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Abstra
t
UNIVERSITY OF MANCHESTERABSTRACT OF THESIS submitted by Robert Plant for the Degree ofDo
tor of Philosophy and entitled Meson Properties in an Extended Nonlo
alNJL ModelMonth and Year of Submission: Mar
h 1998

A nonlo
al version of the NJL model is investigated. It is based on a separablequark{quark intera
tion, as suggested by the instanton liquid pi
ture of the QCD va
-uum. The intera
tion is extended to in
lude terms that bind ve
tor and axial-ve
tormesons. The nonlo
ality means that no further regulator is required. Moreover themodel is able to 
on�ne the quarks by generating a quark propagator without polesat real energies. Features of the 
ontinuation of amplitudes from Eu
lidean spa
e toMinkowski energies are dis
ussed. These features lead to restri
tions on the modelparameters as well as on the range of appli
ability of the model. Conserved 
urrentsare 
onstru
ted, and their 
onsisten
y with various Ward identities is demonstrated.In parti
ular, the Gell-Mann{Oakes{Renner relation is derived both in the ladder ap-proximation and at meson loop level. The importan
e of maintaining 
hiral symmetryin the 
al
ulations is stressed throughout.Cal
ulations with the model are performed to all orders in momentum. Mesonmasses are determined, along with their strong and ele
tromagneti
 de
ay amplitudes.9



Abstra
t 10Also 
al
ulated are the ele
tromagneti
 form fa
tor of the pion and form fa
tors asso-
iated with the pro
esses 

� ! �0 and ! ! �0
�. The results are found to lead to asatisfa
tory phenomenology and demonstrate a possible dynami
al origin for ve
tor{meson dominan
e. In addition, the results produ
ed at meson loop level validate theuse of 1=N
 as an expansion parameter and indi
ate that a light and broad s
alar stateis inherent in models of the NJL type.
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Chapter 1
Introdu
tion
1.1 QCDIt is widely a

epted that strong intera
tions are des
ribed by the theory of quantum
hromodynami
s [1℄ (QCD). This is an SU(3) gauge theory of spin 12 quarks whi
hintera
t via the 
olour gauge �eld, the quanta of whi
h are 
alled gluons. The quarksthemselves have one of six di�erent 
avours, whi
h are identi
al with regard to theQCD Lagrangian, apart from their bare (
urrent) masses. The non-Abelian nature ofthe gauge group means that there are also purely gluoni
 intera
tions, arising from theuse of gauge{
ovariant �eld strengths. In perturbative 
al
ulations of the running 
ou-pling in the theory, these gluoni
 self intera
tions 
ause the gauge 
oupling strength toin
rease as the energy s
ale de
reases. Hen
e the theory at low energies is intrinsi
allynon-perturbative. At high energies the theory is weakly 
oupled, a property knownas asymptoti
 freedom. Although the predi
tions of the theory have been su

essfullytested in this regime, where the perturbative te
hnique is a valid one, a wide varietyof alternative methods is required to probe the low-energy 
ontent of the theory.There are several important features of strong{intera
tion physi
s whi
h arethought to be 
onsequen
es of the dynami
s in the low-energy regime. These fea-tures should be re
e
ted in any attempt to model the non-perturbative dynami
s, if

