. (6.1)

Their empirical values, deduced from p — e*e™ and w — ete [12], are g,, = 0.1177
GeV? and g,, = 0.0359 GeV2 The calculated values for these couplings, given in

Table 6.1, are in reasonable agreement with the experimental ones. Similarly to the
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case of the pion decay constant (Chp. 5.1), the nonlocal diagrams with scalar and
vector one-quark loops are numerically significant, producing respectively ~ 8% and

~ —30% of the coupling.

Set A Set B Set A | Set B
Quantity Value Value Quantity Value | Value
9o (GeV?) 0.0889 | 0.0773 9y 6.67 7.67
Gy (GeV?) 0.0308 | 0.0265 Jw 19.92 | 23.12
(r2)(fm?) 0.346 0.344 - - -
Gy 0.505 0.501 - - -
Gury(GeVH) | =229 | =225 || ['(w— 7y) (keV) 692 669
Gprry(GeVTH) | =0.755 | —0.707 || T(p — 7y) (keV) | T71.6 | 62.7
Garny(MeV) 140.2 201.5 || T'(ag — 7y) (keV) | 24.7 45.7

Table 6.1: Electromagnetic properties of mesons. The various couplings appearing
in the table are defined in Eqgs. 6.1, 6.2, 6.13, 6.23 and 6.27. Also given are the
corresponding radiative decay widths of the spin-1 mesons and the mean—square charge
radius of the pion.

Values for the dimensionless quantities g, as given by

m2

gV — g—va (62)
vy

can also be seen in Table 6.1. Universal coupling of the p (see Chp. 1.6) would predict
that g, = gnr. If one compares the results for g, with those for g, in Table 5.4 it is
clear that the universality relation is violated in the model, although notably less so
with parameter set A, where both of these couplings are closer to the empirical ones.
The deviations from universality reflect the fact that the vector current of the model
is able to couple through many possible states. Since the p meson is just one such
state there is no a priori reason to expect universality to hold.

Another interesting comparison one can make with regard to the py coupling
concerns the analogous coupling of the a; meson to the transverse axial current. A

coupling strength g,, is defined similarly to gy,

(075" at,) = —ga, 0" €l (6.3)

6.1. Meson Couplings to Currents
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Evaluating this coupling as described in Chp. 4.1 one obtains values for g,, of 0.072
GeV? and 0.138 GeV? with parameter sets A and B respectively. The coupling strength
from the local-current contribution is here reduced by about a third due to the inclu-
sion of the nonlocal diagram with a vector one-quark loop. Another nonlocal diagram
is also present but its effect is relatively minor. No direct experimental measure-
ment of g,, exists against which to test these results, but the quantity does appear
in Weinberg’s sum rules [99]. If one assumes complete vector and axial-vector meson

dominance' in Weinberg’s first and second sum rules, then the following relations are

obtained:
2 2
Jov  Yar 2
by G _ p2 (6.4
P ay
9oy = Yar- (6.5)

The results of the model for parameter set A are consistent with these vector-dominance
versions of the sum rules, at the ~ 15% level. In contrast, the results with set B clearly

fail to satisfy the relations.

6.2 Pion Form Factor

A further test of the extent to which vector-meson dominance holds in the nonlocal
NJL model is provided by the pion form factor. This function receives contributions
from the two kinds of diagram shown in Fig. 6.1.

The diagram on the left-hand side of the figure is based on a triangular loop,
and is often the only one considered in calculations of the form factor. For a timelike
momentum q carried by the external current, the situation is similar to that discussed
in Chp. 5.3 for the triangle diagrams in hadronic decays, with pseudo-threshold effects

coming into play at energies beyond twice the real part of the quark pole. The same

li.e., that the isovector vector and axial-vector spectral functions are given entirely by

delta functions at the p and a; masses respectively. The assumption neglects the non-zero
widths of these particles as well as the existence of heavier resonances.

6.2. Pion Form Factor
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Figure 6.1: The spacelike pion form factor. There is another, similar triangle diagram
where the photon couples to the anti—quark.

numerical methods are used as in that case. For spacelike momenta the triangular
diagrams can be evaluated in a similar manner, working in the Breit frame.

The other kind of diagram in Fig. 6.1 links the vector current to the initial- and
final-state pions by means of two-quark loops. It will be referred to as a two-body
diagram and is generated by the terms G (iy5 ® iv5) and Go(7”v5 ® v,75) with type-I1
structure (Eq. 2.13) in the nonlocal isovector current. The contribution from these
diagrams can be written as a sum over terms, each of which is a product of two loop
integrals that are somewhat similar to those in Jpp, Jap or J/L,A. The path variable in
a type-1I nonlocal current is associated with both of the ¢/I't pairs and hence the two
loops are connected to each other through the integral over the path. Numerically,
such two-body diagrams are best evaluated in a way? similar to the type-III nonlocal
diagram which is involved in coupling the a; to the axial current (see Chp. 4.1). Since
the quark propagators occurring in the two-quark loops have arguments of p + %qﬂ,
pseudo—threshold effects are not relevant here.

Note that the two kinds of diagram in Fig. 6.1 are separately gauge invariant. For
the triangular diagrams, gauge invariance follows directly from the charge conjugation
properties of the dressed quark propagator and the vertices (see Ref. [100] for example).

With two-body diagrams of the form occurring in this model, it is also a simple matter

2Specifically, a numerical integration over the path variable is performed, and has as
its integrand the product of two three-dimensional integrals. These latter integrals are
evaluated with the same numerical methods as for the triangular diagrams.
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to check that they can have no component which is proportional to the momentum of
the current. If such a diagram is contracted with the current’s momentum, Eq. 2.18
can then be used to perform the resulting path integral, whereupon the expression
vanishes.

A need for two-body diagrams to be included has also been noted in the context of
models where the four-quark interaction is dependent only on the relative momentum
of the gq pair [55, 56]. In such a model the analogue of the two-body diagram can be
reduced to a single two-quark loop integral, where one of the the mgq vertex functions
is modified by the presence of the photon. Such diagrams make no contribution to the
pion charge, unlike the two-body diagrams required in the present model. Indeed, the
fact that the pion’s charge should be unity, F;(0) = 1, supplies an important check
on the model calculations, both analytical and numerical. Calculation of the charge
from the full expressions for the contributing diagrams would be quite complicated,
but it is rather more practicable to demonstrate the result analytically if one works in
the chiral limit.

Consider initially a simplified version of the model where G is the only coupling
included. When a bare 7, insertion is used at the ygq vertex of the triangular loops

it yields the following contribution to Fy(0):

d'pr f'(pE) — 3pEf*(PE) ' (PE)
NN [ s B+ el

: (6.6)

the prime denoting differentiation with respect to p%. The only other piece of the
vqq vertex in this version of the model is an insertion of scalar character (given in
Eq. 4.22). The resulting contribution, however, turns out to be of O(m,) and so the
condition can only be satisfied through the introduction of a contribution that comes

from the two-body diagram. This is:

d'pr f*(pe)f* (pE) — 10%(f* (PE))* + PES* (PE) f" (PE)
2NNt | oy oo

.67

In deriving the expression above one exploits the fact that the path variable, A, always

appears in conjunction with ¢ and hence at ¢ = 0 it vanishes from the integrand. The
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two-body diagram is then a product of two separated loop integrals, one of which
is simply Jpp(m?2). This factor is not found in Eq. 6.7, however, since it has been
eliminated (along with the factor of G in the nonlocal current) by invoking the pion
BSE, G Jpp(m?2) = 1.

Integration by parts can be used to remove the second derivative of an interaction

form factor from Eq. 6.7. Adding the contributions of Egs. 6.6 and 6.7 then gives

d'pp [ (pe) — pRf*(0e) ¥ (pE) + PR f*(Pe) (f' (PE))?
(2m)* [p% + mo(pe)?)? '

2]\'[c]\'ffg?rqu/‘ (68)

This integral should be compared to the one in Eq. 4.7 for Z_J. Recalling that
equation, and the definition of Z,, the expression 6.8 is seen to reduce to unity, as
required.

Proceeding now to the case of the extended model, the contributions discussed
above are no longer sufficient to produce the correct normalization of the pion charge.
This is because there are changes to g7, Wwhich cause it to deviate from Zm. A
modification is also made to the dressed vqq vertex, specifically the introduction of
the piece of Eq. 4.30 that is proportional to B(g?). Since B(0) = 0 however, this effect
does not have any implications for the charge of the pion. The new contributions
arising from the triangular diagrams therefore originate solely in the additional ¢vs
term of the pion vertex functions. At leading order in the chiral expansion, and using

the bare yqq vertex, this extra term yields a contribution of

. ~7r d4 4
4N0Nfg 9909 qq/ pb; fQ(pE)mO(pEQ)Q, (6.9)
My (2m)* [pE + mo(pe)?]
whilst the corresponding result from the dressed scalar piece of the yqq vertex is
0l d 2 4 1
—QNCNfg 99097qq / pb; png (pE)mo(I;E; (6.10)
M (2m)* [p% + mo(pEe)?]

The two-body diagrams are also altered due to non-zero GGy because of the extra
invariant at the pion vertices. Furthermore, there is a new diagram of this kind which
arises from the type-II term G5(7"75 ® v,75) in the nonlocal vector current. At ¢ =0

both of the two-body diagrams simplify to a sum over terms which are products of
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two independent loop integrals. In each term, one of these integrals is just Jpp(m?),

JAp(mfr

) or J%,(m2). Since Jup is O(m;,) in the chiral expansion (Eq. 4.9), terms

containing it can be discarded. Although J%, is of zeroth order in the pion mass, it
always appears in these diagrams accompanied by at least one factor of gr4,, which is
itself of O(m,) (see Eq. 4.14). Only the terms that are proportional to Jpp survive
in the chiral limit. This means that the new diagram involving the G5 term from the
nonlocal current does not in fact contribute to the pion charge at this level. In the
remaining contributions, consider now the loop which multiplies Jpp. Where this loop
deals with the ¢vs structure of a pion vertex there is an associated factor of g4, that
reduces the contribution to one of O(m,). Hence, non-zero Gy does not affect the
two-body contribution in the chiral limit.

Recalling the notation defined in Eq. 4.10, the sum of contributions to F;(0) in

the chiral limit of the extended model can be written as

) ~
g7rqq0 gﬂqqogﬂ'qq <I 1f>
- = 6.11
720 + My 6 970)" (6.11)

the first term coming from Eq. 6.8 and the second from Egs. 6.9 and 6.10. Using now
Eqgs. 4.12 and 4.14 for the mqq couplings in the chiral limit, the above expression is
easily shown to be unity, completing the proof.

Numerically one can test that the pion charge is unity to all orders in the chiral
expansion. This has indeed been verified, the result holding to the accuracy of the

integration routines used.
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Figure 6.2: The absolute value of the pion form factor, |Fy(¢?)], is plotted against ¢?
in GeV2. The solid line is the model result; the dashed line is the VMD approximation
to it. The data points are from Refs. [29, 101, 102].
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The absolute value of the form factor over a range of values of ¢ can be seen in
Fig. 6.2, for a fit parameter set with mg(0) = 300 MeV (detailed in Chp. 5.1). Also
shown on the figure are experimental data points, taken from Refs. [101, 102] for the
region of spacelike ¢? and from Ref. [29] for timelike ¢>. In the LO approximation,
the model form factor has a pole at the p meson mass. Below the pole, very little
variation with mg(0) is found in the results when other parameter sets are used. In
this region the model curve is seen to be in fairly good agreement with the data,
although its rise is a little shallower. This is confirmed by the calculated values of the
mean—square pion radius, which are given in Table 6.1. They are somewhat smaller
than the experimental result [101] of 0.439 + 0.008 (fm)?.

The dashed curve in Fig. 6.2, labelled VMD, is plotted to test whether or not the
model result for the form factor is consistent with VMD. Under the assumption of p
dominance of the photon—pion coupling, the form factor is

2

Yprr 4
Fo(®)=1-— ; —mt (6.12)
p ’

The ratio of g,mr to g, is underestimated by the model®, and hence when one uses
the model couplings in Eq. 6.12, the resulting VMD form factor rises somewhat more
slowly than the data. Nonetheless this VMD approximation to the model curve is not

a bad one, particularly at low ¢

3The values of these couplings are given in Tables 5.4 and 6.1. For the fit parameter set
with mg(0) = 300 MeV, as used in drawing Fig. 6.2, they are g = 5.26 and g, = 6.89.
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Figure 6.3: Various contributions to the pion form factor, below the p pole. The
different contributions are plotted against ¢ in GeV? and are defined in the text.
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Fig. 6.3 illustrates the individual contributions to the form factor, below the p
pole. The curve labelled as “bare” is the contribution coming from the triangle diagram
with the local ygq coupling (the v, part of the vertex, as illustrated by the first diagram
in the representation of the dressed yqq vertex in Fig. 4.2). The curve labelled “scalar”
comes from the triangle diagram with a nonlocal coupling (as in the second diagram of
Fig. 4.2), the one-quark loop having a scalar insertion (this part of the vertex is given
by Eq. 4.22). This “scalar” contribution is negligible over the range of ¢ considered.
All other contributions from the triangle diagrams are combined into the curve labelled
“vector” and correspond to the part of Eq. 4.30 that is proportional to B(g?). Since
the transverse p meson propagator is contained in the function By(q¢?) (Eq. 4.32), this
curve makes the dominant contribution close to the p pole. At spacelike momenta,
however, it is found to supply only a very small contribution, being even smaller than
the “scalar” piece. This is hardly surprising since one would expect that a version
of the model without the p meson (and hence without any “vector” curve) should be
able to give a reasonable account of the spacelike form factor. The point is verified by
Fig. 6.4 in which the model calculation with the extended model is compared to that
produced when the model has only the GG; interaction. These model form factors are
clearly very similar in the spacelike region but it is also obvious that the incorporation

of the p meson is necessary for a satisfactory description of the timelike region.
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Figure 6.4: The absolute value of the pion form factor, |F,(¢?)|, is plotted against
¢® in GeV2. The solid line gives the result calculated from the extended model, just
as in Fig. 6.2. The dashed line gives the form factor calculated from the version of
the model which has the G| coupling only. Both curves use a fit parameter set with
mo(0) = 300 MeV as specified in Chps. 5.1 and 8.1.
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The contribution from the two-body diagrams can be seen in Fig. 6.3 and proves
to be relatively small in the vicinity of the p mass. However it varies only very slowly
with momentum, and so quite rapidly becomes important as the spacelike momentum
increases. This is as expected since, for large momentum transfer to the pion, the pion
vertex functions cut down the triangle-diagram contributions. Even at ¢> = 0 though,
the two-body diagrams are significant. They are responsible for around a third of the
pion charge, clearly demonstrating the importance of including their contribution.

It is interesting to note that, away from the pole, much of the variation with
momentum is controlled by the “bare” contribution to the form factor, which accounts
for ~ 77% of the mean-square charge radius, (r2). Although this curve has no p pole,
when added to the “vector” contribution, the sum is quite close to that of the VMD
approximation to the model. This implies that a cancellation operates between the
“bare” contribution and states above the p in the “vector” piece, leaving the p pole as
the dominant overall feature. In contrast, although a similar mean—square radius has
been obtained with an extended NJL model [103], most of that value was ascribed to
a diagram involving an intermediate p meson, the bare photon vertex accounting for
just 32%.

Above the p pole, the measured form factor is not well described by the model
curve. A possible explanation is suggested by Fig. 6.5, which breaks the form factor

down into its various contributions for ¢ > m%.
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Figure 6.5: Various contributions to the timelike pion form factor, above the p pole.
The different contributions are plotted against ¢? in GeV? and are defined in the text.
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One observes in Fig. 6.5 that there is a substantial cancellation at work between
the “bare” and “vector” contributions, while the “scalar” and “two-body” pieces are
negligible over this region. The net result is therefore liable to be very sensitive to
fine details of the model in this regime. In common with the results for the J loop
integrals (presented in Chp. 5.1), the “bare” and “vector” contributions to the pion
form factor are seen in Fig. 6.5 to undergo qualitative changes of behaviour at the
pseudo—threshold energy. This acts to disrupt the cancellation between them near to
that point. A consequence is the prominence of the rather strange structure seen just
above the pseudo-threshold in Fig. 6.2. This cancellation between large amplitudes
suggests that the results of the model should not be regarded as reliable in the region.
The statement is borne out by the strong dependence of the model results above the p
pole on the parameter set chosen, which is readily apparent if one compares the plots

in Figs. 6.2 and 6.6.
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Figure 6.6: The modulus of the pion form factor, | F;(¢?)|, above the p pole is plotted
against ¢? in GeV?, along with data points from Refs. [29, 101, 102]. The results of
the model with parameter sets A and B are shown on the left— and right—hand sides
of the figure respectively.
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6.3 7 — +v and Related Form Factor

Use of the conserved current constructed in Chp. 2.4 implicitly ensures that elec-
tromagnetic Ward identities are satisfied by the model. Several examples of these
were discussed in Chps. 4.3, 4.4 and 6.2. Another important one is the amplitude

for the decay m°

— 77, which is an example of an anomalous process. Such pro-
cesses involve the complete set of quark states and so present a problem for the usual
NJL model [40, 46, 47, 48, 49|, where the use of a regulator means that high-energy
quark states are discarded. In the nonlocal model studied here, the low-energy the-

orem for 7°

— v may be shown to be automatically satisfied, provided that one
includes both of the diagrams displayed in Fig. 6.7. As well as the traditional trian-
gle diagram [13, 79, 104], there is a two-body diagram that has a dressed yqq vertex

(Eq. 4.30) for one of the photons and a yggqq vertex for the other.

Figure 6.7: Diagrams contributing to 7% — 7. There are also similar diagrams with
I'i & Is.

The anomalous nature of the axial part of the chiral symmetry group implies that

grry = 3 in the chiral limit [104], this coupling being defined through the amplitude

—2« *[L kU
<7(Q1)’Y(QQ)‘7TO> = ﬁgwweaﬁuuqtfqgfluez . (6.13)

Working in the chiral limit, consider first the simpler case where vector meson degrees

of freedom are not present in the model, setting Gy = G5 = 0. The triangle diagrams

where both of the photons are coupled through the local current (bare v, insertions
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at the ygq vertices) contribute an amplitude of

. o B d'p f2(p) oo (P q)
4Z€a,8;w(h q§61M62 62g7rqq0/ (27T)4 [pQ — m%(pQ)P _2m0(p2) + 4m0(p2) qQ
[p- (¢ — Q2)]2>
(‘h - Q2)2 ’

where the prime denotes a derivative with respect to p?. The photons in the triangular—

2

+4mg(p?) (6.14)

loop diagrams can also be coupled via the nonlocal current, having an insertion of
scalar character (this yqq insertion is given in Eq. 4.22). The contribution from dia-

grams where one of the photons is coupled in this way is

: o B e i d'p  f*(p)4my(p?) (»- )

[P (g1 — @)]?
(Q1 - QQ)2 > '

Diagrams with a nonlocal coupling at both photon vertices do not make any contri-

(6.15)

bution to the amplitude because the resulting Dirac trace vanishes. Converting the

sum of Eqgs. 6.14 and 6.15 into Euclidean space, and changing variable to

20,2
= mo(fE), (6.16)
PE
leads to a total amplitude of
* Q 9rqq0 © dt
eagum it e ‘”/ . 6.17
€ B a1 4q2€1 €9 T mg(O) 0 (1 +t)3 ( )

The low-energy theorem now follows by invoking the analogue of the Goldberger—
Treiman relation in the model. This is just Eq. 4.8, derived both in Ref. [8] and in
Chp. 4.2 by considering f; in the chiral limit.

In the extended model with vector mesons, the pion—quark coupling is affected
by the pseudoscalar—axial mixing induced by the G5 coupling (see Egs. 3.10, 3.12 and
3.13). However, the form of f; is also modified (as described in Chp. 4.1) in just such a
way that the Goldberger—Treiman relation remains valid (Chp. 4.2). In addition, note
that since the photons in this process are on-shell the relevant dressed yqq vertices are

composed solely of the same bare and nonlocal (Eq. 4.22) pieces as in the version of
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the model without vector mesons (this issue is discussed in Chp. 4.3). The sum of the

contributions 6.14 and 6.15 therefore yields g, = 5, just as in the simpler version of

:
the model.