15



Chapter 1. Introdu
tion 16only by means of their phenomenologi
al impli
ations. One su
h feature is that ofdynami
al 
hiral symmetry breaking. Apart from the 
urrent quark masses, the QCDLagrangian is invariant under the global 
hiral transformations,(1� 
5) ! Gl(1� 
5) ; (1 + 
5) ! Gr(1 + 
5) ; (1.1)where Gl 
 Gr 2 SU(Nf)l
 SU(Nf )r. Sin
e the 
urrent quark masses of the lightesttwo (or three) 
avours are small one might hope for this to be a useful approximatesymmetry at low energies, where the heavy{quark 
avours are not relevant to thephysi
s. However, the observed spe
trum of ex
itations above the va
uum state doesnot exhibit 
hiral symmetry. The physi
al va
uum itself is therefore 
onsidered notto be invariant under 
hiral transformations, the axial part of the 
hiral group beinga spontaneously broken symmetry. The required phase transition from the 
hiralva
uum to the physi
al va
uum, whi
h realizes only the ve
tor part of the group,is believed to be inherent in the non-perturbative se
tor of the theory. Asso
iatedwith this transition is the appearan
e of a Goldstone boson. In pra
ti
e, the smallexpli
it 
hiral symmetry breaking, owing to the non-zero 
urrent quark masses, meansthat the Goldstone state is manifested only approximately in the guise of the lightpseudos
alars.Another important property of QCD is that of 
on�nement, the requirementthat only 
olour{singlet 
omposite systems of quarks and gluons 
an be observed asasymptoti
 states. There being no proof that 
on�nement must o

ur in QCD, theproperty is postulated on the basis that no 
oloured states have ever been dete
ted.Qualitative arguments, based on the large N
 limit [2℄ or on the assumed failureof the 
luster de
omposition prin
iple, indi
ate that 
on�nement should be a non-perturbative e�e
t, asso
iated with strong, long{range for
es between 
oloured obje
ts.Some support for su
h ideas is provided by the phenomenologi
al su

ess of potentialand string models of hadrons as well as by latti
e gauge studies.One possible approa
h towards a pra
ti
al des
ription of low-energy strong physi
sis the use of QCD sum rules [3℄, whi
h aim to interpolate between the 
al
ulable1.1. QCD



Chapter 1. Introdu
tion 17high-energy behaviour of the theory and low-energy phenomenology. Although thiste
hnique has a �rm theoreti
al footing, there may be un
ertainties introdu
ed by the
hoi
e of formulation on the phenomenologi
al side, while the results themselves 
anexhibit signi�
ant dependen
e on the mass s
ale at whi
h the mat
hing is performed.Another possibility is to attempt to simulate QCD on a latti
e of spa
e{time points [4℄.In prin
iple this approa
h 
ould be a sour
e of mu
h information. However, it is veryintensive numeri
ally and a

urate results are diÆ
ult to a
hieve, not least be
auseof the un
ontrolled approximations that are presently required in pra
ti
e. Further,there is as yet an in
omplete understanding of systemati
 errors, su
h as �nite{sizee�e
ts. Another method, whi
h also expli
itly en
odes the full dynami
al 
ontent ofQCD, is to work in the formalism of the S
hwinger{Dyson equations [5℄. This for-malism 
onsists of an in�nite tower of 
oupled integral equations linking the n-pointfun
tions of the theory to fun
tions with fewer external lines. In order to make the sys-tem tra
table it must be trun
ated, with some ansatz 
hosen to represent the physi
snegle
ted. The degree of approximation involved in that pro
ess is unquanti�ed and,for an ansatz with any pretensions towards being realisti
, the numeri
al situation 
aneasily be
ome prohibitive. The method does, however, have 
ertain advantages overthe latti
e approa
h, su
h as the transparent 
onne
tion between dynami
al 
hiralsymmetry breaking and the Goldstone 
hara
ter of the pion [6℄. Yet another te
h-nique 
ommonly applied is that of the e�e
tive 
hiral Lagrangian1 where one works interms of mesoni
 degrees of freedom and 
onstru
ts Lagrangians 
onsistent with 
hiralsymmetry. Although su
h Lagrangians may 
ontain many unknown 
oeÆ
ients, whi
hmust be determined by appeal to experiment, they are nevertheless at worst usefultools for elu
idating the relationships between di�erent physi
al pro
esses.Ea
h of the methods outlined above is, at least in prin
iple, 
apable of beingfully 
onsistent with QCD. An alternative line of atta
k, however, is to operate in aframework whi
h relaxes that requirement from the outset. For instan
e, the starting1whi
h is dis
ussed further in Appendix C.
1.1. QCD