The analysis outlined above is in agreement with the work of Ref. [79] where
it was shown that, for a quark propagator without wavefunction renormalization,
the anomaly is saturated by taking only the leading part of the pion Bethe-Salpeter
amplitude, together with dressed yqq structures subject to the Ward identity for that
vertex. The statement is non-trivial because terms in the pion amplitude that are
linear in momentum can contribute to the decay amplitude, even in the chiral limit.
For instance, the ¢vs term which appears in V;(q) for the extended version of this

model gives rise to additional triangle-diagram contributions. From such diagrams

with two local photon vertices, one finds

g d'p  f(p) (p-q)
die, Vaﬂ*y*VQQqu/ —902 _ 9m2(p2) 4+ 4
apuvqd1 q2€1 €9 € m, (27’(’)4 [p2 _ m%(p2)]3 P mU(p ) + q2
p- (01 — )]

Since Grqq is of O(m;) in the chiral expansion (Eq. 4.14), the above contribution is of

O(1). Similar diagrams with one local and one nonlocal photon vertex give

2

dicog qanBGTue*yngﬂqq/ d'p  f2(p)8mo(p*)my(p?) ( , (p-a)
uwqq 2% e ] nt T = mi ()P e

. [p ) (Q1 - QQ)P) _ (619)

(Q1 - QQ)2

The diagrams with two nonlocal vertices again have a vanishing Dirac trace.

Since the sum of Eqs. 6.18 and 6.19 is non-zero, there must be some other contri-
bution that cancels them in the full amplitude for the anomalous process. The relevant
piece arises from the two-body diagram that is displayed on the right—hand side of
Fig. 6.7. Terms in the nonlocal vector current of the form* Gy(7/vs ® 7,75) with a
type-1 (Eq. 2.11) structure are responsible for the vggqq vertex. This diagram factor-

izes into two separate loop integrals, the loop between the two photons producing the

4For the sake of simplicity, isospin factors have been suppressed here.
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anomalous €,4,, factor. The other loop is nothing more than a linear combination
of the familiar integrals Jp(m2) and J%,(m2). This combination can be simplified

by recalling the definitions of the pion—quark coupling constants in Eq. 3.12. The

contribution from this diagram in the chiral limit is given by

J d'p  4f(p)f (p) (p-q)”
4'0,,0"8*“*”297“”/ 2
€apuvq1 4o €1 €9 € m, (2m)* [p? — m%(pQ)]Q PR

_ lp- (g1 — QQ)F) ‘ (6.20)

(Q1 - QQ)2

Converting to Euclidean space and integrating by parts, the above expression can be
shown to cancel exactly with the sum of Egs. 6.18 and 6.19, demonstrating that the
low-energy theorem for 7% — ~+ holds in the extended model.

In practice, the existence of non-zero current quark masses means that the physi-
cal amplitude differs slightly from its value in the chiral limit. In an explicit calculation
of the full model amplitude, the two-body diagrams are treated by first performing the
path integration analytically. One can then apply the usual methods (see Chp. 5.3) for
dealing with a single three—dimensional loop integral. The numerical results calculated
with the nonlocal NJL model for g, are given in Table 6.1. The deviations from % are
small and are consistent with those in the experimental value [12], g, = 0.503£0.018.

The related process where one of the photons is off-shell, yy* — 7%, enables one
to probe the structure of the neutral pion. A corresponding form factor can be defined

(y*(q*)7|7%)
(v(g% = 0)y|x®)

It is straightforward to develop the model calculations above in order to evaluate this

FM(QQ) =

(6.21)

form factor. The same numerical methods for dealing with the two-body diagrams
can be applied both off- and on-shell. The triangular diagrams are again evaluated
analogously to those in the hadronic decay amplitudes of Chp. 5.3, but working here
in a frame chosen such that the spacelike momentum of the off-shell photon has no

component in the fourth Euclidean direction.
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Early experimental measurements of the transition form factor were attempted at
small timelike momenta [12, 105] but were subject to large uncertainties. Until recently
the best results were those obtained by the CELLO collaboration [105] in the spacelike
region, which extends from —m?2. Their experiment investigated ete™ — ete n°
events where one of the fermions is scattered through a very small angle (i.e., is lost
down the beam pipe), thereby indicating that the intermediate photon it emitted was
almost real. Five data points for the form factor were quoted and are marked by open
circles in Fig. 6.8. Also displayed on that figure is the new data reported by the CLEO
collaboration [106] who revisited the experiment at improved precision. Their data
is marked with filled boxes on the figure which also shows the results of the model
calculation at the fit parameter set with my(0) = 300 MeV.

The model results are not sensitive to the choice of parameter set and are dom-
inated by the contribution from the triangle diagram with local photon couplings.
They are in good agreement with the new experimental data and are comparable to
the results obtained in other Bethe-Salpeter approaches [86, 87].

The dashed curve in Fig. 6.8 is the VMD prediction for the form factor, given by

27° fr Gy ¢
(¢") =1- -

— (6.22)
gﬂ"y'y V=pw gv q2_m%/

and using the values of the couplings calculated in the model®. (The couplings gy,
describing the decays V' — 7, are discussed in the following section.) In this case,
the VMD approximation to the model result is rather poorer than it was for the pion
form factor (Fig. 6.2). VMD is not inconsistent with the model at low momenta in
this process, but the difference between them becomes appreciable as the spacelike

momentum increases.

Swhich are g, = 0.504, g, = 6.89, gyry = —0.712 GeV~', g,, = 20.62 and gy, = —2.14
GeV~! for the fit parameter set with mg(0) = 300 MeV that is used in drawing Fig. 6.8.

6.3. 7 — v+ and Related Form Factor



Chapter 6. Numerical Results — Electromagnetic 106

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

\\\\‘\\\\‘\\\\‘\\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

Transition form factor

—— Model results

- VMD

Figure 6.8: The my7*(¢?) transition form factor, defined in Eq. 6.21, is plotted against
¢? in GeV2. The solid line is the model result; the dashed line is the VMD approxima-
tion to it. The data points are from Refs. [105] (open circles) and [106] (filled boxes).
In both of the experiments the data was measured in % bins, the extents of which
are plotted here as the horizontal error bars. The vertical errors in Fy, are statistical

only.
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For the on-shell amplitude in the chiral limit the chiral anomaly ensures that the
effects of including vector mesons in the model cancel out. In fact, such cancellations
seem to persist to a large extent in the off-shell amplitude and at non-zero current
quark mass. Evidence for this claim is supplied by Fig. 6.9, where the transition form
factor is shown in a simpler version of the model which includes only the pions and
the sigma meson. As in the case of the pion form factor at spacelike momenta, there
is little difference between the extended and simple versions of the model, with both

giving a good description of the data.

o \H\‘\H\‘\H\‘\H\‘\H\‘\H\‘HH‘HH‘HH‘HH

Figure 6.9: The myy*(¢?) transition form factor is plotted against ¢? in GeV2. The
solid line gives the result calculated with the extended version of the model, just as
in Fig. 6.8. The dashed line gives the result calculated from the version of the model
which has the G coupling only. Both curves use a fit parameter set with mg(0) = 300
MeV as specified in Chps. 5.1 and 8.1.

6.4 Radiative Decays and a Related Form Factor

This section discusses the model results for the decays of spin-1 mesons into 7 fi-
nal states. Schematically, the calculations involve triangle and two-body diagrams,

analogous to those of Fig. 6.7.
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Just as in the anomalous pion decay, the piece of the nonlocal current that gives
rise to the two-body diagrams for V' — 7 is the type-I (Eq. 2.11) term with Dirac
structure G(7"y5 ® v,75). These two-body diagrams may similarly be reduced to a
single two-quark loop integral, the other loop being a known combination of pionic
J integrals. The resulting contributions do not prove to be numerically important in
these decays, producing less than 1% of the total amplitudes.

Results for these couplings, as defined by

V(@)™ (@)|w) = i€GuryCapuaias € e,
(V@) (@)]p") = 16 egpmycapumifdh e e, . (6.23)

are given in Table 6.1, along with the corresponding decay widths. Since isospin

symmetry has been assumed there is no €3

component to the pry matrix element.
The decay widths obtained for the charged and neutral p mesons are therefore equal.

These model results agree well with the experimental values [12]:

I(w—my) = 717+ 43keV,
L(p° — 7%) = 1214 31keV,

I(p* — 7%y) = 68+ 8keV, (6.24)

the difference between the measured charged and neutral p decays not being considered
statistically significant in view of the large error bars [107].

Extending the wmy amplitude to off-shell photon momenta, the model description
can be compared to the form factor as measured in Ref. [108]. The reaction 7 p —
nw — nrlutp~ was studied to investigate the form factor in the range from 4mi to

(my, — m,)% Working with a definition of

(v (¢?)|w)
(V(¢* = 0)7lw)’

the model results and the experimental data are shown in Fig. 6.10. In common with

Fon (q2) =

(6.25)

the other electromagnetic form factors presented in this chapter, the fit parameter set
where mg(0) = 300 MeV has been used in plotting the model results, which have been

found not to be sensitive to the set chosen.

6.4. Radiative Decays and a Related Form Factor
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Figure 6.10: The wry*(¢?) form factor is defined by Eq. 6.25. Tts square is plotted on
a logarithmic scale against ¢ in GeV2. The solid line is the model result; the dashed
line is the VMD approximation to it. Data points are taken from Ref. [108].
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In Fig. 6.10 the model is seen to be in agreement with the data points at low
¢? but there is a discrepancy at higher energies. The same observations are true of
other theoretical calculations [109]. It may be that there is some effect on this form
factor from the tail of the p’ resonance [30]. Another potentially important missing
ingredient in the present calculation is w¢ mixing, since a calculation of this form
factor within an SU(3) effective Lagrangian approach [110] has found a significant
dependence on the mixing strength. Improved data would be needed to draw any
firmer conclusions and there are indeed hopes that the experimental situation will be
clarified by forthcoming experiments at VEPP-2M or DA®NE [107].

For this form factor, comparison with the VMD prediction,

2

gwmr q
gww’ygp q2 - m%,

For(q®) =1 - (6.26)

is not completely straightforward, since the coupling g¢,,- cannot be calculated on-
shell. Nonetheless, a reasonable estimate of it can be made by extrapolating to the
soft—pion limit® (zero pion four-momentum). For a variety of fit parameter sets over
the admissible range, the results for g,,» determined in this way are within 20% of the
prediction of universal coupling, g,,x = gury9g,- The curve corresponding to Eq. 6.26
with the estimated wpr coupling” is that which is labelled as VMD in Fig. 6.10. It

provides a very good approximation to the results of the full calculation in the model.

6In that limit, the pseudoscalar-axial mixing element, Jp 4, vanishes. Hence, the vertex
function for the soft pion is taken to be grqqiy57°.

"For the parameter set used in plotting the figure it is estimated to be 15.2 GeV~!. The
other couplings needed are quoted in footnote 4.
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2.5 Full form factor

0.5 = Vector

Scalar
T | | | Twobody
R
0 0.05 0.1 0.15 0.2 0.25 0.2 0.235 0.4

2

9

Figure 6.11: Various contributions to the wrvy*(¢?) form factor are plotted against ¢?
in GeVZ2. The contributions are defined in the text (see Chp. 6.2).
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Decomposing the form factor as in Chp. 6.2, the individual contributions are
shown in Fig. 6.11. The two-body diagrams are negligible over the region considered.
The contribution coming from the “scalar” part of the dressed vyqq vertex (Eq. 4.22)
is larger but is still a minor effect. As in the case of the pion form factor (Chp. 6.2),
the model result turns out to be dominated by the bare, local photon vertex and
the “vector” part of the vqq vertex. The latter contribution includes the model p
meson propagator and so it becomes increasingly important as the timelike momentum
increases towards the p pole. It appears that a cancellation is acting between the local
contribution and that from states other than the p meson in the “vector” contribution
so as to produce a result which is close to that of VMD with universality.

In the amplitude for the decay af — 7%+, the contribution due to two-body dia-
grams is generated by the terms in the nonlocal current G (iv5®ivs) and Go (775 @ V,75)
which have a type-II structure (Eq. 2.13). These are the very terms that gave rise
to the two-body diagrams in the pion form factor (Chp. 6.2). The same numerical
methods are used in computing the analogous a7y diagrams. Since the a; mass lies
above the pseudo—threshold energy for parameter set B, the evaluation of both the
triangle and the two-body diagrams requires residue contributions in that case.

Gauge invariance imposes the following structure on the decay amplitude:

2(q2 €4y )(q2 - Efy)
(m3, —m2)

(V@) (g2)|aS) = i€ egayny |€ay - € + (6.27)

In the isosymmetric case, there is no §%° component to the amplitude, which is con-
sistent with the fact that the radiative decay of the neutral a; meson has not been
detected [12]. The values calculated for g4, -, and the corresponding decay widths,
can be seen in Table 6.1. With parameter set A the scalar part of the nonlocal photon
coupling and the two-body diagrams make relatively small contributions to the total
amplitude. Working with set B, these contributions are substantial but largely cancel
with each other. The final results for all choices of parameters are much smaller than

the experimental measurement [111] of 640 + 246 keV.
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Next-to-Leading Order Treatment

7.1 NLO Corrections

From even the most cursory survey of the literature it is apparent that the NJL model
has long been popular in low-energy strong physics. However, almost all calculations
with the model, and its various offspring (Chp. 2.2), have been restricted to leading
order (LO) in the 1/N, expansion. To a large extent, this is because the calculations
at next-to-leading order (NLO) are much more complicated, both analytically and
numerically. Part of the original motivation for the NJL model, and one of the reasons
for its continued popularity, is its very simplicity at LO. One might therefore take the
view that a large increase in complexity is not justified for a model that was never
intended to produce highly accurate numerical results. An additional point of difficulty
is that the model must be specified further at NLO since one has to regularize both
quark and meson loops.

On the other hand, since 1/N, is such a modest expansion parameter, it does seem
important to try to estimate the size of some NLO effects. Even if were of interest
for no other reason, this is a necessary aspect of the validation of the perturbative
approach. For some quantities it may be that the expansion coefficients conspire to

make the NLO term similar in size to the LO one. This possibility has to be eliminated
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if a LO calculation is to be viewed as a reasonable approximation to the full model
result.

The most appealing point about a NLO analysis, however, is that the LO treat-
ment of a four-quark model neglects physical processes that are known to be quali-
tatively important (see Chps. 5.2, 5.3 and 6.2). For instance, several of the particles
described by such models (o, p, a;) are broad states, yet the model meson propagators
at LO are purely real. At NLO the particle widths are incorporated in a completely
natural way, by including diagrams with purely mesonic intermediates in the BSE.
Such diagrams might well prove important in model descriptions of, say, the sigma
meson.

In this and the following chapter, work is presented which aims to go some way
towards an improved understanding of four—quark models at NLO. Some aspects of
the original NJL model at NLO have been investigated by various authors. Several
such works, however, have been concerned only with subsets of the full NLO correc-
tions [93, 112, 113]. As stressed in Refs. [43, 44], this is a somewhat unsatisfactory
approach since failure to include all of the relevant diagrams can cause Ward identities
and chiral symmetry constraints to be violated. To this author’s knowledge, consistent
NLO treatments are only available in Refs. [43, 44, 45|, using respectively an effec-
tive action method, an appropriate selection of Feynman diagrams and a bosonized
approximation. In the remainder of this chapter, the Feynman diagrams required at
NLO in the nonlocal NJL model are presented. This model is a particularly conve-
nient one in which to examine NLO effects. Since it does not need regularization, one
avoids ambiguities that occur in the original NJI. model. In addition, the Gaussian
form factor (Eq. 2.7) of the nonlocal model allows complicated NLO diagrams to be
evaluated efficiently with Gaussian numerical techniques. Note that some preliminary

work on quark properties at NLO in the nonlocal model can be found in Ref. [114].

7.1. NLO Corrections
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7.2 Quark Propagator at NLO

At NLO the quark self-energy is supplemented by two new kinds of diagram, specif-
ically a tadpole and a meson cloud contribution. A starting point for deducing both
of these contributions is the Fock diagram, which arises from the Fierzed form of the

action (discussed in Chp. 2.5).

> ° >

Gy (4N.)"Y(Gy — 2G5 + 2G4 — G5 + 12Gy)

\ 4
\ 4

Figure 7.1: The LO and Fock diagrams in the Schwinger-Dyson equation are shown
on the left— and right-hand sides of the figure respectively. Note that they have been
distinguished by separating slightly the quark lines associated with each of the 1)1
factors in the interaction.

The interaction terms of the Fierzed action (Eq. 2.19) describe the consequences
of exchanging the quark fields in the model action of Eqgs. 2.1 to 2.4. They lead to
diagrams which are very similar to those at LLO but are suppressed by one power of
N, due to a restriction on the sum over colour. Fig. 7.1 illustrates the point with a
comparison of the LO and Fock diagrams in the Schwinger-Dyson equation. In the
LO diagram, the one-quark loop is obtained by closing in on itself one of the 1))
factors from the G interaction. Any colour of quark can flow around the resulting
loop. The Fock diagram though is constructed by breaking the one-quark loop of the
LO diagram and attaching the ends to the legs of the propagating quark. The same
colour index must then be maintained throughout the diagram.

The Fock diagram in Fig. 7.1 can be used as a seed for other NLO contributions
to the SDE. An example is shown in Fig. 7.2. Tt is generated by inserting a two-quark

loop into the Fock diagram. Such a loop is simply a J integral from the LO BSE

7.2. Quark Propagator at NLO
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Figure 7.2: A diagram in the Schwinger-Dyson equation at NLO.

(Chp. 3.2). In comparison with the Fock diagram, the diagram in Fig. 7.2 has an
additional factor of an interaction coupling constant, which is of O(N'). However,
this is compensated for by a factor of N, from the colour trace over the two-quark loop
and so Fig. 7.2 constitutes another NLO contribution. One can insert more two-quark
loops in a similar fashion, thereby generating many more NLO diagrams. Combining
all such diagrams amounts to a sum over chains of the two—quark loops (illustrated

by Fig. 7.3).

Figure 7.3: A chain of two-quark loops. Sums of such chains are used in the construc-
tion of the T" matrix at LO.

Recalling Chp. 3.2, the sum of chains can be seen to produce the Gq scattering
matrix at LO. In fact, at NLO, the full SDE can be expressed in terms of the ladder

diagram of Fig. 3.1 and the extra diagram shown in Fig. 7.4. The SDE becomes:

d'k

S (p) = = me = iGa () Te [ (53 Se(h) (8
HPD Y [ ST %S - DA -0, (@)
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where the notation T(T ® €;q) has been introduced to denote that channel of the
scattering matrix T(q) which describes the propagation from a gq state with matrix
structure Q to the state with structure I'. It is to be understood as the LO scattering
matrix of Eq. 3.5, which is clearly of O(N'). The summation over the index i

indicates that all of the Dirac and isospin structures in the scattering matrix are to

be included.

Figure 7.4: The NLO part of the Schwinger-Dyson equation.

Note that the Fock diagram on the right-hand side of Fig. 7.1 is implicit in the
second of the integrals appearing in Eq. 7.1. As the seed for the scattering matrix, it
can be isolated simply by taking the first term from the right-hand side of Eq. 3.5.