Chapter 1. Introdu
tion 18point 
ould be to postulate some e�e
tive quark Lagrangian. In that style of approa
hone aims to 
onstru
t a model whi
h in
orporates some important aspe
ts of thelow-energy QCD dynami
s and yet with whi
h a
tual 
al
ulations of observables arereasonably straightforward to perform. Considered from a purely phenomenologi
alperspe
tive, a model of that type should be 
apable of a

ounting for a wide range ofexperimental data, hopefully with a more limited set of free parameters than would beneeded by a model formulated at the hadroni
 level. Moreover, one might hope thatby exploring a variety of su
h models of intera
ting fermions it may be possible to gainsome insight into the ways in whi
h parti
ular properties of the underlying dynami
sin
uen
e the resulting observables. A simple and early example of the approa
h is themodel of Nambu and Jona{Lasinio [7℄ (NJL) of whi
h there will be a good deal moreto say later.1.2 OverviewThe main body of this thesis will present work on the development of a model ofintera
ting fermions. A simpler version of the model to be used was originally pro-posed by Bowler and Birse [8℄ as a tra
table dynami
al model whi
h shares severalfeatures with low-energy QCD. Being based on a four{quark intera
tion vertex, it hassome similarities with the model of NJL. However, sin
e the intera
tion of Ref. [8℄ istaken to be nonlo
al there are also some important di�eren
es. Amongst these arefeatures whi
h eliminate the traditional problems of the NJL model whilst neverthe-less retaining mu
h of the simpli
ity that is its 
hief merit. The nonlo
al model wastherefore suggested as one whi
h o�ers an interesting improvement over the originalNJL Lagrangian. This thesis investigates the proposed model in some detail, extend-ing the treatment of Ref. [8℄ by in
luding intera
tion terms that bind the ve
tor andaxial ve
tor mesons as well as by developing a framework that enables ele
tromagneti
quantities to be 
al
ulated.The enlarged model to be des
ribed here is referred to as the nonlo
al extended1.2. Overview