Equation 7.1 illustrates that in general the quark SDE and meson BSE form part
of a system of coupled integral equations. A perturbative expansion in 1/N, therefore
provides a great simplification by allowing the solutions to be built up separately one
order at a time. Although the SDE as written above contains all of the required
terms at LO and NLO, it also includes some unwanted higher order terms. In order

to restrict it to the terms of interest the full quark propagator is written in the form
Sr'(p) =S (p) + Sn(p) + -

Sr(p) = S(p) = S(p)EN(P)S(pP) + -+, (7.2)

where ¥ is the quark self-energy and a convention is followed whereby a symbol with
the subscript N represents the NLO contribution to that quantity. The same symbol

without this subscript is to be understood as referring to the quantity evaluated at

7.2. Quark Propagator at NLO
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LO. In Eq. 7.2, therefore, the dots indicate irrelevant terms beyond NLO. Substituting
the decomposition into Eq. 7.1 and equating terms at each order of 1/N,, one of course
recovers the familiar ladder SDE (Eq. 3.2) at LO. The NLO terms meanwhile consist
of a contribution involving the scattering matrix along with a piece coming from a

NLO self-energy insertion into the ladder self-energy diagram,

e d*k 9
Sn(p) = i POTr [ SIS (R)S ()£ (F)
+if*(p) > / %T(E ® Qi k)TiS(p — k) f*(p — k). (7.3)

One can substitute for ¥y (k) in Eq. 7.3 using the full expression on the right-hand
side of that equation. This immediately leads to an explicit expression for the NLO

self-energy:

Sx(p) = of*(p) +if°0) Y [ (;l;’;T(E ® U TS — KU (p— k),  (7.4)

where

(27
< SRTLS (S () (k) F2(0). (75)

The two pieces of Eq. 7.4 are the tadpole and meson cloud contributions advertised at
the start of this section. In diagrammatic language, they are shown in Fig. 7.5. The
diagram on the left-hand side of the figure is responsible for the contribution cf?(p).
It is generated by the exchange of a zero-momentum ¢ meson between the quark and
a virtual meson. Since ¢ is a momentum—independent constant this contribution is of
the same form as the LO running quark “mass”, m(0) — m. (see Egs. 3.1 and 3.3).
The other diagram in Fig. 7.5 illustrates the emission and subsequent reabsorption
of a virtual meson. Its evaluation requires an explicit integration to be performed at
each value of the quark momentum and produces a wavefunction renormalization p

component as well as a scalar term.

7.2. Quark Propagator at NLO
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Figure 7.5: Diagrams contributing to the NLO quark self-energy. A double line is used
to denote the propagation of a Gq state, as described by the LO scattering matrix.
The gq system has initial and final state matrix structures that are specified in the
open circles at the ends of the double line.

7.3 Meson Propagators at NLO

At LO, the mesonic bound states are constructed from the ladder Bethe-Salpeter
equation, as described in Chp. 3.2. The natural basis for discussion of the NLO
version of this equation deals with corrections to the basic two-quark loop, J;;. On
incorporating the NLO contributions into an expanded definition of .J, the scattering
matrix will retain the form of Eqgs. 3.4 and 3.5. Such NLO corrections are of three
distinct kinds. They arise from a NLO quark self-energy insertion, from t-channel
one-meson exchange between the quarks and from the combination of two three-meson

vertices.

i<:>j

Figure 7.6: The LO loop in the Bethe-Salpeter equation.

7.3. Meson Propagators at NLO
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The graphical notation of Fig. 7.6 is used in this section. The figure represents the
two-quark loop that appears in the LO BSE. Each cross denotes the relevant matrix
insertion (I'; or I';) as well as two interaction form factors (each of these is evaluated

at the momentum of a connected internal quark line).

(b)

Figure 7.7: Diagrams appearing in the BSE at NLO as a consequence of the NLO
quark self-energy. There are also similar diagrams, with fermion arrows in the opposite
directions.

An obvious correction to a LO J loop is generated by replacing a LO quark
propagator with its NLO part. This results in the following contribution to Jy;;(¢?),

which is illustrated in Fig. 7.7:
4

it | (;lT’;lris<p_>zN<p_)S(p_)rjs<p+>f2(p_>f2<p+>

4

e [ TS 0TS0 S0 (0 S0 0 0. (7.0

Another kind of NLO contribution is based on a Fock diagram. The Fock diagram
in the BSE is constructed by a rearrangement of the quark lines at one of the interac-
tion vertices in a chain of LO loops. It is shown on the left—hand side of Fig. 7.8 below.

Just as in Chp. 7.2, a diagram of the same order in 1/N, can be generated from it by

7.3. Meson Propagators at NLO



Chapter 7. Next-to-Leading Order Treatment 121

I |

Figure 7.8: The Fock diagram in the Bethe-Salpeter equation is shown on the left—
hand side of the figure. Note that it has been distinguished from two successive LO J
loops by slightly separating the quark lines associated with each of the ¥I'¢ factors in
the interaction vertex. Another NLO BSE diagram is shown on the right-hand side
of the figure.

inserting a two-quark loop. Doing so gives the diagram shown on the right—hand side
of the same figure. One can proceed to create chains of such loops (Fig. 7.3). In fact,
just as for the case of the quark propagator, the Fock contribution is only the first
term in a set of diagrams which produce a LO scattering matrix when summed. Their
total amounts to the exchange of a t-channel virtual meson between the two quark

lines of a LO J loop. It is shown in Fig. 7.9¢ and makes the following contribution to

Inij(6°):

ST [ 5 [ T, © 0 — IS ()0 S-S TS (k)

X f2 (k=) 2 (ky) f2(p=) f2 (4 )- (7.7)
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(c) ()

Figure 7.9: Meson exchange diagrams in the BSE at NLO. There are also similar
diagrams, with fermion arrows in the opposite directions.

Finally, there is a NLLO contribution that involves intermediate two-meson states
(it is illustrated in Fig. 7.9d). Diagrams of this form allow the instability of a me-
son to be reflected in its propagator by introducing an imaginary component above
the threshold energy for physical meson decays into two particle final states. They
are created by joining together two LO three-meson vertices', each of which is of
O(1/+/N.). In writing an explicit expression for these BSE diagrams, it is convenient

to use functions L and L that describe the LO three—meson vertices.

— q; I q: 'y —

— q; [y g2; L'y —>

Figure 7.10: The three-point loops L and L. They are defined respectively by the
diagrams on the left— and right-hand sides of the figure, together with similar diagrams
where the fermion arrows point in the opposite directions.

!Such vertices were considered in the context of meson decays in Chp. 5.3.
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L is defined to be:

L(q,q1,q2;T,T1,Ty) = iTr/ %FS@)FQS@ — (¢ — @)1 S(ps)
X2 =) 2 (o) 20— 5 (01 — @2))

+iTr/ (QdALTP;LlFS(p_)FlS(p + 3(q1 — ¢2))25(py)

<2 (p_) f2(p4) 2 (p + 3a1 — @), (7.8)

and L is a similar function for the 2 — 1 version of the loop,

4

L(q,q1,q2;T,T1,T) = ZTI"/ ﬁfs(m)ﬂs(zﬂ — (¢ — ¢2))2S(p-)

X2 (=) () [ (p — 301 — @2))

e [ (;ZTP;ZlFS(p_F)FQS(p + Mo — ¢2))TiS(p-)
xf2(p-) 2 (p4) (0 + 301 — @) (7.9)

Clearly L and L are symmetric under 1 <+ 2. Using the cross notation, these functions
represent the triangular loops shown in Fig. 7.10. The contribution to Jy;;(¢*) from

the diagram of Fig. 7.9d can then be written as follows:

. d'p = A
—1 Z / WT(FT &® Qr;er)T(Fs ® Qs; —p,)L(q,er, —P-; Fia Qra QS)

Xz(qap-l-a_p—;rjafrafs)- (710)

7.4 Diagrams for Coupling to Currents at NLO

A NLO determination of the coupling between a particle and an external current
requires the calculation of additional diagrams. Such diagrams are considered in the
present section, taking the pion decay constant as an example. (Note that the actual
expressions for the various NLO contributions to f, can be found in Appendix A.1.)

At LO the pion decay constant receives two kinds of contribution, which arise from

the local and nonlocal parts of the axial current (see Chp. 4.1). At NLO several of
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the extra diagrams can be straightforwardly derived by modifying loops which appear
in the LO diagrams. Starting from a one-quark or a two-quark loop at LO, there
are NLO corrections which follow by analogy with diagrams from the SDE and BSE
respectively. Both the one- and two-quark loops are corrected due to a NLO quark
self-energy insertion (which is composed of the two diagrams shown in Fig. 7.5). A
two-quark loop should also be corrected due to t-channel virtual meson exchange and
due to intermediate two-meson states. Introducing these corrections results in the
diagrams of Figs. 7.11 and 7.12.

Other NLO contributions arise from the fact that the vertex function which de-
scribes the coupling between a meson and dynamical quarks has a NLO component
(Eq. 7.13). Diagrams (k) and (I) of Fig. 7.13 are the obvious consequences of this

point.

(), (b)

Figure 7.11: The figure shows the sum of the NLO diagrams (@) and (b) in the coupling
of the pion to the axial current. Diagram (a) includes only that part of the NLO quark
self-energy shown on the left-hand side of Fig. 7.5; diagram (b) includes only that part
shown on the right—hand side of the same figure.
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(¢), () (e)

Figure 7.12: The figure shows the sum of the NLO diagrams (c¢) and (d) in the coupling
of the pion to the axial current. Also shown is the sum of diagrams (g) and (h), as
well as the diagrams (e), (f), (i) and (j). Diagrams (¢) and (g) include only that part
of the NLO quark self-energy shown on the left-hand side of Fig. 7.5; diagrams (d)
and (h) include only that part shown on the right—hand side of the same figure. Note
that there are also similar diagrams, with fermion arrows in the opposite directions.
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Since there are four quark fields in the nonlocal part of the axial current one
should consider the effects of exchanging the roles played by the fields. As for the
interaction vertices, such effects can be described by Fock terms, which are suppressed
by one power of N, in comparison with the original terms of the nonlocal current (see
Chp. 2.5). Although there is an ambiguity in defining their transverse components,
this is of no concern in the calculation of the pion decay constant. One could of course
create further NLO diagrams by appending two-quark loops to the Fock diagram.
However, it is demonstrated in Appendix A.1 that such contributions are automatically
included in other diagrams and therefore it is more convenient to treat the Fock
diagram (Fig. 7.14) separately.

There are two more NLO diagrams to be included in the coupling of a meson to
an external current. They are shown in Fig. 7.15. Diagram (o) is similar to some other
NLO contributions in that it arises from the exchange of a virtual meson between two
quarks. It recognizes the possibility that the two quarks need not necessarily belong
to the same quark loop. The remaining NLO diagram, (n), is somewhat similar to
diagram (j) of Fig. 7.12 and occurs because the nonlocal current can be coupled
through two two-quark loops (cf. the two-body diagrams contributing to several of

the electromagnetic processes described in Chp. 6).

() ()

Figure 7.13: The NLO diagrams (k) and (/) in the coupling of the pion to the axial
current. Vi, is the NLO part of the pion vertex function.
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(m)

Figure 7.14: The NLO diagram (m) in the coupling of the pion to the axial current.
Note that it has been distinguished from a similar LO diagram by slightly separating
the quark lines associated with each of the 1 factors in the nonlocal current.

Figure 7.15: The NLO diagrams (n) and (o) in the coupling of the pion to the axial
current.

Pion Decay Constant at NLO

As mentioned in Chp. 4.2, the ¢~s identity of Eq. 4.3 is a useful tool for simplifying
the various NLO contributions to the pion decay constant. As in the LO proof of
GMOR discussed in that section, the identity enables a diagram generated by the
local current to be rewritten in such a way as to elicit a cancellation with part of a
similar nonlocal contribution. After making such simplifications, some other useful
cancellations among the NLO diagrams can be identified. These are discussed in
Appendix A.1, which specialises to a version of the model with the G; coupling only.

In that case, the NLO component of f; is shown to reduce to the following:
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e = T T [ G TSI A (16 + ) + 16~ )

+97r;j;nc (J](\?])DP with fQ(pi)f4(pq:) _ f(pi)f3(pq:))

™

+97r;j;nc (J](\l;zap with fQ(pi)f4(pq:) _ f(pi)f3(pq:))
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x f? (p)(f(p+ 9)+ f(p— ) (k)

pINTaa 1,09, (7.11)

gﬂqq

where J](\fZ)J denotes the contribution to Jy;; from the BSE diagram labelled (z) (see

Figs. 7.7 and 7.9) and L is a variation® on L.

7.5 GMOR at NLO

In the previous sections of this chapter, the diagrams required in a NLO treatment of
the nonlocal NJL model have been discussed. In all cases the diagrams are deduced
by inspection, sometimes using the Fock terms as a guide. Obviously, it is important
to have a check that a consistent set of diagrams has been identified. To this end,
the Gell-Mann—-Oakes-Renner relation is demonstrated to hold at NLO in the model,
albeit in the simpler version without vector mesons. As a first step in establishing the
relation, consider the chiral expansion of the pion mass.

The pion pole is located at

1= GyJpp(¢®) — GiInpp(q®) = 0, (7.12)
21t differs from Eq. 7.9 in having f(py)f(p_) instead of f2(py)f2(p_).
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and, in the absence of mixing?, the coupling of the particle to dynamical quarks is

determined by the relation:

d(Jpp + JNPP + - )
dq® 2

dJpr i
. 7.3
=m3 [ da? q2=mJ o

If one substitutes the chiral expansion of Jpp(¢®) (Eq. 4.6) into the on-shell condition

(gﬂqq + 9Nnqq + - ')_2 =

2:

T Gnqq dJnpp
gNﬂqq — 9 TQQ

of Eq. 7.12, it is immediately clear that the chiral expansion of Jypp(q*) must start
at O(q?, m.) in order for the pion to remain a Goldstone boson in the chiral limit. By
definition, the coefficient of O(¢?) in that expansion provides an explicit expression for
GNngqo, the details of which are not needed here. The calculation of the O(m,) term is
detailed in Appendix B, where it is also checked that there is indeed no term in Jypp
which survives in the chiral limit. It is sufficient here to quote the final result from

that appendix, which is obtained by imposing the on-shell condition on Eq. B.15,

2m (YY) o + (V) no)
(mo(0) — ¢o)?

m72r = —(Grqq0 + INmqq0)

+ O(m?). (7.14)

c

Hence, the chiral expansion of the pion Bethe—Salpeter amplitude retains the same
structure as at LO (cf. Eq. 4.11), with NLO changes to the expressions for its on-
shell coupling to quarks and for the dynamical quark mass. The shift in the former is
just that which might be anticipated from the expanded definition of the pion—quark
coupling constant. However, the dynamical mass scale that appears in Eq. 7.14 is
not so obvious. The shift in this mass scale is given entirely by the coefficient of the
tadpole diagram (see Fig. 7.5). This is despite the fact that the meson cloud of a

dressed quark does make a contribution to its scalar self-energy at zero momentum

3 Although the G interaction (which causes 7a; mixing) is not included in the version of
the model considered here, it may nevertheless seem plausible that a ¢y; component to the
pion Bethe-Salpeter amplitude could appear as a NLO effect. The possibility can be ruled
out if the Fierz rearrangement of the (1 ® 1 + iy57% ® iy57%) interaction does not contain a
NLO exchange interaction of the character (vy,y57% ® y#v57%). This is indeed so, as seen in
Chp. 2.5.
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(see Chp. 8.2)*.
The GMOR relation will be satisfied if a modified version of the Goldberger—

Treiman relation holds in the chiral limit at NLO,

. mo(O) — Cy
fro = —F——
gﬂqq + gNﬂqq
0 - 0
9rqq Grqq  YGmqq 9rqq

The term of O(N?) on the right-hand side of this condition was shown in Chp. 4.2 to
be given by the LO part of f,. Full details of the proof that the chiral limit of Eq. 7.11

produces the O(N,) terms can be found in Appendix A.2.

4The meson cloud also generates a term of O(m,) in the chiral expansion of Jypp (see
Eq. B.5).
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Numerical Results — NLO

8.1 Model Parameters

The model at NLO is considered in this chapter mainly in the simple case where
only the (G; interaction is present. Even so, the numerical integrals involved in the
evaluation of NLO diagrams are rather complicated and so are difficult to perform to
high accuracy within a reasonable time. It is therefore convenient to fit the model
parameters at LO and then consider the NLO changes to the observables. Apart from
the exclusion of the couplings G, ... G5, the parameters at LO are fitted according
to the method described in Chp. 5.1. This means that mg(0) is left free and used to
characterize a possible parameter set. When vector interactions are included in the
model an upper bound on mg(0) is imposed by the behaviour above pseudo—threshold
of the LO scattering matrix in the vector channel (see Chp. 5.1). In this simpler
version of the model, however, parameter sets over a wider range of mg(0) can be

investigated. Details of the sets used!' are given in Table 8.1.

INote that the parameters given differ slightly from those quoted in Ref. [8] where a very
similar fit was made at the same values of mg(0). This is simply because the calculations of
Ref. [8] were performed within the chiral expansion of the model [115].
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mo(0) | Gi(GeV™2) | m.| A | m(0) Pole
200 14.3 4.8 | 1459 | 245 +261
250 30.5 7.8 | 1064 | 298 +384
300 53.8 11.0 | 861 351 | +£415+ 235
350 85.9 14.2 | 734 406 | £338 + 292
400 128.1 17.5 | 647 461 | £287 + 312
450 181.7 20.8 | 583 016 | £252 4+ 320z
500 248.0 24.1 | 535 072 | £225 4 322

Table 8.1: Values of the model parameters, fitted at LO. Also shown is the dynamical
quark mass and the position of the lowest set of poles in the LO quark propagator.
Apart from G, all quantities are given in MeV.

Table 8.2 lists the values of various quantities calculated at LO from the parameter
sets of Table 8.1. The results are qualitatively quite similar to those obtained in the

extended version of the model (as discussed in Chps. 5.2 and 5.3).

mg(0) | Cond. | Grgq | Mo | Yogq | Gomr | (0 — 7m)
200 246 2.56 | 385 | 2.56 | 1092 63.9
250 210 3.13 | 423 | 3.24 | 1336 94.4
300 189 3.70 | 454 | 3.91 | 1562 126.3
350 173 4.28 | 477 | 4.54 | 1732 152.0
400 162 4.87 | 492 | 4.98 | 1783 158.7
450 153 5.46 | 489 | 4.56 | 1489 111.0
500 146 6.04 | 478 | 5.25 | 1515 116.2

Table 8.2: Calculations at LO with the nonlocal NJL model. The couplings to quarks,
Jrqq and gyq, are dimensionless; all other quantities are given in MeV. ‘Cond.” refers
to the quark condensate, evaluated in the chiral limit. Relevant couplings are defined
in Egs. 3.11 and 5.1.

8.2 Corrections to the Quark Propagator

Numerics

The form of the quark self-energy at NLO was described in Chp. 7.2. It contains

a piece whose momentum dependence is entirely dictated by the interaction form
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factors (the tadpole diagram) and another piece whose evaluation needs a separate
integration at each quark momentum. Determining the coefficient of the tadpole
requires an integral over five non-trivial dimensions whilst the other piece needs a
four-dimensional numerical integration. The NLO quark self-energy is therefore far
from easy to evaluate. Furthermore, this must be done many times and over a wide
range of quark momenta in order to evaluate NLO diagrams in the BSE (see Eq. 7.6).
Thus there are obvious benefits in simplifying the self-energy integrands.

Two of the non—trivial integration variables in Eqs. 7.4 and 7.5 come from the
evaluation of J integrals in the LO scattering matrix. Working in Euclidean space,
and taking the momentum routings of Eqs. 7.4 and 7.5, these J integrals always have
a spacelike momentum argument. With that restriction they are smooth analytic

functions, as is illustrated by Fig. 8.1.

Det.

o . . . | . . . | . . . | . . . | . . .
200 400 800 800 1000

Momentum (MeV)

]

Figure 8.1: The figure shows the denominators of the pion and sigma propagators,
1—-G,Jppss, as functions of spacelike meson momentum. The pion channel is plotted
with a solid line; the sigma channel with a dashed line. The parameter set used is
that with mg(0) = 300 MeV in Table 8.1.

The NLO self-energy integrals may be simplified by approximating Jss and Jpp

with analytic fits. The remaining two and three dimensional integrations can then
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be done both quickly and accurately using Gauss-Laguerre techniques. Rapidly—-

converging fits are provided by the series expansions

Jij(q2) = ZanTn (l‘(qQ)) s (81)

where {T,} are Chebyshev polynomials and z is chosen to be

—ra) o

In practice ten evaluations in each channel of .J are used to calculate the first ten terms
in the series. That this procedure gives a good approximation to these functions has
been tested from evaluations at other momenta?. Moreover, a few of the NLO BSE
integrals have been compared to brute force determinations, where .J is evaluated
numerically at each value of momentum. The results confirm the validity of using
the series fits since they are in agreement to within the uncertainties introduced by

numerical integration over the other variables.

Results

The results for the NLO quark self-energy are presented below, using the notation of
Eq. 1.4. They are in agreement with those found in Ref. [114], where an alternative
discussion of ¥y in the nonlocal NJL. model is available. Figs. 8.2 and 8.3 show
the functions that describe the vector (a(p)) and scalar (b(p)) components of the
inverse quark propagator respectively. They are plotted for both spacelike and timelike
momenta, but only up to an energy given by the real part of the pole in the LO quark
propagator. This is because of the form of the contributions where the quark line is
dressed by virtual pion and sigma clouds (shown on the right-hand side of Fig. 7.5).
The corresponding integral in Eq. 7.4 includes the propagator S(p — k) and so the

naive contour of integration along the real &k, axis becomes pinched above that energy.

2Qver the range that dominates the self-energy integrands (up to ~ 500 MeV), the errors
in the fits have been found to be less than 0.01% in all cases.
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Figure 8.2: The figure shows the dimensionless function a(p) from the inverse quark
propagator, plotted against p? in GeV2. The function is defined by Eq. 1.4 and only
becomes non-zero beyond LO. Also shown are the contributions to a(p) obtained by
dressing the quark line with pion and sigma clouds. The parameter set used is that
with mg(0) = 300 MeV in Table 8.1.
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At LO there is no wavefunction renormalization of the quark propagator. There
are however NLO contributions to the p component. Fig. 8.2 shows that these range
up to ~ 0.25, which is consistent with the expected magnitude of 1/N, corrections. An
intriguing aspect of the results is the appearance of a sudden dip in a(p) just before
the LO pseudo-threshold energy. It would certainly be interesting to examine the
behaviour of the function above this energy, although that would require a detailed
analysis of the pole structure at NLO, which is beyond the scope of the present work.
Also plotted on the figure are the individual contributions to a(p) which arise from
dressing the quark line with virtual pions and with virtual sigma mesons. The pion
cloud is obviously the main effect. Since its propagator has a pole at small timelike
momentum, one expects the T matrix in the pseudoscalar channel to be large at
modest values of spacelike momenta (the region which dominates the NLO integrals).
This is verified by Fig. 8.1. Note also that an extra factor of three is associated with
the pion contributions due to isospin multiplicity.

The scalar component of the NLO quark self-energy receives contributions from
both the tadpole and the meson-cloud diagrams of Fig. 7.5. Fig. 8.3 demonstrates
that the addition of the tadpole contribution to the LO function, m(p), has very little
effect (i.e., the constant ¢ (Eq. 7.5) is much smaller than m(0)). The meson—cloud
diagrams are rather more significant, increasing b(0) by a typical 1/N, level of ~ 25%.
The NLO shift in the quark “mass” function b(p)/(1+ a(p)) is therefore fairly modest

(an increase of ~ 15% at zero momentum).
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Figure 8.3: The figure shows the function b(p) from the inverse quark propagator,
plotted in GeV against p? in GeV2. The function is defined by Eq. 1.4 and corresponds
to m(p) at leading order. It is shown at LO and at NLO, together with the sum of
the LO result and the tadpole contribution. The parameter set used is that with
mo(0) = 300 MeV in Table 8.1.
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The NLO quark self-energy has little impact on the values of the model con-
densate, which are quoted in Table 8.3. Although there are slight increases for the
unconfined parameter sets the results are very close to the LO values given in Ta-
ble 8.2. The same observation holds true® in the local NJL model when proper time
regularization of the quark loops is used [43], although in the O(4) scheme there are
appreciable NLO shifts.

mo(0) | Cond. c Co co(m) | eo(0)
200 259 —25.0 | =25.3 | =90.2 | 64.9
250 215 —124 | —8.0 | —44.2 | 36.2
300 190 —5.2 1.7 | =224 | 24.1

350 174 —0.005 | 8.8 —-8.6 | 17.4
400 162 4.1 14.6 1.4 13.1
450 153 7.7 19.6 9.5 10.2
500 145 10.8 24.2 16.3 7.9

Table 8.3: Properties of the quark propagator at NLO. All quantities are quoted in
MeV. ‘Cond.” refers to the quark condensate, evaluated in the chiral limit. The con-
stant ¢ from the NLO tadpole diagram is defined in Eq. 7.5, ¢(«) being the contribution
to it from the tadpole in the channel of the v meson.

Fig. 8.4 shows the breakdown of the NLO part of b(p) into contributions coming
from intermediate pions and sigma mesons. As for a(p), the diagrams with a pion in-
termediate are more important than those involving its chiral partner. Quark dressing
due to meson clouds in the original NJL. model has been investigated by Quack and
Klevansky? [112]. They found that the pion cloud tends to increase b(p) but that this
is partially cancelled by the sigma cloud. The nonlocal model studied here supports
the conclusion and is able to place it on a firmer footing since there are no ambiguities

associated with the meson loop regularization®.

3 At least for values of the quark mass below ~ 600 MeV.

4Unfortuantely, the tadpole contributions were not identified by those authors.

SMoreover, unlike Ref. [112], the present work does not replace the model meson propa-
gators with their canonical forms.
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Figure 8.4: The figure shows the NLO contributions to the function b(p). The full
NLO component is plotted in GeV against p? in GeV?, together with its decomposition
into the parts that involve intermediate pions and sigma mesons. The parameter set
used is that with mg(0) = 300 MeV in Table 8.1.
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Although the tadpole diagrams in the NLO quark self-energy are not numerically
significant, it is nevertheless interesting to consider them in more detail. As noted in
Chp. 7.5, ¢y is an important quantity for NLO changes to the pion mass and decay
constant (see Egs. 7.14 and 7.15). Since ¢y and the NLO shift in the quark condensate
are both small, the pion observables will be little altered unless the state is much more
strongly coupled to quarks at NLO. One might therefore wonder whether there should
be some physical reason for ¢y to be small, perhaps because of chiral symmetry. The
entries in Table 8.3 for the pion and sigma tadpoles are quite suggestive at low and
intermediate mg(0). For instance, with the set at mg(0) = 200 MeV, the pion tadpole
adds as much as 45% of the LO chiral quark mass, but this is cancelled to a large
extent by the sigma tadpole. The process does not persist at larger mg(0), however,

where the pion tadpole changes sign.

NLO Quark Self-Energy in the Extended Model

In the extended version of the model there are additional contributions to the NLO
quark self-energy from the tadpoles and meson clouds of other mesonic states. Al-
though calculation of the properties of these mesons at NLO would demand a good
deal of further work, it is straightforward to evaluate their contributions to Xy. In
so doing, the model couplings G,...G5 are taken to be those set by the the LO
phenomenology. The parameter sets A, B and C of Chp. 5.1 produce the results of
Table 8.4. As in the simple version of the model, there is only a modest change to
the condensate and the constant ¢ is small. Comparison with the entries at similar
mo(0) in Table 8.3 indicates that pseudoscalar-axial mixing is an important effect,
but one which is cancelled owing to the simultaneous introduction of the model p
meson. Bearing in mind the freedom to set model couplings independently, the entries
of Tables 8.3 and 8.4 argue against any suggestion that ¢y should be a prior: small

due to chiral symmetry.
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Quantity | Set A | Set C | Set B
mo(0) 280 300 320
Cond. 187 180 175

c -9.1 —3.2 -1.2

co ~12 | 36 8.4
co(m) 179 | 168 | 11.3
co(o) 31.0 | 265 | 22.7
colp) | —63.8 | —53.4 | —38.4
colp?) | 25.9 | 22.3 | 165
Cg(al) —5.6 —5.6 —4.8

co(w —-194 | —=16.2 | —11.5

co(wh) 7.9 6.8 4.9
(f) | 03 | —0.7 | —1.0

co(n*) 0.7 3.0 4.5
(@) | 45 | 41 | 4.2

Table 8.4: Properties of the quark propagator of the extended model at NLO. All
quantities are quoted in MeV. ‘Cond.” refers to the quark condensate, evaluated in
the chiral limit. The constant ¢ from the NLO tadpole diagram is defined in Eq. 7.5,
c(a) being the contribution to it from the tadpole in the channel of the « meson.

The function b(p) for the parameter set C is plotted in Fig. 8.5. Its breakdown
is shown in Fig. 8.6. As in the situation with the tadpoles, pseudoscalar—axial mixing
makes a definite difference to the contribution from the pion cloud (compare Figs. 8.4
and 8.6). However, the effect is cancelled by vector meson clouds to leave an overall
result which is very similar to the one found in the simpler version of the model

(compare Figs. 8.3 and 8.5).
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Figure 8.5: The figure shows the function b(p) from the inverse quark propagator of
the extended model. It is plotted in GeV against p? in GeV2. The function is shown at
LO and at NLO, together with the sum of the LO result and the tadpole contributions.
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In Fig. 8.7 the function a(p) is shown for the parameter set C. It is rather different
in character from result obtained in the simpler version of the model (Fig. 8.2). Mixing
in the pion channel and the clouds of the spin-1 states are again significant. In a(p)
however, these effects reinforce each other. Thus the function is much larger than in
the simpler model. This is potentially of concern because it suggests that the NLO
diagrams tend to deconfine the quarks in the extended model. A definite statement
cannot however be made without a full NLO analysis of meson properties. The set C
parameters are fixed from meson masses at LO. Since 1/N, effects could alter these
significantly, it is quite possible that set C may not constitute a reasonable choice of
model parameters at the NLO level.

An obvious difference between Figs. 8.2 and 8.7 is the absence in the latter of
a sharp dip just before the LO pseudo-threshold energy. The contributions from
the clouds of the scalar, purely pseudoscalar, transverse vector and transverse axial
channels all exhibit such a dip (Figs. 8.2 and 8.7). It is eliminated in the extended
model due to the contributions from longitudinal gq states. In particular, the removal
through mixing of the steep drop that occurs in the pion contribution is crucial in

accounting for this behaviour.

8.3 Corrections to the Meson Properties

Numerics

The NLO diagrams in the BSE are of the forms given in Eqs. 7.6, 7.7 and 7.10. Since
each of these requires an integration over several non-trivial variables, time constraints
suggest that suitable approximation schemes be developed.

In Chp. 8.2, an accurate series fit to the LO .J integrals at spacelike momenta
was used to assist in the evaluation of the NLO quark self-energy. In performing the
Bethe-Salpeter integrals of the structure given in Eq. 7.6, ¥5 can be evaluated just

as in Chp. 8.2. It can then be treated as part of a two-dimensional integrand, which
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is integrated over the variables p® and p} using Gauss-Laguerre methods (py is in the
direction of ¢). For a timelike external momentum the arguments p2 of ¥y in Eq. 7.6
are complex in Euclidean space and hence the NLO part of the quark self-energy can
itself be complex. In practice, however, the imaginary part of ¥y does not contribute
to the BSE integral. To see this, note that ¥y is a real function®, satisfying Schwarz’s
reflection property: Yy (p?*) = X4 (p?). Since this is the case, the imaginary part of
Yy in the two terms of Eq. 7.6 can be shown to cancel simply by reversing the sign
of one of the p, integration variables.

Eq. 7.7 represents the exchange of a gg state between the two quark lines of
a LO bubble loop. With the routing used in that equation, the momentum of the
intermediate state is always spacelike and so its propagation can be approximated by
a Chebyshev series fit (Eq. 8.1). One is then left with a five-dimensional integrand
which may be expressed as a function of py4, ky, Q2, k? and 1, the angle between p and
k. Each of these is summed in the usual way, the first four with Gaussian techniques
and the angular variable using the method described in Chp. 5.3 in the context of
three-quark loops.

The remaining NLO BSE integral is given in Eq. 7.10. It has a two—dimensional
integrand and is summed using Gaussian methods in terms of the variables ]32 and py.
At each integration point the functions T, L and L must be determined numerically.
The three-quark loops, L and L. can be computed in the same way as the 1 — 2
meson decays of Chp. 5.3. The LO scattering matrices in Eq. 7.10 cannot however
be represented by using Eq. 8.1 to fit to J;;. The Euclidean momenta of the gg
intermediates in this diagram is complex for a timelike external momentum. Off the
real axis, the LO J integrals are themselves complex and can only be fitted as functions
of two variables. In constructing an appropriate fit, the momentum routing of Eq. 7.10

is a judicious choice. Since k2, = (k%;)* and J((3,) satisfies the Schwarz reflection

SFor this statement to be true, one requires that the interaction form factor f(p) is a
real function. It then follows that the LO quark self-energy is a real function (see Eq. 3.3),
whereupon the property can be seen to hold for 3y by inspection of Eq. 7.4.

TAssuming that T'; =T;.
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property®, the range of the fit can be restricted to:
3(03) : 0 — oc. (8.3)

A further restriction can be imposed given that the BSE at NLO is only considered up
to energies of Epr, the pseudo—threshold energy at twice the real part of the pole in the
LO quark propagator?. Therefore, a non-zero value for |3(k3 ;)| indicates a minimum

possible |k4| and hence a lower bound on the required values of R(¢%), specifically:

2 . %(EQE) 2_ ElgT

Within the range of arguments probed, the J functions in Eq. 7.10 can be approxi-

— oC. (8.4)

mated by the Chebyshev expansions

Jii (0 =u+ ) = amnTrm (x(u,v)) Ty (y(v)), (8.5)

where x and y are taken as:
—v

y(v) = exp (p) :
(1, v) = exp (_—;‘) [1 +exp (#f”)]_l (8.6)

and u,,,(v) should be understood as the minimum of R(¢?) in Eq. 8.4. A hundred
evaluations in each channel of J have been used to fix the complex coefficients!® in
Eq. 8.5 for m,n = 0...9. Although this is not a very efficient method for evaluating
a single NLO BSE integral of the form in Eq. 7.10, the fits need only be done once for
a given parameter set. Hence, there is a definite advantage in using them when one

wishes to evaluate several such integrals with the same model parameters.

8 As with the LO and NLO quark self-energies, the property follows directly if the inter-
action form factor is a real function.

9 Although the LO J integrals cease to be capable of analytic continuation when R(¢%) is
more negative than —%EET (see Chp. 3.3) , this is avoided for external energies below Epr.

0By investigating evaluations at other momenta, the errors for these two-parameter fits
are found to be at the ~ 1% level. Since this is considerably worse than for the fits of Eq. 8.1,
it is preferable to use the single-parameter fit in evaluating other NLO diagrams.

8.3. Corrections to the Meson Properties



Chapter 8. Numerical Results — NLO 146

8.4 Physical Thresholds

Above the threshold for a physical 1 — 2 meson decay, a NLO diagram of the form in
Fig. 7.9d generates an imaginary component to the meson propagator. This can be
calculated by applying the Cutkosky cutting rules [104] to the diagram. Consider for
example the scattering in the scalar isoscalar channel above the two—pion threshold.
At the value of the LLO sigma meson mass, the imaginary part reduces to

(o — 7m)

S(Jss(q> =m2)) = me.——5—, (8.7)

oqq

where the decay width is identical to that calculated from the relevant three—-meson
vertex in Chp. 5.3.

Some care must be taken in the evaluation of the real part of such diagrams,
owing to the singularities of the scattering matrices in the integrand. The diagram
can be defined more formally as the ¢ — 0 limit of Eq. 7.7 with the replacements

. G, G,
A S s S .
1—GJ 1-GJ—ic (8.8)

The numerical routines sometimes attempt to evaluate the integrand close to the
position of the singularity. Whether or not they do so, the results produced have been
found to be stable for € $ 0.01. For the sake of safety therefore, € has been set at this

small but non-zero value in the numerical work.

8.5 Corrections to Pion Properties

Figs. 8.8 and 8.9 show the results for the real part of the pion Bethe—Salpeter deter-
minant of Eq. 7.12. At small meson energies, the LO and NLO curves are very close
together, indicating that both the pion mass and its coupling to quarks are extremely
well represented by the LO approximation. Although the NLO contributions in the
pion channel must cancel in the chiral limit (as demonstrated in Appendix B), the
results here suggest that such cancellations must persist to a large extent at higher

orders. In particular, there is no reason to expect the NLO shift in the pion—quark
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coupling to be small. In conjunction with the small value of ¢y, the small change to
Grqq implies that the pion decay constant is not sensitive to NLO effects (see Eq.7.15).
Actual determinations of the NLO shifts to m, and f, have not been made in this
work. They are sufficiently small'! that the numerical procedures would have to be
considerably refined in order to quote values with any meaningful degree of accuracy.

The fact that the NLO corrections to the pion mass and decay constant are small
is an encouraging point in support of the usual LO treatment of four-quark models. It
also justifies the decision to use the model parameters fitted to the LLO pion properties

(Chp. 8.1) in these NLO computations with the simple version of the model.

"Mhot more than a few MeV.
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As the energy in the pion channel increases, the NLO contributions do start to
become significant. Shortly before pseudo-threshold is reached, they are sufficiently
important to change the qualitative behaviour of the pion Bethe-Salpeter amplitude.
Indeed they are even able to generate an unphysical zero in the real part of the
determinant, just before Enr. This is a potentially worrying point and indicates a
need for a careful study of the model at NLO around and above Ep;. It may also
be worthwhile to examine the pion determinant in the extended version of the model.
The behaviour in Fig. 8.9 is reminiscent of that exhibited by a(p) in Fig. 8.2. In that
instance, the unusual feature was eliminated by the introduction of pseudoscalar—axial
mixing. This mixing is certainly important in the LO pion amplitude (compare Fig. 5.1
to Figs. 8.8 and 8.9) and might be so at NLO as well.

In Fig. 8.10, a breakdown of the NLO contributions to the pion amplitude is
shown. Each curve corresponds to a different NLO integral: ‘a+b’ represents a NLO
quark self-energy insertion (the sum of Figs. 7.7a and 7.7b, given in Eq. 7.6); ‘¢’
represents meson exchange between two quark lines (Fig. 7.9¢, given in Eq. 7.7);
and ‘d’ represents two-meson intermediate states (Fig. 7.9d, given in Eq. 7.10). The
results demonstrate that the NLO part of the amplitude is small at low momenta only
because of the cancellations amongst the various diagrams that are enforced by chiral
symmetry. In both analytical and in numerical work, it is therefore crucial to include

all of the diagrams consistently in order to obtain an accurate picture of the pion at

NLO.

8.6 Corrections to Sigma Properties

The interpretation of the sigma meson in dynamical quark models is subject to as-
sumptions about its properties which are not probed by such models at LO. Since the
state is known to be strongly coupled to the two-pion channel, the diagram of Fig. 7.9d
might well be important in model descriptions of the scalar channel. The result of the

nonlocal NJL model for the real part of the scattering matrix determinant is plotted

8.6. Corrections to Sigma Properties
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in Fig. 8.11.

In the ladder approximation to four—quark models, the sigma meson tends to be

rather light in comparison with many 77 scattering analyses [89]. Fig. 8.11 shows that

this statement is also true at NLO. The point is emphasized by Table 8.5 which lists

the LO and NLO sigma masses over the full range of parameter sets from Chp. 8.1.

The NLO shift is quite modest and (in general) negative.

mo(0) | m, at LO | m, at NLO
200 385 404
250 423 377
300 454 373
350 477 368
400 492 365
450 489 365
500 478 365

Table 8.5: Sigma meson masses at LO and NLO.

8.6. Corrections to Sigma Properties
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It should be noted that the “masses” quoted in Table 8.5 refer to the energy at
which the real part of the scattering matrix vanishes. A common alternative is to
consider the complex pole of the scattering matrix. The definition used here has been
selected purely for convenience, since it would be more difficult to evaluate the BSE
integrals at complex external energies.

Using a derivative expansion of the bosonized NJL model, the 1/N, corrections
to the sigma mass were calculated by Pallante [45]. In that framework, the corrections
were found to be large and negative'?, prompting the author of Ref. [45] to speculate
that the mass of this state is not well described by the 1/N, expansion. The work
presented here indicates that higher order terms in momentum are important and that
these reduce the magnitude of the mass shift such that perturbation theory seems to
be reasonable.