Chapter 1. Introdu
tion 19NJL model, details of its de�nition and motivation being presented in Chp. 2. A partof that de�nition is the spe
i�
ation of transverse ve
tor and axial 
urrents, whi
h arealso dis
ussed in that 
hapter. Cal
ulations with the model will be performed to allorders in momentum but to a �nite order in the 1=N
 expansion. Working initially atleading order (LO) in 1=N
, the resulting forms of the quark and meson propagatorsare presented in Chp. 3. In the following 
hapter, the means of 
oupling parti
les toexternal 
urrents are explained and various Ward identities, su
h as the Gell-Mann{Oakes{Renner (GMOR) relation and that for the 
orrelator of ve
tor 
urrents, aredemonstrated to hold. Determination of the model parameters and the resulting me-son spe
trum are dis
ussed in Chp. 5, along with the evaluations of purely hadroni
meson de
ay modes. A variety of ele
tromagneti
 de
ays and form fa
tors are 
al-
ulated and dis
ussed in Chp. 6. In addition, that 
hapter in
ludes des
riptions ofhow other identities are satis�ed by the model 
al
ulations, spe
i�
ally those for thepion 
harge and the anomalous �0 de
ay amplitude. Sin
e 1=N
 is not a parti
ularlysmall expansion parameter, an obvious desire is to examine the 
orre
tions to themodel at next-to-leading order (NLO). In Chp. 7, the theoreti
al basis for doing so isestablished, the extra 
ontributions being given for the quark and meson propagatorsand for the pion de
ay 
onstant. There are useful 
an
ellations whi
h 
an be foundamongst the graphs 
ontributing to the pion de
ay 
onstant at NLO and these aredetailed in Appendix A.1. It is important to ensure that the NLO treatment remains
onsistent with symmetry restri
tions and to that end the GMOR relation is expli
itlyveri�ed in Chp. 7, drawing on results derived in Appendi
es A and B. Numeri
al re-sults from the NLO analysis are given in Chp. 8. There is some additional dis
ussionand a summary of the �ndings in Chp. 9 where 
on
lusions are also drawn.Chiral Symmetry ConstraintsIn the work on the nonlo
al extended NJL model, a 
onsiderable amount of attentionwill be devoted to showing that the model 
al
ulations satisfy various identities whi
h
1.2. Overview
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tion 20follow from 
hiral symmetry. Sin
e the intera
tions in the model are 
onstru
ted tobe 
hirally symmetri
, su
h identities will provide useful 
he
ks on the 
al
ulations,helping to verify that all of the relevant 
ontributions to a pro
ess have been 
orre
tlyidenti�ed and evaluated. This is important to establish be
ause a failure at anystage to in
orporate 
hiral symmetry 
orre
tly 
ould greatly distort the results forobservables. The point is highlighted in Appendix C with a 
al
ulation of the rarede
ay �! 4�. Although this de
ay mode of the � meson is yet to be observed, someauthors [9, 10℄ have re
ently expressed hopes that it might be possible to dete
t it inforth
oming experiments. Following some general 
omments about the 
onstru
tion of
hiral e�e
tive Lagrangians, the appendix des
ribes 
omputations of the de
ay usinga variety of su
h phenomenologi
al Lagrangians. The de
ay widths dedu
ed fromall of these 
hirally{symmetri
 approa
hes are an order of magnitude smaller thanthose whi
h have been estimated in models that did not respe
t all of the symmetry
onstraints [9, 10, 11℄. The pro
ess therefore gives a dramati
 illustration of the needto make sure that su
h 
onstraints are enfor
ed.Brief 
onsideration will also be given in Appendix C to the possible impli
ationsthat a measurement of the � ! 4� partial width 
ould have for the e�e
tive La-grangians used. In parti
ular, 
omments will address the issue of whether the de
aymight be able to test any of the phenomenologi
al notions asso
iated with the ve
tormesons. Su
h notions will be amongst those probed within the 
ontext of the nonlo
alextended NJL model. In the remainder of this introdu
tory 
hapter, it therefore seemsappropriate to draw the reader's attention to some of those phenomenologi
al ideaswhi
h will be of parti
ular relevan
e to the work.1.3 Chiral SymmetryThe 
on
ept of 
hiral symmetry is a very powerful one, underpinning almost all ofthe phenomenology whi
h has been developed in low-energy strong physi
s. In orderfor it to be so useful a prin
iple it is ne
essary that the 
urrent quark masses be1.3. Chiral Symmetry
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tion 21small. The symmetry is then almost satis�ed by the QCD Lagrangian. The 
urrentmasses should be small in 
omparison with, say, the proton mass, whi
h one mightreasonably 
onsider to be a typi
al energy s
ale of the strong intera
tion. In the mostre
ent update from the Parti
le Data Group [12℄, the following values were quoted forthe 
urrent quark masses2:mu = 2 to 8MeV; md = 5 to 15MeV; ms = 100 to 300MeV; (1.2)with the other three quark 
avours being heavier still. The up and down 
avoursof quark 
an therefore be regarded as light in the above sense. Going further, if thestrange quark were also in
orporated then a three{
avoured 
hiral symmetry mightprove a useful tool. However, sin
e the strange quark's bare mass is signi�
antlylarger, there are many pra
ti
al appli
ations where one would need to in
lude appro-priate symmetry{violating e�e
ts to obtain satisfa
tory results. While the study ofstrangeness is an important subje
t in its own right, the attention of this thesis willbe fo
used on the lightest two 
avours.1.4 Constituent QuarksOf the strongly{intera
ting states that have been so far observed there are two main
lasses: mesons, the quantum numbers of whi
h may be a