One must therefore take very seriously the view the sigma meson is intrinsically
light in four quark models of the NJL form. This view is supported by the observation
that the results for the sigma mass at NLO are remarkably insensitive to the parameter
set chosen. Even allowing the zero-momentum chiral quark mass to vary by a factor
of two, the sigma mass changes by just 12 MeV . Thus, the light sigma is a property
of such models which cannot be avoided by including meson loops or by a suitable
choice of parameters.

A breakdown of NLO contributions to the scalar channel of the scattering matrix
can be found in Fig. 8.12. The same notation is used as in Chp. 8.5 for the pion
channel. In Chp. 5.2, it was argued that the contributions from two pion intermediates
could be important in the description of the scalar channel and indeed such diagrams
dominate the NLO part of the scalar amplitude. They act to reduce the mass of the
state, as does the contribution from t-channel meson exchange. Their signs are the
same as those of the corresponding contributions to the pion channel. There are also

contributions from NLO quark self-energy insertions, which, in both channels, have

20ne should note, however, that the precise value for the mass shift is highly sensitive to
the additional cut-off parameter that is needed to regularize the meson loops.
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the opposite effect.

The discussion so far has concerned the real part of Jygs. The imaginary part
is shown in Fig. 8.13. Naively, one would expect it to increase with increasing energy
since a larger region of phase space becomes available. In practice, there is a very
slow increase from the threshold energy up to a peak at ~ 520 MeV, following which
the imaginary part falls off quite quickly. Thus, the coupling of the scalar channel
to two pions must become significantly weaker as the energy increases. The fact that
the model sigma meson is light is therefore inextricably linked with the fact that it is
also broad. Interestingly, a similar behaviour of the scalar to two pion coupling was
observed in the four—quark model'? studied by Efimov et al [58]. In contrast, however,
a recent analysis using QCD sum rules [116] suggested that a light scalar state would
have to be relatively narrow.

Finally, note that the results of Fig. 8.13 support a suggestion made in Chp. 5.3.
The weak coupling of the the scalar channel to two pions above the sigma mass implies
that the broad width calculated for a; — o7 in the model is by no means inconsistent
with the experimental observation of a small contribution to the total a; width from

a; — w(7m)s.

13 A value for the scalar mass in their three-flavoured approach was used as a free parameter
and was chosen with the intention of interpreting the model scalar resonances as heavy,
narrow states. The authors were however presented with a problem regarding the widths of
these states which was ‘resolved’ by the ad hoc introduction of a vector piece to the Bethe
Salpeter amplitude.
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Figure 8.6: The figure shows the NLO contributions to the function b(p) in the ex-
tended model. They are plotted in GeV against p? in GeV2. The full NLO component
is shown on the left-hand graph, together with the parts of it that involve interme-
diate pions and sigma mesons. Contributions involving spin-1 states are shown on
the right—-hand graph, the superscript L denoting a longitudinal state. Note that the
contributions from the fi, ay and n* particles are negligible and so are not shown.
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Figure 8.7: The figure shows the dimensionless function a(p) from the inverse quark
propagator of the extended model. It is plotted against p? in GeV2. The full NLO
result is shown on the left-hand graph, together with the parts of it that come from
dressing the quark line with pion and sigma clouds. Contributions from the clouds
of spin-1 states are shown on the right-hand graph, the superscript L denoting a
longitudinal state. Note that the contributions from the f;, ag and n* particles are
negligible and so are not shown.
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Figure 8.8: The figure shows the determinant of the scattering matrix in the pion
channel at LO (dashed curve) and at NLO (solid curve). The parameter set used is
that with mg(0) = 300 MeV in Table 8.1.
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Figure 8.9: The figure shows the determinant of the scattering matrix in the pion
channel at LO (dashed curve) and at NLO (solid curve). The curves are plotted for
energies up to the pseudo—threshold energy, E,. The parameter set used is that with
mo(0) = 300 MeV in Table 8.1.

8.6. Corrections to Sigma Properties



Chapter 8. Numerical Results — NLO 156

7\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\ I R n
0 50 100 150 200 250 300 350 400 450 500 500 550 600 650 700 750 800

Momentum (MeV) Momentum (MeV)

Figure 8.10: The figure shows G;Jypp and the various contributions to it, plotted for
timelike meson momentum up to the pseudo—threshold energy, Ep. The contributions
are defined in the main text. The parameter set used is that with mg(0) = 300 MeV
in Table 8.1.
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Figure 8.11: The figure shows the real part of the determinant of the scattering matrix
in the scalar channel. The dashed curve gives the LO result and the solid curve gives
the result at NLO. They are plotted against timelike meson momentum, up to the
pseudo-threshold energy, Epr. The parameter set used is that with mg(0) = 300 MeV
in Table 8.1.
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Figure 8.12: The figure shows GG;.Jyss and the various contributions to it, plotted for
timelike meson momentum up to the pseudo—threshold energy, Ep. The contributions
are defined in the main text. The parameter set used is that with mq(0) = 300 MeV
in Table 8.1.
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Figure 8.13: The figure shows the imaginary part of Jgg. It is plotted from slightly
above the two-pion threshold up to the pseudo—threshold energy, Err. The parameter
set used is that with mg(0) = 300 MeV in Table 8.1.
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Conclusions

The structure of light mesons is a much—studied subject but one which is not yet well
understood. Treatments based on the QCD Schwinger-Dyson equations provide an
attractive approach to the problem, offering a clear link between the particulate and
composite levels. However, they are often computationally intensive. Ansatze must
be made in order to make the equations tractable, but it is far from simple to test
an ansatz through the resulting phenomenology. Such calculations are facilitated by
using instead a model field theory, such as the NJL style of model. The work presented
has investigated an extended version of the model proposed in Ref. [8], which can be
viewed as a nonlocal generalization of the NJL action. It has nonlocal, four-fermion
interactions, based on the separable form (Eq. 2.4) suggested by instanton-liquid
studies [51]. Symmetry currents consistent with this action have been deduced. The
results for the currents have been extensively tested, by means of the constraints
imposed by electromagnetic gauge invariance and a variety of Ward identities. The
model has also been shown to incorporate the chiral anomaly correctly. Moreover, NLO
corrections have been studied. Although a particular model has been used throughout,
many of the results from the NLO analysis are likely to be qualitatively true of four—

quark models in general.
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The interaction form factors which are used in the nonlocal model (Eq. 2.7) en-
sure the convergence of all loop integrals and (over most of the range of acceptable
parameters) also lead to quark confinement. The former point is particularly impor-
tant in the study of such models at NLO, since it eliminates the need for a cut-off
parameter on meson loops. The latter point is relevant to the application of such
models to heavier mesons than the pion, since it avoids a threshold for gq production
occurring at an inconveniently low energy. This feature makes the approach especially
well suited as the basis for an extended model, with interactions that bind vector and
axial-vector mesons.

The analytic structure of the quark propagator, with poles at complex momenta,
means that a scheme has to be specified for continuing amplitudes to Minkowski space.
The scheme used at LO (Chp. 3.3) follows the suggestions of Lee and Wick [77] and of
Cutkosky et al. [78]. Tt leads to nonanalytic behaviour of the meson propagators above
a pseudo-threshold energy. In practice (see Chp. 5.1), this behaviour ensures that no
poles appear in the longitudinal vector channels. In addition, it provides restrictions
on both the admissible range of model parameters and the region of applicability of the
model. No attempt has been made to examine the model beyond the pseudo—threshold
energy at NLO. This is because the poles in the quark propagator are shifted by NLO
terms in the quark self-energy. Such a shift is not explicit in a perturbative treatment
of the BSE, which therefore does not allow a simple extension of the continuation
prescription.

In order to calculate the pion decay constant, which sets the basic scale for the
model, one needs to use conserved currents which are consistent with the nonlocal in-
teraction. Nonlocal contributions to the currents have been determined (Chp. 2.4) ac-
cording to the Noether-like method of Ref. [8]. These are analytically and numerically
important to the pion decay constant (and to many electromagnetic couplings). Ward
identities related to the current conservation follow automatically and several have

been checked analytically, including the Gell-Mann—Oakes—Renner relation (Chp. 4.2)
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and the low-energy theorem for 7% — ~7 in the chiral limit (Chp. 6.3). The latter
involves the axial anomaly, which has long posed a problem to the usual NJL model
with its cut-offs on the quark propagators. The nonlocal terms in the vector current
of the model yield an ansatz for the photon—quark coupling (Chp. 4.3) which differs
from the Ball-Chiu ansatz, relied upon in many similar studies. In particular, one
must include two-body diagrams (Chp. 6.2) where the photon is irreducibly coupled
to four quarks.

Various electromagnetic quantities have been calculated in the model. The decay
rates determined are in fairly good agreement with the observed ones, except for the
case of a; — 7m7y. The electromagnetic form factor of the pion agrees well with the
data, at least below the p pole. The form factors for yy* — 7 and w — 7y* are also in
agreement with the (admittedly rather limited) data currently available. These results
for electromagnetic form factors have been compared with vector—-dominance formulae
using on-shell couplings as calculated from the model. Although diagrams involving
intermediate vector mesons are only significant close to resonance, they combine with
diagrams where the photon couples directly to the quarks to produce numerical results
that are very close to those of VMD!. The model is thus able to illustrate how a
dynamical system can lead to vector dominance in photon—-meson interactions.

The meson masses and various strong decay rates were calculated in Chp. 5,
working at tree level in terms of mesons (leading order in 1/N,.) and to all orders
in momentum. With the p mass used to fix the strength of the relevant four-quark
vertex, the p meson width is reasonably well described. The nonlocal model therefore
provides an improvement on the underestimated width obtained in the extended N.JL
model [92]. As in the local NJL model, a light, broad sigma meson is found. The
calculated mass of the a; meson is somewhat lighter than the observed value. By
cutting down the available phase—space, this means that the model gives too small a

width for the decay a; — pm.

lexcept at large momenta.
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The calculations have been developed to include meson-loop effects (1/N. cor-
rections) since these could be qualitatively important. Unlike all previous analyses
of these effects in four-quark models, the present work has explicitly evaluated the
relevant integrals as functions of momentum. These functions are unambiguous, since
no regulator is required for the meson loops. It has been checked that the meson—loop
diagrams are consistent with the Gell-Mann—Oakes—Renner relation (Chp. 7.5). In so
doing, it was established that (in the chiral limit) the changes to the pion mass and
decay constant at this improved level of approximation are controlled by the quantity
co, the coefficient of the tadpole diagram from the quark self-energy.

The numerical results obtained at next-to-leading order confirm the validity of an
expansion in 1/N.. Both the scalar and vector components of the quark self-energy
are increased by ~ 25% by the inclusion of meson—loop diagrams, with the pion cloud
being the dominant effect. When vector mesons are included in the model, it has
been observed that the vector component is further increased, and that ma; mixing is
qualitatively important. The value of ¢y is found to be small, so that pion properties
are accurately represented by the leading order approximation. The sigma meson is
very strongly coupled to two-pion states and the associated meson—loop diagram acts
to reduce the mass of this state. This is partially cancelled by the changes to the quark
self-energy, but the net effect is a reduction of the ¢ mass to ~ 370 MeV. One should
note that this value (along with the results calculated for almost all observables in
the model) has been found to be qualitatively similar for all admissible values of the
model parameters.

The empirical properties of the sigma meson are a subject of continuing debate.
The issue was addressed on several occasions at the HADRON 97 conference [117]
and is also discussed in recent preprints (see for example Refs. [116, 118, 119]). In
such discussions models of the four—quark type are often cited as theoretical studies in
support of the interpretations that favour a light sigma meson. The support offered,

however, could hitherto only be regarded as tentative in view of the fact that the
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usual leading order approximation to such models does not take account of meson loops
involving two pion states. In this work, it has been demonstrated that a full calculation
at meson—loop level actually produces a lighter scalar resonance. It therefore appears
that the NJL type of model does indeed favour a light and broad sigma. Of course, any
resolution of ‘the sigma problem’ will only be established by further analyses of existing
and of new experimental data. It may be that future work causes the notion of a light,
broad sigma to be rejected. In that case, the results presented here would indicate
that there must be some important physics missing from the NJL type of model. In
this context, it is interesting to find in Ref. [119] that a group whose analyses find a
light sigma has stated that an assumption made in their treatment [120] (the form of
the 77 scattering amplitude) is similar to one that is made in NJL models.

In this thesis, a four—quark model suggested in Ref. [8] has been explored in some
detail. With only a minimal increase in complexity, the model is theoretically more
attractive than the local NJL. model. It generates quark confinement, does not require
a regulator and (through the inclusion of nonlocal terms in the symmetry currents)
satisfies the chiral anomaly in very natural way. Phenomenologically, the level of
agreement with observed meson properties is satisfactory, given the simplicity of the
model. The results obtained when meson loops are included imply that the usual
leading order approximation to this type of model is qualitatively a good one for both

the pion and its chiral partner.




Appendix A

Pion Decay Constant at NLO

A.1 Cancellations

It was noted in Chp. 7.4 that there are a number of useful cancellations which can
be made amongst the various diagrams contributing to the NLO part of the pion
decay constant. The purpose of the present section is to give a description of those
cancellations, which lead to Eq. 7.11. Although the NLO diagrams in the coupling to
the axial current were discussed quite generally in Chp. 7.4, this section considers a
version of the model with the G| coupling only.

It is easiest to begin with the diagrams (k) and (I) (see Fig. 7.13) which are
generated by the NLO part of the pion vertex function. Their sum is clearly:

fU) 4 f) = Lmws g (A1)
Iraq

One may recall the convention by which the unscripted f; in Eq. A.1 refers to the
pion decay constant at LO. The notation fﬁ” also appears in the above equation and
is used to denote the contribution to the pion decay constant from the NLO diagram
() =(a)... (o) (see Figs. 7.11 to 7.15).

Consider next the contributions which arise due to the tadpole diagram in the

NLO quark self-energy. This is responsible for the diagrams (a), (¢) and (g) (see
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Figs. 7.11 and 7.12), which make the following contributions:

f(a)5“b _ CYrgeG1 / (d4k Tr [S(k)S(k)]fQ(k)

i 2m2 2m)4

« | (jﬂf;m 57" S (0157 S (p4)] F(04) ()
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XTr [157" S(p )57 S (p+) S(04) 2 (01) + 957" S(p-)S (0 )37 S (01 (-]
< [0 (F2(ps) + F20) = fR)(Flk+ @)+ F(k— @) fp) f(p)] . (A4

The form factor structure in square brackets appearing in the expressions for diagrams
(¢) and (g) is characteristic of the type-III nonlocal current structure (Eq. 2.16). It is
the type-I1T term G4 (iv;7%® 1) which produces these diagrams (and many of the other
nonlocal diagrams at NLO), just as it produced the LO nonlocal diagram of Eq. 4.1.

By applying the ¢vs identity of Eq. 4.3 to the local current diagram (c¢), the
contribution coming from the (m, +m_) term on the right-hand side of Eq. 4.3 can
be partially cancelled with part of the corresponding nonlocal diagram, (g). As in
the corresponding cancellation between LO diagrams (see Chp. 4.2), only 2m, from
the (my + m_) factor is retained in the sum. The other pieces of Eq. 4.3 result
in contributions with integrals somewhat similar to those of Jsg(0) and Jpp(q), but
having slightly more complicated form factor structures.

Defining the symbol J](\"fl)] to represent the contribution to Jy;; from the BSE

diagram of type (x) = (a)...(d) (see Figs. 7.7 and 7.9), one can write the sum of the

A.1. Cancellations
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diagrams that involve the tadpole as
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™

The other part of the NLO quark self-energy comes from the meson cloud diagram
on the right-hand side of Fig. 7.5. It induces the diagrams (b), (d) and (h) (see

Figs. 7.11 and 7.12) in the pion coupling to the axial current.
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In f{@, the ¢vs identity of Eq. 4.3 can again be used to decompose the insertion
that comes from the local current. As before, the (m,+m_) term of the decomposition
allows cancellation with the part of f" that contains a factor of the ladder SDE
integral (Eq. 3.2).

In Eq. A.6, the two pieces of the nonlocal form factor structure enable one to
simplify different aspects of the expression. The first piece yields a factor of the same
integral as appears in the definition of the constant ¢ (Eq. 7.5); the second piece
reduces the p integral to Jpp(q?). The simplified sum of Eqs. A.6, A.7 and A.8 is

given below.
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where part of the local current contribution, Eq. A.7, has been isolated as

—x d* d4k
) gob — ng/ P T @ Qs p— K) f(p) f (p-)
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+957"S (p )TiS (k) Qs S (p4) f2(p-) £2 (k)] - (A.10)
It is encouraging to note that the term proportional to ¢ in Eq. A.9 cancels with
a term in Eq. A.5.
The other corrections to the two-quark loops of the LO diagrams are due either

to virtual meson exchanges between the two quarks,

A.1. Cancellations
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To assist in writing the above expressions the L, L notation defined in Chp. 7.3 has
been slightly extended. In diagram (f) there are no form factors associated with
the insertion at the local axial current vertex, and hence the appropriate three-quark
loop, denoted by I, differs from the integrals in the definition of L (Eq. 7.9) by having
f(py)f(p-) instead of f2(p,)f%(p_). Similarly, the symbol L. is used to stand for
a loop where f2(p,)f?(p_) in L is replaced by f?(py) + f%(p_). The ¢s identity of
Eq. 4.3 leads to familiar cancellations between the local and nonlocal diagrams above,

yielding:
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7O 4 490 = 1)

w0 [ () S0 (700 + ) + 506 )

I (0 with £2(p) 2 p-) = F(0:)] (). (A15)

™

and:

FU) 4 f9) = )

me d*k
+Z92mgr IJJ(Vd;)ap/ (2ﬂ)4Tr [S(k)] f(k)(f(k +q)+ flk— q))
GrqqMe
mZ

(J\bpwithT — T'). (A.16)
The contributions given in Eqs. A.15 and A.16 still contain some fairly complicated

pieces, which originated in the S™(p;)ys + 755 (p-) part of the ¢vs identity. These

are to be considered separately and are given by:

e) sa ~ Ymqq d4 d4k alanl
00 = S [ gy T Yin = R PO ) 0-)
XTr [57°S (k-)2 (S (p-) 357" + 757 S (p+) ) TS (k)] (A.17)
rlf)gab — _ Iraq / d'p Gy Gy
2m72r (271')4 1-— Gljpp(p+) 1-— Gljss(p_)

X L(q, py, —p—;ivsT’, 57 1)
d*k . .
x {/ WTT [S(k = sp )reS(k + 3p )] f(k = 4p ) f(k + §p-)

x(flk=3p ) f(k+3p +a)+ f(k—3p — ) f(k+3p))
4
+ / %Tr [S(k + 3p)smeS(k — 3 )7s7] f(k+ 3p) F(k = 3py)

x (f(k+5p)f (k= 3ps + @)+ f(k+ 3pr — ) f(k = 3p1) ) (A.18)
Fortunately, the overall result for the NLO part of the pion decay constant is
greatly simplified once the remaining NLO diagrams, (m), (n) and (o) are included.
The isolated contributions, r(®, 7(9) and r{/), can then be eliminated. Consider first

diagram (n) of Fig. 7.15. This contribution can be written as a sum of terms, in each
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of which one of the two-quark loops is given by a LLO .J integral whereas the other is

similar but has a different combination of form factors:

f(n)éab — gﬂqul/ d4p G G
" om2 ) (27)11 = GiJpp(py) 1 — GiJss(p)

XL(Q: Py, —D-; Z‘,}/E)Tb; Z".)/57—0: 1)

L ontp)i [ SR [S00 = o) )] (6 = o) 0+ )

x(f(k = 3p-) f(k+ p- +q) + f(k = 3p- — @) f(k + 3p))
—i—Jss(pf)/ (d4k

27)
x (f(k+ ipy)f

T [S(k+ 3 )y S(k — Spi )] F(k + 3p) f(k = Spy)
(k= 3ps + @)+ f(k+ 3pr — ) f (k= 3p1) ) (A.19)

Eq. A.19 is clearly very similar to Eq. A.18 for #{/), which arose as part of the NLO

T
diagram for the local current with two-meson intermediates. In fact, the terms in
Eq. A.19 differ from those in Eq. A.18 only by a factor of —G;.JJ. Hence, their sum
can be written as a set of contributions which have only a single intermediate meson
propagator:

(1) 4 710) 5 =

o Grqq
2m?2
d*k

d'p G .
/(27r)41—G1Jlss(p )L(q’“’_p—”wb’l%f 1)

x (f(k = 3p-) f(k+ 3p- +q) + f(k = $p- — q)f(k + p_))

4 2
_gwqq/dp Gi I L imerb et 1
oz | ey 1= Gudpp(py) P TP T T )

4

< f G T[S0+ S b)) £+ 40 5 = o)
X (f(k+5pa) f(k = 5py + )+ f(k+5py — ) f (k= 3py). (A.20)
There are two diagrams of the form (o) which appear in the calculations. Since
each contains a two-quark and a three-quark loop as well as an intermediate meson

propagator, it is plausible that they may be able to effect a cancellation with con-

tributions like those in Eq. A.20. The type-III nonlocal current term G (iy57* ® 1)

A.1. Cancellations



Appendix A. Pion Decay Constant at NLO 171

has been responsible for all of the NLO nonlocal diagrams presented thus far. It also
makes a contribution in this case, as does the type-I term G1e%4(7? @ iv57¢). In an
obvious notation the relevant diagrams are referred to as (oIIl) and (ol).