ounted for in terms ofthose of an underlying qq pair; and (anti-) baryons, similarly des
ribed with a (q q q)qqq stru
ture. For 
ompleteness, it should also be pointed out that there is sometentative eviden
e for other possible stru
tures in observed bound states, su
h as thepurely gluoni
, qq mole
ules or hybrid qqg states. The 
on
erns here are with themesons, being the simplest bound systems in whi
h to attempt to model the internaldynami
al stru
ture.2In general, the values of the quark masses are dependent upon the renormalizations
heme adopted and the s
ale at whi
h they are evaluated. The estimates quoted refer to amass{independent subtra
tion s
heme, at a s
ale of O(1GeV).
1.4. Constituent Quarks
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tion 22The quarks referred to in the above 
ategorizations of hadroni
 spe
tros
opy arenot to be identi�ed with those elementary �elds with masses of a few MeV (Eq. 1.2)found in the QCD Lagrangian. Although sharing the same dis
rete quantum numbersas those �elds, the quarks that appear in simple spe
tros
opi
 des
riptions are obje
tswith masses of a few hundred MeV. E�e
tive masses of that order are required instraightforward spe
tros
opi
 treatments of hadroni
 properties, su
h as their massesand magneti
 moments. It is postulated that the a
quisition of su
h an e�e
tivemass o

urs as a 
onsequen
e of the non-perturbative intera
tions of the bare quarkswith the non-trivial va
uum stru
ture. The generation of masses for parti
les throughspontaneous symmetry breaking is a familiar phenomenon from the Higgs me
hanismof the ele
troweak model [13℄ and is well illustrated by the in
lusion of fermions in thelinear sigma model [14℄. More parti
ularly, the simplest available order parameter fordynami
al symmetry breaking in QCD is provided by the matrix element h0j  j0i0,de�ned3 by4 h0j  j0i0 = �iTr Z d4p(2�)4S0(p); (1.3)where S0(p) is the full two-point fun
tion dressed by the intera
tions of the theoryand evaluated at zero 
urrent quark mass. As throughout the text, the 
hiral limit ofa quantity is here denoted by the subs
ript zero. Now, the most general form of thedressed quark propagator isS�1(p) = (1 + a(p2))/p� b(p2): (1.4)For there to be a non-zero 
ondensate in the physi
al va
uum, 
learly it must bethat b(p2) 6= 0 to give a non-vanishing Dira
 tra
e in Eq. 1.3. The existen
e ofa s
alar term in Eq. 1.4 
an be interpreted as an e�e
tive mass for the 
onstituentquark, the generation of whi
h is therefore inextri
ably entwined with the spontaneous3Stri
tly speaking, to give a 
omplete de�nition, one should spe
ify a parti
ular renor-malization s
heme and the s
ale at whi
h the s
alar 
ondensate is to be evaluated. Never-theless the expression given is suÆ
ient for the present purpose of supplying a suitable orderparameter.4Here `Tr' is used to denote a tra
e over 
avour, 
olour and Dira
 indi
es; the symbol `tr'will later be used to indi
ate a tra
e over Dira
 indi
es only. 1.4. Constituent Quarks