Dealing first with (oIII), one notes that there are always two form factors in
a type-III current that are not path-linked, enabling one of the quark loops to be
recognized as either a J or an L loop. Making suitable choices of the integration
variables, the pieces that involve an L loop can be shown to cancel with Eq. A.20.

The other pieces of the diagram (olII) are

4 4
) (n) (oIIT) sb — —0rqgG1 / d’k / d'p  GiJpp(p— k)
(e + 7+ ) om2 ) n)t ) @r)y 1= Gider(p — k)

XA Tr [357°S (0-)S (k4 )157S (04)] (02 f ()
+Tr 357 S (p- )57 S (k-)S(p1)] Fp- ) f (k) }

< F () f (=) (F(ps) fhy) + F(p-) f(K))

g’ﬂ'qul / d4k / d4p GIJSS(p - k)
2m2 J (2m)* ) (2m)*1 — GiJss(p — k)

XA Tr [157°S (01578 (k) S (02)] £ (02 f ()

+

fpe) f(p-)

+Tr [157" S (p-) S (k=) 357" S (p4)] £ (0-)f (k-)}
< F(p) (=) (f () f (k) + fp=) (ko). (A.21)

Comparing the above equation with Eq. A.10 for () one can see the same general
structures appearing. Taking due account of isospin factors, (¥ can be combined with

Eq. A.21 to produce:
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wagG1 [ d'k o d'p
R R e = = )f P

X {Tr [755( )(S(k+ Y5 — V5 (ky) ) S(p } (k+)

(
))s

+Tr [155(p-) (1S (k) = S(k-)75)S(ps)| (0 ) (k) }
)

| e ] G gffﬁ@ : k)fQ(p+)f2(p—)f(k+)f(k—)

X Tr [5.5(p-)S (k)5S (p+) + 158 (P-) 755 (k-) S (p+)]

I [ o | i oo ) ) f )

X Tr [55(p-)75S (k+)S(p+) + 758 (p-) S (k-)75S (p+)]

9naqq d'k d'p G,
* m2 / (2m)4 / (2m)41 — Gy Jpp(p — k)f(er)f(p—)

X {Tr [ (p-) S (k)5S (0+)] £2(0+) f (k)

+Tt [158 (p-)158 (k=) (0:)] S (0-) £ () }

(A.22)

In Eq. A.22, the first term contains pieces from both Egs. A.10 and A.21, a relative

factor of —(1.J in the latter combining to cancel the LO meson propagator in the sum.

The second and third terms are just the remainder of Eq. A.21 and the final term is

the rest of Eq. A.10. Now, apart from a factor of ~ G.J, the second and third terms of

Eq. A.22 are very much reminiscent in structure of r{®) (see Eq. A.17). Tt is profitable

at this point to reintroduce that contribution. This enables the intermediate sigma

propagator in the second term of Eq. A.22 to be cancelled and alters a factor in the

third term. If one also lets £ — —Fk in the k_ arguments of the first term, one has

that:
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4 4
@ 4 &) 4 oD 4 ) 4 pIT]) _ ImaaGi / d'k / d*p
T + T + ry + f7‘r + f7r Qm% (271')4 (271')4 f(p-l-)f(p—)

XTr [355(p-) [(S(k) > (1) = S(=k1) f2(p-)), 5] S(p4)] £ (k)

ol [ [ e ) ) () ()

XTr [v55 (p-)S(k+)75S (p+) + 155 (p-) 155 (k=) S (p+)]

St [ | e P k) k)

2m2 2m)t ) (2m)
XTr [v55 (p-) 755 (k+)S(p+) + 755 (p-) S(k-)75S (p+)]
9nqq d'k d'p Gy
T2 / 2n) / i 1= Gidnpp =) PP

X {Tr [ (p-) S (k)5S (0+)] £2(0+) f (k)
+Tr [15.5 (p-)15S (k) S ()] f2(0-) f2(k-) } (A.23)

The above equation remains somewhat cumbersome. Moreover, one may feel a little
uneasy that it contains pion intermediates but no scalar exchanges. The situation is
clarified dramatically, however, by bringing in the diagram (oI). This features a two-
quark loop that connects an intermediate meson with one of the matrix structures
from the type-I nonlocal current term G1€%4(7¢ ® iv57¢). For the flavour trace over
this loop to be non-zero, the meson involved must be a pion. Furthermore, the type-I
structure (Eq. 2.11) ensures that the form factors associated with this two-quark loop
have no path links, and hence the loop reduces to Jpp. One can write the contribution

from this diagram as:

1 = e [ | i et 0 ) k) 05

" mz ) nt) 2o = Gulpr(p — k)
XTr [55(p-)S (k)5S (p+) + 158 (P-) 755 (k-) S (p+)]

g’ﬂ'qul d4k d4p Gl JPP(p - k)
T Tm2 /(%)4 / 2r)i 1= Gy dppp— k) P

X {Te 155 (0-) S (k)15 (04)) S (01 (k)

+Tr [158(p )9S (k- )S(p)] £2(p-) f2 ()} (A.24)
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an isospin summation having been performed. The first term of Eq. A.24 is of precisely
the right form to cause the 1 + G1Jpp(p — k) piece occurring in Eq. A.23 to become
1 — G1Jpp(p — k) when the two are added, thereby cancelling the pion propagator.
Furthermore, the other part of Eq. A.24 cancels the other pion propagator found in

Eq. A.23, so that the sum has no net meson intermediates,

4 4
(d) (e) (f) (n) (oI) (oIII) — 3g7rqu1 / d*k / d p
[ + [ + Ty + fﬂ' + fn- + fﬂ' Qm% (271')4 (271')4 f(p-l—)f(p—)

XTr [35.8(p- ) (S(ky) £ (0175 + 955 (= k) £ (0-)) S(p4)]| £ (k)

GrqqG1 dk d*p
ot [ amy | i f @00

XTr (155 (p=) (3.5 (k1) 2 (1) + S (k) L2 (0-)75) S (04)] £ ()

——— / (;ZWI; / (d p4f2(p+)f2(p7)f(k+)f(k*)

2m2 27)

xTr [v5S(p-) {75, S(k4)} S(ps) +v5S(p- ) {S(k-), 75} S(p+)]- (A.25)

Shifting the £ integration variable such that the LO quark propagators are evaluated
only at £ and p., and substituting from Eq. 3.1 for the explicit form of S(k), Eq. A.25

becomes

&k mk)
(2m)* k2 — m2(k)

R | F2(k)

< [ G T DS 1Sl F0) f0 ) (F0) + o)

d'k  m(k)
2m) k2 — m2(k)

~4r0aGrIpr(¢?) | FO0)(F(k+q)+ £k =)

-1
nonlocal f; diagram at LO), A.26
4N,

where Eq. 4.1 for the LO nonlocal diagram has been recalled to arrive at the punchline.
There remains one more contribution to the pion decay constant at NLO which
has not yet been included in this appendix. This is the Fock diagram, (m), as shown

in Fig. 7.14. It consists of a LO nonlocal current diagram, with an N, suppressed
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coefficient deduced by Fierz rearrangement (see Chp. 2.5). The only Fock contribu-
tion to f; comes from the type-III term exchange term G;(4N.) (iys7® ® 1). This

observation then completes the cancellations amongst the NLO diagrams for f,, since
@ 4@ ) 4 plm g plel) el g (A.27)

Combining Eq. A.27 with others from this appendix, the full set of NL.O contributions

to the pion decay constant can be seen to produce Eq. 7.11.

A.2 Chiral Expansion

This section describes the chiral expansion of the NLO part of the pion decay constant.
As in Appendix A.1 it specialises to the case where the G coupling is the only one
present in the action. The aim is to demonstrate that the various contributions pro-
duce the two O(1/N,) terms on the right-hand side of Eq. 7.15, thereby establishing
the GMOR relation at NLO in the model.

In Chp. 7.4, the various diagrams contributing to f, at NLO were presented.
There are several useful cancellations which operate among the diagrams, holding
to all orders in the chiral expansion. They were explained in Appendix A.1 and
culminated in Eq. 7.11, the starting point for this section.

The first point to notice about Eq. 7.11 is that each term is of O(1) in the chiral
expansion. Hence, in all of the integrals the chiral limit may be taken directly, without
making an expansion of the integrand. Consider first the term in Eq. 7.11 proportional
to c. Using Eq. 4.6 for the expansion of the 1 — G1Jpp(q?) factor, the chiral limit of

this term is

_gﬂqu
G Js50(0
teiGusa0) (M + 7

The other term in Eq. 7.11 which has an explicit factor of 1 — G1Jpp(q?) also has an
integral very like the one in the definition of ¢ (Eq. 7.5). Indeed, the only difference is

the presence of ¢ in the form factor structure f(p+¢) + f(p — ¢) and so in the chiral
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limit this term in Eq. 7.11 is also proportional to ¢, being:

_gﬂqu mc<Ew>0 m72r
——co(1 — G1Js50(0 : A.29
st = Gl (P + 7 (4.29)
The sum of Egs. A.28 and A.29 is just
_gﬂqqﬂ mc<%,¢'>0 mzr
A
e (M 7). (430

the second term in brackets being clearly identifiable as one of the O(1/N,) pieces
sought in the condition of Eq. 7.15. Note also that the final term of Eq. 7.11 gives
precisely the structure of the other part of the condition but has the wrong sign,

9nnago Mo (0) (A.31)
g7rqq0 g7rqq0

Consider now the first term of Eq. 7.11. It can be dealt with straightforwardly,

using the ladder SDE to perform the k integral and the results of Appendix B for the

chiral expansion of Jypp. This yields:

™ - i - . 2
—2m0(0)M —|—ng a0 (V) no rm Graq0 (V)0 2o

70 m2  mg(0) ©m2 "mg(0) mg(0)

(A.32)

The first term of the above equation is exactly that needed to reverse the sign of

Eq. A.31 in the sum. The contributions discussed so far are therefore:

—Cy . GN7qq0 mU(O) + Grqq0 & <<E'¢>NO + —0<@77/;>0> . (A33)

c
9rqq0 Iraq0  Grqq0 mo(0) m2 mg(0)
It remains only to cancel the last term in Eq. A.33 with the other terms of Eq. 7.11.
These terms are explicitly proportional to m. and contain integrals very similar to
those in Jypp, but with different combinations of form factors. The integrals similar
to J](\%,P, J](\fg,P and J](\?I)DP are not described here. Procedures for manipulating such
integrals so as to simplify their sum were detailed in Appendix B and are not affected
by the different form factors appearing in the present case. It therefore suffices to

state the end result for the sum of these contributions to f,, which is:
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mcgﬂqqﬂ / d4k d4 G1f2( )fZ( )
m2mg (0 NelNy (2m)* 1 — G1Jsso(p — k)

[4mo(/f)(p +mg(p)) + 8p - kmy(p)]
[p? — mg(p)]2[k? — mg (k)]

mcgﬂqqﬂ NN / d4k d4 3G f2( )fQ( )
m2m0 f 27T 4 1-— Gljppo(p k)

[—4mo(k)(p +mg(p)) + 8p - kmy(p)]
[p? — mi(p)]?[k? — mg (k)] '

If one compares Eq. A.34 to Eq. B.13 and takes account of the subsequent discussion,

(A.34)

it is clear that replacing m. by m. + Am(p) in Eq. A.34 would make it proportional

o (1) no. Such a replacement can in fact be made when the final contribution from

Eq. 7.11 is included. This is the term which is similar to J](\',II);P. By analogy with the

discussion of J](\‘,II),P in Appendix B, the loop which has a modified form factor structure
reduces in the chiral limit to a factor' ~ s (which was defined in Eq. 4.10). Thus this

contribution from Eq. 7.11 can be shown to produce:

Grqq0
2 Tri;i mcCglﬁ. (A35)

Adding the above expression to the final term in brackets of Eq. A.33 gives:

me co () me. ¢ [P
a0 2 o (0) mo(0) ™2 g 0) <m0(0) + 2m0(0)]6>
gﬂ'qu Cp
ot .m0(0)2ISAm(O), (A.36)

where Eq. B.3 has been called upon to introduce Am. The situation can now be
clarified by noticing that the combination Igcy is given by the same integrals as those
in Eq. A.34, apart from an additional factor of f2(p). This is exactly what is needed
for the sum of Eqs. A.36 and A.34 to give Eq. A.34 with m. — m.+ Am(p). One has
therefore produced a piece proportional to (1)1)) yo. As required, this piece cancels with

the unwanted term in Eq. A.33. In summary, the chiral limit of the NLO component

Lef. a factor of ~ Ig, which came from the corresponding loop in J](\?I)DP.
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of the pion decay constant (given by the sum of Eqs. A.33, A.34 and A.35) is shown

to be precisely that which satisfies the GMOR relation,

—Co o 9Nrqq0 mU(O)

9rqq0 9rqq0  YGmqqo

[Nmo = (A.37)
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Chiral Expansion of NLO Pion
Amplitude

This appendix discusses the chiral expansion of Jypp(g?), concentrating on the case
where (51 is the only coupling constant in the action. As described in Chp. 7.5, the
expansion has two important aspects. That there is no term of O(1) is required in
order to preserve the Goldstone nature of the pion in the chiral limit. Also of interest
is the coefficient of the term of O(m,) since this is a necessary ingredient in proving
the GMOR relation at NLO.

Consider first the contribution J](\?},P(qQ) coming from the NLO BSE diagram of
type (a) (it is drawn in Fig. 7.7 and given by Eq. 7.6 with c¢f?(p) replacing Sy (p)).
The constant ¢ is given by a three-quark loop with an intermediate pion or sigma
meson (see Eq. 7.5). In the former case, as in some other NLO diagrams involving
pion states, there is an associated factor of three due to isospin multiplicity. In the
rest of J](\?},P, it is useful to note that the Dirac trace in the chiral limit yields a factor
that cancels with the denominator of one of the three LO quark propagators. The
resulting integral is then proportional to I3 (defined in Eq. 4.10) and can therefore be

cancelled with a factor from the o(0) propagator, since

1— G1J55(0) = Gl(Jppg(O) — JSS(O)) = 2G, 15 + O(mc) (Bl)
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Eq. B.2 gives the chiral expansion of this diagram.

_NcNf/ d*k G1
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[p? — mi(p)I[k? — mi (k)]
2[=4mq (k) (p* + mg(p)) + 8p - kmo(p)]
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mo(p)(m. + Am(p))

mg(k)(m. + Am(k))

mo(p)(me + Am(p))

mo(k)(m. + Am(k))

[p* — mi(p)][k* — m§ (k)]
o NNy / d'k d'p  GiRss(p—k)
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In the above equation the combination m.+Am(p) has been used to denote the O(m,.)
term in the chiral expansion of m(p). From the ladder SDE (Eq. 3.2), one has that

f*(p) (@wo
¢ 2]8 mo(O)

Am(p) = —m + 2mg(0)16> : (B.3)

The other undefined quantities in Eq. B.2 are Rgs and Rpp. These are obtained from

the chiral expansion of .J,
Tii(@®) = Tijo(@®) + meRij(¢*) + O(m7). (B.4)

The BSE diagram of type (b) (see Fig. 7.7) contains part of the NLO quark self-
energy. It is given by substituting the appropriate part of Xy (the second term of
Eq. 7.4) into Eq. 7.6. As with diagram (a), there is a useful factor from the Dirac
trace of J](\?EDP which cancels (in the chiral limit) one of the denominators of the LO

quark propagators:
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Neither Eq. B.2 nor Eq. B.5 looks very promising. These contributions can how-
ever be combined to advantage if one rewrites the Dirac traces involved in various of

the diagram (a) terms as follows:
£4mo (k) (p* + mi (p)) + 8mo(p)p - k = £dmo (k) (p* — m(p))

+8mq(p)(p - k £ mo(p)mo(k)). (B.6)

The second term occurring in the representation on the right—hand side has the same
structure as pieces appearing in contributions from diagram (b). Meanwhile, the first
term simplifies the remaining integrals by cancelling the denominator of a quark prop-

agator. With the assistance of Eq. B.6, one finds that

_|_

[ —G 3G,
1— GiJssolk) " 1— GiJppo(k)

@ . 40 d'k
Inpp + Inpp = NcNf/ (27)*

+ O(q*, m,). (B.7)

></ d'p Af(p) 4 (p — k)
(2m)* [p* = mi(P)][(p — k)* — mi(p — k)]
Moving on to diagram (c¢) (Fig. 7.9 and Eq. 7.7), the Dirac trace in the chiral

limit takes a particularly convenient form for both the sigma and pion exchanges. It

factorizes into pieces which cancel the denominators from two LO quark propagators,

leaving
(0 _ _ G &
Inpp = NCNf/ (2m)4 [1 — G1Jss0(k) I GlJPPU(k)]
x/ d'p Aff(p)f'(p — k)
(2m)" [p2 — m3(p)][(p — k)2 — m(p — k)]
d'k d'p —G G
+16NNf/ ll_G Jsso(p — k) + 1—G1JPPU(p_k)]

)* (27)
mo(

% k)(mC+Am( )) 4 4
7 - mpR —m2eyp! P

4 4 2 _
mCN Nf/ d k d [ G? RSS p— k) i GlRpp(p k) ]
p)f

1 —GiJssolp —k)>  [L—GiJppo(p — k)]?

‘o 4f(4 i ) O + Ola' ), (B.8)

Finally, there is a diagram of type (d) to be considered (Fig. 7.9 and Eq. 7.10).

It has an intermediate pion and sigma meson. A two sigma intermediate is forbidden
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by isospin symmetry whilst a two pion state gives a vanishing Dirac trace over the
triangular loops. In the chiral limit of the o7 loops, the denominator of a quark
propagator is cancelled through a factor from the trace, producing:

J@ 2/ d'k G, G
NPP ) (27)4 1 — GiJsso(k) 1 — GyJppo(k)

d'p Af4(p)fi(p — k) ’
g {SNcmef’(O) R i) (s e ) }

G Res(k Gy Rpp(k
T GIJSiU)(k) e Gljpig)(k) }
d*k Gy G,
27)' 1= GhJsso(k) 1= GrJnro(k)
X/ d*p Af*(p)f*(p — k)
(2m)* [p? — mi(p)][(p — k)2 — mg(p — k)]
{/ (d% 8m2(0)mo(f — k) (me + Am(0)) f2(€) f2(¢ — k)

x{1+m

+16z'(NCNf)2/

2m)* [02 = m§(O)[(€ = k)? = m§(£ — k)]

/ d*C 2mo(0)(me + Am(L — k) f2(0) f*(€ — k) }
@m)* [2 = m(O][(¢ = k)* = mi(L — k)]

+0(¢%) + O(q",m7). (B.9)

Since the diagram (d) contribution involves two intermediate meson propagators it is
not immediately obvious how it may be combined with the other contributions, each
of which has only one such propagator. The crucial point to notice is that the integrals
from the triangular loops in J](\?I)DP are proportional in the chiral limit to the difference

between LO .J loops,

+ O(m,.).
(B.10)

2 Jpp(q?) = i d'p 8m3(0)F(p) F*(p — q)
Tss(d") = Jre(a®) =Ny [ G T ot p =

The above equation allows one to replace the product of scalar and pseudoscalar meson

propagators in Eq. B.9 with their difference:

w i [ d% e el B
Tvep = 1o / ) | 1= GrssoB) T 1= Gripmo(y) 5500 = Terolk)

+0(q*, m.). (B.11)
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It is now possible to check that the Goldstone nature of the pion has been main-
tained in the NLO treatment of Chp. 7. From Eqs. B.7, B.8 and B.11 it can be seen
that, as required, Jypp(0) vanishes in the chiral limit.