Chapter 1. Introdu
tion 23breakdown of 
hiral symmetry. While it is obvious that this mass must run (sin
easymptoti
 freedom demands that b(p2 ! �1) ! 0), in many studies it is assumedto be approximately 
onstant over the low-energy range (up to � 1 GeV). Su
h anassumption is not in 
on
i
t with many phenomenologi
al 
onsequen
es, but 
an bea sour
e of diÆ
ulties when imposed upon a dynami
al model, su
h as that of NJL.1.5 The PionsChp. 1.1 mentioned the important role played by the light pseudos
alar mesons whi
h,in the 
hiral limit, are the massless Goldstone modes asso
iated with dynami
al 
hiralsymmetry breaking. A simple early model whi
h embodies 
hiral symmetry is the
elebrated linear sigma model of Gell-Mann and L�evy [14℄. As well as pseudos
alar�elds for the pions, the model 
ontains a s
alar �eld whi
h a
quires a va
uum expe
ta-tion value (�f�) and is thereby responsible for the spontaneous symmetry breakdown.The ground state is degenerate with respe
t to pioni
 ex
itations that lie on the 
hiral
ir
le5, �2 + �2 = f 2� . An axial symmetry transformation a
ts to move the system be-tween these degenerate states. Its e�e
t 
an be parameterized by the matrix elementof the axial 
urrent, Ja�5 = 12 �a
�
5 , between the va
uum and a single pion,h0jJa�5 (x)j�b(q)i = Æabif�q�e�iqx: (1.5)The above matrix element 
ontrols the weak de
ay of the 
harged pion, �� ! l��l(l = �; e) [15℄ from whi
h a numeri
al value for the pion de
ay 
onstant, f�, 
anbe determined. The quantity is a 
ru
ial element in any 
hiral model sin
e it is thephysi
al value whi
h sets a s
ale for the dynami
al symmetry breaking pro
ess. Takingthe divergen
e of Eq. 1.5 givesh0j��Ja�5 (x)j�b(q)i = Æabf�m2�e�iqx; (1.6)relating the pion mass to the expli
it breaking of axial symmetry. The relationshipwas further developed by Gell-Mann, Oakes and Renner [16℄ (GMOR) who derived5note that the 
onvention is followed where an unders
ore denotes an isotriplet.1.5. The Pions
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tion 24the result f 2�m2� = �m
h0j  j0i0 +O(m2
); (1.7)where m
 is the average of the up and down 
urrent quark masses. A further assump-tion is required to obtain Eq. 1.7, namely the partial 
onservation of the axial 
urrent(PCAC). Although the 
urrent quark masses expli
itly break the axial part of the
hiral group, its 
urrent is regarded as 
onserved in the �rst instan
e, the e�e
ts ofthe a
tual symmetry breaking often being small 
orre
tions whi
h 
an reasonably betreated perturbatively. Eq. 1.6 implies that a suitably{normalized ��Ja�5 
ould be usedas the �eld des
ribing an on-shell pion. Making the PCAC assumption then meansthat an extrapolation of this operator from the pion mass shell to q2 = 0 should be asmooth one and hen
e that low-energy matrix elements of the axial 
urrent divergen
eare dominated by the pion. Appli
ation of this notion 
an be very powerful. Its plausi-bility may be justi�ed a posterori from the su

esses of its many 
onsequen
es. When
ombined with 
urrent algebra (the 
ommutation relations of the ve
tor and axial
urrents), there are a wide variety of soft pion theorems whi
h 
an be dedu
ed [17℄.Interpretation of the s
alar (sigma) meson in the linear sigma model is far more
ontroversial. The parti
le is ex
ited by for
es whi
h a
t to restore a Wigner{Weylrealization of 
hiral symmetry, its mass parameterizing the resistan
e of the va
uumto su
h for
es. However, sin
e there does not exist an unambiguous physi
al stateto identify with the �eld, it remains the subje
t of debate. Su
h issues are dis
ussedmore fully in Chps. 5 and 8.1.6 The Ve
tor MesonsAlthough soft pion theorems provide mu
h useful information about pro
esses at thelowest energies there are important dynami
al e�e
ts, not solely determined by sym-metry 
onsiderations, whi
h be
ome relevant as energies in
rease. In the dis
ussion ofsu
h e�e
ts, the existen
e of more massive parti
les be
omes signi�
ant. The lightest
1.6. The Ve
tor Mesons
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tion 25of these are the ve
tor mesons. As is dis
ussed in Appendix C.1, the ex
hange of su
hresonant parti
les is the dominant 
ontribution to pion dynami
s beyond the lowestenergies. The ve
tor mesons are also among the main ingredients in meson ex
hangemodels of nu
lear for
es [18℄. Although pion ex
hange a

ounts for the major partof the long{range inter{nu
lear for
e, in
lusion of the ! meson 
an help to explainthe short distan
e repulsion between nu
leons. Furthermore, the parti
le is 
onsideredto be responsible for part of the spin{orbit intera
tion. The � meson proves to be alesser, but still signi�
ant in
lusion6, being relevant at 
omparable length s
ales of � 1fm. The possibility of ��! mixing [19℄ is an interesting and mu
h{debated aspe
t ofinter{nu
lear for
es, providing a me
hanism [20℄ for observed 
harge{symmetry viola-tions [21℄. In addition, this mixing has been suggested as a potential sour
e for CPviolation in B-meson de
ays [22℄.The ve
tor mesons are also highly 
onspi
uous in dis
ussions of the ele
tromag-neti
 