The same statement can also been shown to hold in the extended version of the
model'. The details of the proof are not given here since the general features of the

cancellation are similar to those in the above discussion:

e the sum from the diagrams of types (a) and (b) may still be simplified by rewrit-

ing the Dirac traces in J](\',II),P;

e the cancellation of the denominators of two quark propagators in the diagrams

of type (c) also works for other intermediate mesons;

e the products of two meson propagators occurring in the type (d) diagrams can

be dealt with? using relations analogous to Eq. B.10, since
Tss(a?) = Tpp(e®) = Ty (@®) = Tiald®) = Jv(@®) — Tha(d®).  (B.12)

Returning to the simpler version of the model with the G'; coupling only, many of
the simplifying properties described above can be exploited in the sum of contributions

to the O(m,) term of Jypp:

'Tn the extended model, the pion pole is determined by the zero of the full determinant
of Eq. 3.13. Therefore, to complete the proof that the pion is a Goldstone boson at NLO, it
would be necessary to establish further that Jx4po(0) = 0.

2An additional point of significance is that such diagrams involving the ¢ys component
of the pion vertex give triangular loops which are proportional to J4p in the chiral limit.
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NcNf/ d'k d'p  Gif*(p)f2(k) (e + Am(p)

Iner = =000y | @) @n)1 1 = Grdsso(p — F)
[4mo (k) (p* + mg(p)) + 8p - kmo(p)]
[p? — mg(p)]2[k? — mi (k)]
D3NNy [ dk dp () fA(R)
m3(0) (2m)* (2m)4 1 — G1Jppo(p — k)
[—4dmo (k) (p* + mi(p)) + 8p - kmo(p)]
[p? — m§(p)]*[k* — mi(k)]
+2%<w>0 +O(6) + O(¢", m?) (B.13)

Recalling the form of the corresponding O(m,) term at LO (see Eq. 4.6) and bearing

(me + Am(p))

in mind that the GMOR relation includes the quark condensate, it becomes tempt-
ing to compare the integrals in Eq. B.13 with those in the NLO contribution to the
condensate,

— : d'p . d'p

(P = =iTr [ 05 8u) = iTe [ GESOISNmISE). (B14)
If one substitutes for ¥y (p) from Eq. 7.4 and takes the chiral limit then some straight-

forward algebra is sufficient to show that the combination of integrals in Eq. B.13 is

indeed reflected in the condensate at NLO. In total, the pion determinant at NLO is

given by:
_ _ _ (o (Y)no (b)o  2co
1 —-GiJpp — GiJypp = Glmcmg(o) Gim, m%(O) Glmcmg(U) 'mo(O)
2 2
q 0" 29Nmqq 4 2
-Gi——+G 5— ———+0(¢,m;
! Z7r0 ! Z7r0 gﬂqqﬂ (q )
o - 2
— _Gym, (Yo + <77/”7b>]2\70 e q _+ 0(gh, m2). (B.15)
(mo(0) — co) (9rgq0 + GNrqq0)




Appendix C

p — 41 in Effective Lagrangians

C.1 Effective Chiral Lagrangians

A serious practical difficulty with QCD is that, because of confinement, the degrees
of freedom used in writing the QCD Lagrangian do not directly correspond to the
observed asymptotic states. The problem is particularly severe at low energies where
the fundamental degrees of freedom are far from being straightforwardly manifest in
the data. The available data in this regime provides information on the properties of
and the interactions amongst the light mesons and baryons. It is therefore liable to be
much easier to perform meaningful calculations if equipped with a theory formulated
in terms of fields which treat the particles detected as the basic degrees of freedom.
In principle at least, effective theories of that type should be completely derivable
from QCD. Although any procedure for so doing seems a most impractical prospect
at present, there remain useful restrictions which can be imposed on the candidates
for such theories. These follow by requiring the symmetries inherent in QCD to
be reflected at the hadronic level. Many such restrictions are consequences of the
approximate chiral symmetry, discussed in Chp. 1.

The linear sigma model [14] was mentioned in Chp. 1 as a simple theory consistent

with chiral symmetry. It includes an explicit scalar field, the dynamics of which are

187
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an essential feature if one wishes to consider chiral symmetry restoration [121] with a
simple model of that form. When working at zero temperature and density, however,
the absence of an unambiguous suitable scalar meson to identify directly with the field
means that one would prefer to deal with the pseudoscalars only. To that end, various
field redefinitions can be made [13, 122] to produce a chirally—invariant scalar field,
the mass of which can then be sent to infinity. In the resultant theory, the Goldstone
modes should only have derivative interactions, since any other terms would have
a local chiral invariance and so could be transformed away. At lowest order in the
number of derivatives, the theory one arrives at is called the non-linear sigma model,
and has the Lagrangian:

‘CNLO'M - %f§<auUauUT>a (Cl)

where the notation (- - -) has been used to denote a trace in flavour space of the matrix
enclosed in angled brackets. The matrix U specifies an allowed configuration of the
pion fields [123] and as such must be an element of the vacuum symmetry, SU(2)y,

transforming under chiral symmetry as
U — GUGH. (C.2)
It can be parameterized with the exponential representation,
U =exp(it.z/fr). (C.3)

When the above Lagrangian (Eq. C.1) is used at tree-level, it yields the same re-
sults [122] as could be obtained with the more laborious techniques of current algebra
and PCAC (see Chp. 1.5). Indeed, it was on that very basis that effective chiral
Lagrangians originally became popular (as advocated in Ref. [124] for example).

To proceed further in a systematic construction of an effective theory of pions,
one appeals to the power—counting scheme demonstrated by Weinberg [125]. Although
the most general effective theory which can be postulated contains an infinite number

of terms, each term may be characterised by the number of derivatives involved. A

C.1. Effective Chiral Lagrangians
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tractable theory may therefore be obtained by truncating at some finite order in mo-
mentum. Hence, the effective theory can be regarded as an expansion in powers of p/A,
where A is a quantity of the order of the mass of the lightest particle neglected in the
effective treatment. Obviously it dictates the energy scale below which the low-energy
theory may sensibly be applied. The description of the would-be Goldstone bosons in
Weinberg’s scheme is called chiral perturbation theory (ChPT)[126, 127]. At O(p*) in
the expansion there exists sufficient experimental information to fix the coefficients of
the terms needed. This is not the case, however, at O(p°) [128] and higher where the
number of undetermined coefficients proliferates'. When calculations are attempted
at O(p®), a common prescription for estimating the relevant coefficients [129] is to
assume each of them to be generated solely through the exchange of the lightest res-
onant state with the appropriate discrete quantum numbers. The feasibility of this
method rests on its successful application to the O(p*) coefficients [126, 130, 131],
the empirical values of which are found to be dominated by the contributions from
resonance exchange.

Instead of working to progressively higher orders in momentum, an alternative
way in which to improve low-energy effective theories of pions is to introduce explicit
fields which describe the heavier mesons. The first of these particles to be encountered
are the vector mesons p and w. Since the coefficients of terms appearing in any low-
energy effective theory are dependent upon the properties of the more massive particles
omitted, the development of models which incorporate the vector mesons may prove
helpful in improving both the specification and understanding of ChPT. Unfortunately,
however, the construction of effective theories that include resonant states is hampered
by the loss of power counting, the organizing principle so crucial to ChPT. In essence
the breakdown of power counting occurs because the pions are liable to be of high
momenta in processes where there is an on-shell resonant particle. Hence, large orders

in momentum may be required for the accurate representation of such pions.

there are over a hundred terms of O(p%).

C.1. Effective Chiral Lagrangians
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The loss of power counting is reflected in the considerable freedom allowed in
choosing a possible interpolating field to describe the vector mesons. If one were
to redefine such a field then the predictions of a given Lagrangian would of course
remain unaltered. However, interactions which were ostensibly of some particular
order in momentum may be transformed into terms of different orders in the new
representation.

The foregoing comments do not mean that a useful effective theory of pions and
resonant particles cannot be formulated: they simply note the loss of the scheme
which determined the relative importance of each of the infinite number of possible
interactions. What is undoubtedly clear, however, is that there is a strong desire
to find some other approach which avoids the necessity of considering all possible
terms. A practical attitude is to exploit the freedom in the choice of interpolating
field. It seems reasonable to suppose that there should exist some choice of field in
the framework of which an accurate effective theory? is embodied in a fairly simple
form. In searching for a useful theory, a natural starting point is therefore to define
some representations for the fields of the resonant particles and then to examine the
phenomenology of the simplest Lagrangians in each basis. There are four distinct

formulations which are common in the literature:
1. The hidden-gauge form of Bando et al [132] ;
2. The massive Yang-Mills form, as suggested in Refs. [124, 133] ;

3. The formalism developed by Coleman, Callan, Wess and Zumino (CCWZ) [134]

based on a suggestion by Weinberg [135] ;
4. The use of anti-symmetric tensor fields, as pioneered by Ecker et al [131, 136].

Reviews of these approaches are available in Refs. [137, 138]. As emphasized by
Birse [138], the approaches are believed to be equivalent [136, 138, 139], differing only

in the representation taken for the spin-1 fields.

2whatever that might prove to be.

C.1. Effective Chiral Lagrangians
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From both practical and phenomenological perspectives, the simplest Lagrangians
of the massive Yang-Mills and hidden—gauge approaches are of particular interest.
Within these approaches, one can propose an effective Lagrangian which has only two
undetermined parameters: the p mass and a gauge coupling. The latter can be set to
reproduce the empirical p — 27 decay width, completely specifying a possible effective
theory. Furthermore, these representations are motivated on the grounds that they
can easily encapsulate phenomenological notions such as VMD and universality (see
Chp. 1.6).

In Appendix C.6, the rare decays p — 4 are calculated with various chiral
effective models. Before doing so, the models used are briefly described below. Since
thorough discussion of these models can be found in the cited literature, it suffices
to outline some general points about the approaches and to highlight some of their

phenomenological aspects.

C.2 Hidden—Gauge Lagrangians

The hidden—gauge and massive Yang-Mills schemes adopt a gauge style of approach,
which is clearly well-suited to the notion of universality. In the hidden—gauge method
of Bando et al. [132], the Lagrangian of the non-linear sigma model (Eq. C.1) is rewrit-
ten with the introduction of an unphysical local symmetry, which may be transformed
away. However, if a kinetic term for the gauge field is also included, then the local
symmetry becomes physical, generating a non-trivial extension of the model. Al-
though the local symmetry group may contain SU(2) 4 [97], it is usual to work with a
vector gauge field only. The simplest Lagrangian of 7, p and w mesons in the scheme
therefore involves these particles only, there being no need to include the a; meson.
External gauge fields can be unambiguously introduced into the formalism by
separately gauging the global chiral group [140]. The model can also be extended to
include an anomalous sector [141]. With the anomalous Ward identity being satisfied

0

by the Wess-Zumino action [142], low-energy theorems, such as those for 7° — vy

C.2. Hidden—Gauge Lagrangians
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and v — 3m, are automatically satisfied. There are a further four possible terms?

of odd intrinsic parity, with undetermined coefficients. These have no effect on the
low-energy theorems* and their strengths should therefore be chosen to reproduce a
satisfactory phenomenology of various other anomalous processes.

The couplings in the minimal hidden—gauge model satisfy the relations

~ a a
m;QJ = mz; = a92f7?7 Jprn = 597 Gyan = € <1 - 5) s Gpy = 2f7?gp7r7ra (04)

where a is a free parameter, g is the gauge coupling constant and g, has been defined

through the vertex

(T (q) 7 (@) |7 (1 + ¢2)) = 19ynn™ (g2 - € — g1 - €). (C.5)

Gprr 18 defined similarly in Eq. 5.1. The final relation of Eq. C.4 holds independently of
the model parameters and is known as the KSRF relation [144] in its first form. It can
be derived straightforwardly as a soft pion theorem for the p — 27 decay [17]. With
the parameter choice a = 2 the Lagrangian is brought into agreement with several
other phenomenological ideas. Combining the first and second relations of Eq. C.4
(with a = 2) gives

mp =295 f2, (C.6)

which is referred to as the second form of the KSRF relation. This version follows from
the first under the assumption of the universality relation g,, = mz/gpm. Universality
in the model is therefore imposed at a = 2, the value which also produces complete

vector dominance of the y77 coupling.

3Gix such terms were originally listed in Ref. [141] but it was soon noticed [143] that two
of them (L3 and L5) are CP odd.
“although they do control the relative sizes of different contributions to such amplitudes.

C.2. Hidden—Gauge Lagrangians
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C.3 Massive Yang-Mills Lagrangians

In the massive Yang-Mills approach [124, 133], the spin-1 mesons are represented as
though they were external gauge bosons of chiral symmetry®. The simplest Lagrangian
which can be postulated in the scheme is just the gauged non-linear sigma model along
with kinetic and mass terms for the gauge fields. Local chiral symmetry is broken by
the mass terms. A significant difference from the hidden—gauge formalism is that
global chiral symmetry demands that the a; must be included as the chiral partner of
the p meson.

Expanding the matrix U (Eq. C.3) in the minimal Lagrangian of the scheme,
one finds a mixing term between the axial field and the gradient of the pseudoscalar
field. To remove this and diagonalize the free—field part of the Lagrangian, a term
proportional to the pseudoscalar gradient could be subtracted from the axial field. It
is then necessary to rescale the pseudoscalar field® in order to obtain the canonical
normalization of the pion kinetic term. Such a procedure constitutes a minimal di-
agonalization and leads to physical pion and a; fields which have complicated chiral
transformation properties. Other procedures might also be chosen. For example, if
the Lagrangian is first converted into its equivalent CCWZ representation, then a very
similar procedure is followed to remove a mixing term. In that case, however, it is con-
venient to subtract a piece from the axial field proportional to the multi—pion object
u, (see Appendix C.4), which means that the transformation properties of the mixed
and physical fields are the same. Whatever the diagonalization performed, the process
induces a mass splitting between the axial and vector fields so that m,, = Z 'm,,
where 7 is the scaling factor,

2 72\ 3
7= (1 _ %) | (.7)

In the above equation, ¢ is the gauge coupling of this scheme.

°To include a photon field in such a model it is then usual to assume VMD, adding the
appropriate terms by hand.
Swith a corresponding factor being applied to identify the pion decay constant.

C.3. Massive Yang-Mills Lagrangians
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The diagonalization is commonly referred to as a partial Higgs mechanism. In
the standard Higgs mechanism the degrees of freedom of the would-be Goldstone
boson are transmuted into those required to give a mass to the gauge field. In the
massive Yang-Mills formalism, however, the Goldstone boson is preserved because of
the gauge—symmetry—breaking mass term.

The minimal field redefinition described above has a side effect of producing
more complicated interaction vertices, since additional interaction terms are generated
in rewriting the gauge-invariant kinetic energies of the spin-1 fields. Where such
additional terms contribute to vertices present in the remainder of the Lagrangian
the extra terms always contain more powers of momentum. Nevertheless, they can
have important effects. For instance, the pm7m coupling at the rho mass is reduced
by a factor of %(1 + Z?) as compared to its value at zero-momentum; i.e., by & %
for a normal choice of parameters. This means that the minimal model is unable
simultaneously to account for the empirical p meson mass and width. To overcome
the problem, it would be necessary to add new interactions to the Lagrangian, such

as those proposed in Refs. [137, 145, 146]. One possibility is the term
—z';(DMUDVUTFf” + D, U'D,UFE", (C.8)
g

which would cancel the diagonalization—induced part of the prm vertex if £ = 1.
Extending the definition of the vector field to include an isoscalar component,

representing the w meson, there are then interactions in the anomalous sector [145,

147]. Since the spin-1 fields are identified with external gauge fields of the chiral group,

the anomalous vertices are given by Bardeen’s form [148] of the anomaly”.

Comment and pr Scattering

In comparison with the simplest hidden—gauge Lagrangian, calculations with the min-

imal massive Yang-Mills model are rather more involved. Not only does one have

to obtain an anomaly—free vector current entails breaking global chiral symmetry in this
sector.

C.3. Massive Yang-Mills Lagrangians
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to deal with the more complex interaction vertices produced by diagonalization but
there may be additional contributions to processes from diagrams with intermediate
ay states. Note also that the higher—order contributions to vertices violate universal-
ity above the lowest energies. This is certainly no problem of principle, but since the
universality hypothesis is an important aspect of the motivation for a gauge—style of
approach, one might nevertheless be concerned about such violations. It is therefore
easy to see why several authors [9, 10, 149, 150] have found it attractive to work
with Lagrangians of the massive Yang-Mills form which do not have an axial field,
the source of the unwanted complications. In such models great care should be taken
to maintain global chiral symmetry, the guiding principle in the construction of any
plausible effective Lagrangian. It is not valid simply to discard the a;, as in one of the
Lagrangians considered by Ref. [9], since the resulting model would not then respect
(for example) the low-energy theorem for w7 scattering [149]. If the a; is to be omitted
then counterterms [138, 149] are required to restore such theorems.

The authors of Refs. [149, 150] found suitable counterterms such that the VMD
extension of the resulting mpw Lagrangian, when integrated over the vector—meson
degrees of freedom, reproduces the vertices of the U(1)y-gauged non-linear sigma
model. Although their Lagrangian is therefore consistent with low-energy theorems
involving pions and photons only, it is not chirally symmetric. This statement can be
illustrated with pm scattering. Fig. C.1 shows the contributing diagrams in effective
Lagrangians of 7, p, w and a; mesons.

The amplitude for scattering a soft pion from an arbitrary hadron target should
vanish in the chiral limit [17]. Considering only that part of each of the vertices in
Fig. C.1 which is of lowest order in the pion momentum, then the prm vertex to be
used in diagrams C.la and C.1b is g9p,-m % Otm. As the external pion momentum
tends to zero the momentum of the intermediate pion state will tend towards that of
the external p meson, whose transversality means that there is no contribution from

these diagrams in the soft pion limit. In both the hidden gauge (Appendix C.2) and

C.3. Massive Yang-Mills Lagrangians
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Figure C.1: Diagrams contributing to pm scattering in chiral effective Lagrangians of
7, p and a; mesons. Single lines denote pions, double lines spin-1 mesons. The suffixes
label isospin states. Anomalous terms in the effective Lagrangian introduce diagrams
(f) and (g) similar to those of (d) and (e) respectively, but with an w meson replacing
the ai.

CCWZ formalisms (Appendix C.4) any interactions which might produce a contribu-
tion from diagrams C.1c to C.le contain powers of the external pion momentum. For
the same reason, diagrams C.1f and C.1g vanish in the soft pion limit with all three
formalisms. Non-zero diagrams at threshold only appear in the massive Yang-Mills
scheme, which has momentum-independent pprm and pra; vertices of %gQZ*Q(ExBMV
and ¢* fZ *a,,.w x p" respectively. These result in an amplitude from the pprm contact
diagram of

2

. g ab §ij ai $bj aj sbi *
1752067 — 676" — §495")e - e, (C.9)

and a piece coming from diagrams with an intermediate a; of

. 9 Jx ab sij ai $bj aj sbi *
Zw(26 6]—6 6]—6]6 )6‘6. (C]_U)

Using the prediction for the p — a; mass splitting from the massive Yang-Mills La-
grangian, these two contributions cancel, as they should. The Lagrangians proposed
in Refs. [149, 150], however, retain a momentum-independent pprm vertex (which is

39 (zm ¥ BN)Q) without there being an a; field present. This gives rise to a non-zero

C.3. Massive Yang-Mills Lagrangians
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amplitude in the soft pion limit, violating the chiral low-energy theorem. The model

of Refs. [149, 150] is therefore inconsistent with chiral symmetry.

C.4 CCWZ Lagrangians

In the CCWZ formalism the spin-1 fields transform homogeneously under a non-linear
realization of chiral symmetry. The following Lagrangian is written in that formalism,
using the notation® of Ref. [138]. Tt gives all of the interaction terms relevant for

p — 4m in the models considered.

2 1 1
Lecwy = Zfrmuf‘) + mf,mv“) +m2 (A A") — 5<VWVW> — 5<AWAW>

— S ou(Viul, w)) + SaaViulV, VD) + S (Vi l[, 4] — [, A7)

s 0ulAu (V7] = [0, VD) + e ) = Jealfis w12, V)

sl V) = [ VD)) = el ol ([, A% = [, 49)). (C.11)

Unlike the hidden—gauge and massive Yang-Mills formalisms, there is no natural
concept of a minimal Lagrangian in this framework. Each of the above interactions
is chirally symmetric and hence the coefficients of Eq. C.11 can be set individually
according to the assumptions made about the dynamics. It should be pointed out,
however, that there are some restrictions on the coefficients which can be deduced by
demanding that the corresponding Hamiltonian has a lower bound [151]. Such con-
straints can be strengthened into equalities if assumptions about resonance saturation
are imposed.

The simplest Lagrangian of the hidden—-gauge approach corresponds to the fol-

lowing choices of the coefficients®:

1
2q’
8apart from the labelling of the coefficients.

9Note that the coefficients in Eqgs. C.12, C.13 and C.14 do not provide a complete specifica-
tion of the respective models. To do so would require other terms in the CCWZ Lagrangian.

g1 = g2 = 24, c = g%, co =1, (C.12)
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all other coefficients in Eq. C.11 being zero. The choices appropriate to to the simplest

massive Yang-Mills model are'?:

1
91:%(1—24% g2 = 2y, g3 =91 =27,

C1 = g%) co=1-— Z4, C3 = Z4, C4 = G103. (013)

If one includes the non-minimal term of Eq. C.8 then the above coefficients become:

91:%(14_(5_1)24): g2=29, g=27*(1-¢), =27,
c = 4i92(1—z4)(1+(2g—1)z4), =1+ (E-1)2", cs = Z°,
e = %22(1 _ 21 —-¢). (C.14)

The strength at the pmm vertex in the CCWZ Lagrangian of Eq. C.11 is controlled
by the value of ¢g;. Taking & = 1 cancels the piece of this vertex which involves the
diagonalization parameter, Z, and (at the KSRF value of Z? = %) enforces the identity

between the gauge coupling parameter and the on-shell coupling ¢ ..

C.5 p — 4m, Motivation and Background

The testing of chiral effective theories of pions and p mesons requires that a variety
of observables be calculated with the candidate Lagrangians. Two such quantities are
the partial widths for the rare p° decay modes to 27727~ and to 27°7*7~. These
decays provide a potentially useful probe of aspects of the effective Lagrangians. For
example, the amplitude for the 27°7* 7~ mode has a contribution involving the ppp
vertex that appears in models with gauge-type couplings of the p. The partial width

calculation might therefore enable the strength at that vertex to be tested.

0Note that letting Z — 0 in Eq. C.13 would give the same coefficients as in Eq. C.12.
Although Z — 0 corresponds to the unrealistic situation of m, — gfr and m,, — oo this
limit does provide a basis for useful cross checks (both analytic and numeric) between the
hidden—gauge and minimal massive Yang-Mills calculations.

C.5. p — 4m, Motivation and Background
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Some recent attention has been given to these rare decays [9, 10], stimulated by
the prospect that they might soon be detected in experiments at high luminosity e*e™
machines, such as VEPP-2M [152] or DA®NE [153]. The present experimental limits
on the partial widths are 30 keV for the 27727~ mode [154] and 6 keV for the 27077~
mode [155]. These are already stringent enough to rule out some early estimates, such
as that by Prashar [11]'! which was dominated by 7a; and 7a, intermediate states.
In the more recent attempts of Refs. [9, 10] rather smaller predictions were made,
all bar one of the models being consistent with the existing limits but quite close
to them. Those results offered grounds for optimism since even a modest reduction
in the present limits could have significant implications. Note, however, that all of
these calculations of the decays did not correctly incorporate chiral symmetry. As
is demonstrated in Appendix C.6, the symmetry constraints have a very important
effect, the partial widths obtained in chiral models being substantially narrower.

In the work of Bramon, Grau and Pancheri [9], the 27727~ decay mode was
treated within two of the common formalisms for including the p meson in chiral
effective Lagrangians. Using the simplest hidden—gauge Lagrangian (Appendix C.2)
the authors calculated a partial width!? of 7.5+£0.8 keV. In contrast, with a simplified
Lagrangian of the massive Yang-Mills type they found 60 + 7 keV, indicating that the
process could distinguish between the models and indeed that the massive Yang-Mills
one was inconsistent with experiment. The Yang-Mills Lagrangian used in Ref. [9]
coupled the p meson to the sigma model as a gauge boson of SU(2)y, being identical
to that in Ref. [147] but without an axial field. As was first pointed out in Ref. [10]
(see also Appendix C.3) by Eidelman, Silagadze and Kuraev such a simplified model
does not respect chiral symmetry. Although the hidden-gauge Lagrangian used by
Bramon et al. is a perfectly legitimate chiral model, there was unfortunately an
error made in the evaluation of the corresponding decay amplitude. As explained

in Appendix C.6, the impact of this mistake is dramatic, the partial width being

"where a partial width of 172 keV was quoted for the 27127~ mode.
2the error comes from the range of values considered for the gauge coupling parameter.
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significantly overestimated.

Having noted that the massive Yang-Mills Lagrangian of Ref. [9] is not chirally
symmetric, Eidelman et al. [10] were motivated to revisit the calculation. They did not
attempt to work with the full minimal massive Yang-Mills Lagrangian involving the
a; meson (Appendix C.3), but rather they followed the proposal of Brihaye, Pak and
Rossi [149] to introduce counterterms to the naive 7, p Lagrangian of Ref. [9]. With
correction terms that modified the 47, pdm and w3 vertices, the authors of Ref. [10]
obtained a partial width of 16 & 1 keV for the 27727~ mode and of 0.6 &= 0.2 keV
for the 27977~ mode. However, their Lagrangian is still not chirally symmetric (see
Appendix C.3). As is described in Ref. [138], one could construct a chiral Lagrangian
by adding further counterterms to the model. It is, however, practicable to calculate

the rare p° decays while adopting a manifestly chiral approach from the start.

C.6 Decay Amplitude

Working at tree level, the relevant diagrams for p — 47 are shown in Fig. C.2. The
amount of available phase space in the decays is greatly reduced by the masses of
the decay products. A realistic calculation therefore requires a term in the effective
Lagrangians which accounts for the non-zero pion mass. In ChPT, explicit symmetry—
breaking terms can be introduced as though there were an external scalar field pro-
portional to the mass matrix, diag (m,, mg). Conserving isospin, the term required
is

2

z”mi(U + UM, (C.15)

The above term is clearly independent of the formalism used to describe the spin-1
fields. It has the additional effect of modifying the 47 vertex which appears in dia-
gram C.2b. The effect is quantitatively significant in the results, since they are much
smaller than those found previously [9, 10, 11], but it does not change their qualitative

features.
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AN
(c) (d) p

ai
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Figure C.2: Diagrams contributing to the p° — 47 decays in chiral effective La-
grangians of 7, p and a; mesons. Single lines denote pions, double lines spin-1 mesons.
Anomalous terms in the effective Lagrangians introduce diagrams (h) and (i) similar
to those of (f) and (g) respectively, but with an w meson replacing the a;.

Consider first the simplest Lagrangian in the hidden—gauge formalism. It includes
four gauge-covariant terms in the anomalous sector with undetermined coefficients.
Three of these are relevant to the off-shell w decay occurring in diagrams C.2h and
C.2i. The suggestion of Ref. [141] regarding those coefficients is adopted here, so
that one includes an wprm vertex but no w3n contact term. Consistency with various
phenomenological notions (see Appendix C.2) requires that the parameter a of the

model be set to 2. In the numerical work this choice is indeed made, whilst the gauge

C.6. Decay Amplitude



Appendix C. p — 47 in Effective Lagrangians 202

coupling is fixed so as to reproduce the empirical p meson mass'® through Eq. C.4.

The parameters used are then:
fr = 92.4MeV, m, = 139.6MeV, m, = my, = 770MeV,

a=2  §=>589. (C.16)

The amplitudes derived for the p° — 47 decays by the authors of Ref. [10] were
stated in that paper. Although the model used in that case did not include the a;
meson, all of the other graphs shown in Fig. C.2 were calculated. With the simplest
hidden—gauge Lagrangian the a; is also absent, as indeed is the pprm vertex which can
enter through diagram C.2c. However, for those vertices relevant to p® — 47 which are
present in the simplest hidden—gauge model, the differences from the corresponding
vertices in the Lagrangian of Ref. [10] lie not in their structures but only in their overall
strengths. Making appropriate changes to coefficients, the present calculation of the
decay amplitudes agrees with that of Ref. [10]. For the decay mode p° — 27+27~,
explicit expressions for the amplitude were also given by Bramon et al. [9]. A careful
comparison of these two references indicates a discrepancy in the momentum structure
of the graph C.2b contribution. Although the present calculation supports the version
of Eidelman et al., numerically one finds that the error in Ref. [9] has only a small
effect in practice. Certainly, it is not sufficient to invalidate the numerical results
quoted by Bramon et al..

Having calculated the amplitudes, a five—dimensional integral over phase space
must be performed to obtain the corresponding partial widths. The integrals are
expressed in terms of the Mandelstam-like variables of Kumar [156] and evaluated
numerically using the NAG routine DO1FDF, which maps the region of integration
onto the n-dimensional sphere and uses the method of Sag and Szekeres [81] to perform
the integration. The accuracy of the integration routine can be estimated by varying

the two parameters which specify the mapping onto the n-sphere. In all cases it is

13This procedure results in a 27 decay width of 143.4 MeV, a fraction narrower than the
observed 151.1 MeV.

C.6. Decay Amplitude



Appendix C. p — 47 in Effective Lagrangians 203

found that 50,000 integration points are sufficient to give the integrals to within one
part in a thousand.

The results obtained with simplest hidden—gauge model are shown in the first line
of Table C.1, labelled HG. They are around an order of magnitude smaller than any

of the results of the other recent calculations [9, 10] of the decays.

Model b =2t | p0 = 2707t
HG 0.89 0.44
HGNA 0.89 0.24
HGCS 0.59 0.37
MMYM 0.68 0.37
MYM+1 0.63 0.34
MYM+2 1.03 0.39

Table C.1: Decay widths for p° — 47 using various chiral effective Lagrangians. The
widths are quoted in keV with the specific models being defined in the text.

It was stated in Appendix C.5 that when Bramon et al. calculated the p° —
2727~ width using the same hidden-gauge model as above they arrived at 7.5+ 0.8
keV, in sharp contrast with the result given in Table C.1. The crucial difference
between the calculations lies in the strength of the direct p4m coupling. Bramon et al.
assumed that the expression for this vertex is identical to that in a massive Yang-Mills

model, being generated by the following term in the Lagrangian:

: 1
—igéi(P“(UTauU +U9,U") =g (1 - 3—f2£2 + - ) p,-m X 0. (C.17)

In fact, the appropriate term in the hidden-gauge model should be written, in the

unitary gauge, as

—2iag f2(p" (u'd,u + ud,u’)) = 2@“ (1 —

2
5 T+ - > P, I X ot (C.18)

12f27

where u is the square root of U. Although these terms both yield the same pr7m
coupling, the pdrm terms differ by a factor of four. Hence one cannot take the latter

coupling to be the same as in a massive Yang-Mills model. Reducing the contribution
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of diagram C.2a by a factor of four has a large effect on the total amplitude, explaining
the difference between the present result and that of Ref. [9].

In order to examine the relative importance of the anomalous and non-anomalous
processes in the amplitude, the partial widths can be evaluated with only the non-
anomalous contributions. Doing so leads to the result for p° — 27%*7~ which is
labelled HGNA in Table C.1. It can be compared with a value of 0.24 keV which
is obtained for the partial width of this decay mode if one integrates over just the
anomalous part of the amplitude. The two types of contribution are therefore of
similar importance with the interference between them being small and destructive in
character. It is also of interest to look at the effect of omitting the symmetry—breaking
47 interaction of Eq. C.15 (but retaining the physical pion mass in the propagator
etc.). The results in this case, labelled HGCS, indicate that this interaction does
indeed provide a significant contribution.

As a simple estimate of contributions beyond tree level, one can allow for the
finite width of the p meson in its propagator (as in Ref. [10]). The method is a rather
crude probe of the possible size of such effects, being sensitive to the representation
chosen for the model. For instance, whilst the amplitudes calculated for any process
should be the same using either the minimal hidden—gauge Lagrangian or its CCWZ
equivalent, the two representations may attribute different weights to the contributions
involving an intermediate p meson. Notwithstanding this disclaimer, it is nevertheless
somewhat reassuring to note that the modification to the p propagator produces only
a modest shift in the results.

For the above calculations to be seen as reliable, an important point to check is
that the results are fairly robust under changes to the model parameters. Instead of
the choices in Eq. C.16, one might reasonably decide to take a = 2.108 and g = 5.74 so
as to simultaneously reproduce the empirical p meson mass and width'*. With these

parameters the partial widths remain close to those in Table C.1, being 0.93 keV for

14The observed width implies that Gprr = 6.05.
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the 27727~ mode and 0.42 keV for the 277+ 7~ mode.

Consider now the decay amplitude in the massive Yang-Mills type of theory, be-
ginning with the simplest Lagrangian of that formalism (see Appendix C.3). As is
illustrated by prm scattering, in this approach chiral symmetry may require strong can-
cellations among the various contributions to an amplitude. In deriving the amplitudes
the Lagrangian is first rewritten in terms of the fields defined by the minimal diag-
onalization procedure. The additional three- and four-point interactions which are
thereby generated produce contributions to the p — 47 amplitudes which are different
in structure from any of the expressions quoted in Refs. [9, 10]. Graphs C.2f and C.2g,
featuring intermediate a; states, also make contributions of a form not considered in
the earlier references. Note, however, that powerful checks can be made by repeating
the present calculations in the equivalent CCWZ representation of the model, as will
be discussed shortly.

The parameters of the minimal Yang-Mills model are set analogously to those in
the simplest hidden—gauge model: that is, they are chosen to satisfy the KSRF relation
(Z* = 1) and to reproduce the empirical p meson mass (implying that g = 5.89). As
described in Appendix C.3, there is a diagonalization—induced p77 interaction in the
minimal Yang-Mills model which reduces the p meson width to 107.6 MeV. Persevering
with the model despite this drawback, then the resulting partial widths for p° — 47
are as shown in Table C.1, labelled MMYM. They are similar in magnitude to those
of the hidden—-gauge model. As already emphasized, the calculations of Refs. [9, 10]
used Yang-Mills models that do not respect chiral symmetry. Without the ensuing
cancellations, they lead to partial widths that are too large by an order of magnitude.

Just as with the hidden—gauge model discussed earlier, the partial widths obtained
with the minimal massive Yang-Mills Lagrangian are found to depend only mildly on
the value taken for the gauge coupling. The non-anomalous and anomalous parts of

the decay amplitude to 2777~ are again of almost equal importance!® and interfere

15Taking just the non-anomalous part gives a partial width of 0.18 keV whereas the anoma-
lous piece alone gives 0.21 keV.

C.6. Decay Amplitude



Appendix C. p — 47 in Effective Lagrangians 206

destructively, albeit to a very small extent.

The simple hidden—gauge and massive Yang-Mills models used above can be con-
verted by a change of variables into equivalent CCWZ Lagrangians [136, 138], which
should yield the same predictions for any observable as the original representations.
Repeating the p° — 47 calculations with these models in their CCWZ forms therefore
provides a stringent and useful check on the previous results. Furthermore, the CCWZ
formalism is a convenient framework in which to examine the sensitivity of these results
to assumptions about the a; meson. In contrast to the massive Yang-Mills approach,
the parameters describing the a; mass and couplings may be changed independently,
without the need to introduce compensating terms into the Lagrangian.

The relevant non-anomalous interactions in the CCWZ versions of the hidden—
gauge and massive Yang-Mills models used above were given in Appendix C.4. The
anomalous sectors can be similarly converted into CCWZ form. Having done so, the
sum of amplitudes for the anomalous diagrams (C.2h and C.2i) must remain unaltered
by the change of variables. For example, this is easily checked for the wpm vertex of the
hidden—gauge Lagrangian which yields wpr and w37 terms in the CCWZ language.
The conversion of the anomalous sector is rather involved in the massive Yang-Mills
case, however, and so for simplicity the anomalous piece of the decay amplitude is taken
directly from the original version of the minimal Yang-Mills model. Working with the
same parameter sets as above, the results presented earlier have been successfully
verified.

Starting from the CCWZ Lagrangians which are the equivalents of the models
used above, it is then straightforward to investigate the effects of relaxing some of
the assumptions imposed in those models. For instance, one could consider whether
there might be any significance in adjusting the masses of the w and a; mesons to
their empirical values [12], m,, = 783 MeV and m,, = 1230 MeV. Doing so, and using

the couplings of the minimal massive Yang-Mills model (Eq. C.13), gives the results
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labelled as MYM+1 in Table C.1. This Lagrangian corresponds to a massive Yang-
Mills Lagrangian with non-minimal terms, such as those suggested in Refs. [137, 145,
146]. The results are quite similar to those labelled MYM. This is in stark contrast
to the effect of setting these meson masses to their empirical values in the massive
Yang-Mills representation of the Lagrangian. In that case the partial widths would be
12.1 keV and 3.18 keV for the 2727~ and 27%7r 7~ final states respectively. These
are much larger than any of the widths calculated with Lagrangians that respect chiral
symmetry and provide a clear demonstration of the need to work consistently when
using the massive Yang-Mills formalism.

The parameter choice of simplest massive Yang-Mills Lagrangian suffers from the
fact that it gives too small a width for p — 27. It is a simple matter to change the
CCWZ coefficients to remove this deficiency. One method is equivalent to adding the
non-minimal term of Eq. C.8 to the massive Yang-Mills Lagrangian [137, 145]. In order
to cancel the diagonalization-induced O(p*) prm coupling in the original framework,
one takes £ = 1. Inclusion of this term gives the CCWZ coefficients listed in Eq. C.14.
Using those couplings and the empirical meson masses produces the results for p — 47
which are labelled as MYM+2 in Table C.1. The partial widths are a little larger than
those from other Lagrangians considered, but are of the same order of magnitude.

In the hidden—gauge and Yang-Mills Lagrangians described above the 3p coupling
is equal to the O(p) prm one because of the assumed universal coupling of the p. Using
the CCWZ equivalents of these models, this assumption can be tested by varying the
3p coupling strength, go. The results are not fortunate. In all cases, shifts of +30% in
the coupling only alter the decay rate for p° — 27%7+7~ by about £1%. Since such
shifts can easily be accommodated through moderate changes in the other parameters,
a measurement of this decay cannot therefore be used as an experimental probe of the
3p vertex.

Since the partial widths in all of the chirally symmetric cases have been found to

be small, it is interesting to consider whether small symmetry—breaking contributions
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to the p meson mass could prove to be significant. If isospin symmetry is assumed to

hold then there are two suitable symmetry-breaking terms in the CCWZ Lagrangian,
1
e(V,VH(U + UY), =V V(U + Ut). (C.19)

The second term, involving the field strength, alters the p mass because one would
need to rescale the field to recover the canonical normalization of the kinetic term.
Allowing such terms to contribute up to 10 MeV of the empirical mass, one finds that
the € term changes the partial widths by just £1% whereas the 7 term can have effects
at the ~ 10% level.

The results of this appendix have shown that the partial widths for p® — 47 are
sensitive to the choice of Lagrangian, receiving significant contributions from anoma-
lous processes and symmetry—breaking interactions. However, for all of the chirally
symmetric models considered, the widths are of the order of 1 keV, corresponding to
cross sections of the order of 5 pb. Although the processes may be hard to observe in
future experiments, they should not be beyond the reach of DA®NE, which is designed

to have a luminosity of 5 x 108 b='s™! [153].
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