ouplings of hadrons. Indeed, the very existen
e of the ! meson7 was �rstproposed in 1957 [23℄ in order to interpret nu
leon form fa
tors8. The � resonan
e wassuggested on similar grounds shortly afterwards [28℄. Sin
e these parti
les have thesame dis
rete quantum numbers as the photon they 
an parti
ipate as intermediatesin ele
tromagneti
 intera
tions. This point soon lead to the phenomenologi
al 
on-
ept of ve
tor meson dominan
e (VMD) [26℄, the idea that su
h intermediate statesmight a
tually make the dominant 
ontributions to ele
tromagneti
 matrix elements.The 
on
ept is perhaps most dramati
ally suggested by the pion form fa
tor, whi
his strongly peaked at the � meson mass [29℄. Moreover, the variation with momen-tum of this form fa
tor, over a fairly wide range of q2, 
an be well des
ribed usingsimply a 
anoni
al � meson propagator. Experimental support for VMD 
an also be6there are also 
ontributions from 
ombined �� ex
hange whi
h 
an have important 
on-sequen
es [18℄.7although named as �0 by the author of the initial paper.8A tentative suggestion for a new, heavy meson to a

ount for the phenomenologi
al NNspin{orbit for
e 
an also be tra
ed ba
k to that year [24℄. However, it was not until threeyears later that this was thought to be a ve
tor state [25, 26℄ and treated seriously [27℄ inthat 
ontext.
1.6. The Ve
tor Mesons
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tion 26inferred from various other mesoni
 form fa
tors [30℄, from ele
tromagneti
 meson de-
ays [31℄ and from photoprodu
tion pro
esses in nu
lear physi
s [32℄. The underlyingreasons for these su

esses are un
lear. It is therefore of interest to examine whetherthere might be any support for the 
on
ept within a dynami
al framework su
h asthat of the nonlo
al extended NJL model. VMD 
an be expressed more 
on
retely asthe assumption of an identity between the ele
tromagneti
 
urrent and the 
anoni
alinterpolating �elds of the ve
tor mesons [33℄,J�EM(x) = �eg�
�0�(x)� eg!
!�(x) + � � � (1.8)where the dots refer to more massive ve
tor resonan
es. The 
onstants gV
 parame-terizing the 
oupling strengths between the photon and the ve
tor mesons are to be
onsidered as being de�ned by the above �eld{
urrent identity, Eq. 1.8. They 
an bedetermined experimentally from the de
ays V ! e+e�. An essential point to note,without whi
h Eq. 1.8 would be invalid, is that a spin-1 �eld 
oupled to a 
onserved
urrent of ne
essity has no divergen
e itself, by virtue of its Pro
a equation9.Another phenomenologi
al 
on
ept, 
losely related to VMD, is that of a universal
oupling of the ve
tor mesons [17, 34℄. Ele
tromagneti
 gauge invarian
e requires thatthe photon be universally 
oupled to all other elementary �elds. The 
ouplings to
omposite states are 
ompli
ated by asso
iated form fa
tors, but for a real photonthese simply redu
e to the known 
harge of the state. Suppose now that one is pre-pared to a

ept an extreme form of VMD where the �eld{
urrent identity is saturatedby the lightest ve
tor resonan
es. Sin
e photon{hadron 
ouplings then take pla
eex
lusively via intermediate � and ! mesons, it follows that the 
ouplings of theseparti
les to strong states should themselves be universal. The statement will only betrue on the photon mass shell and stri
tly therefore universal 
oupling 
an only applyto the intera
tions of the interpolating ve
tor �elds de�ned by Eq. 1.8 at the o�-shellpoint q2 = 0. Away from that point, universality 
an only persist by means of appar-ently improbable 
oin
iden
es relating the strong and ele
tromagneti
 form fa
tors of9the Euler{Lagrange equation for that �eld. 1.6. The Ve
tor Mesons
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tion 27various targets. With that basis, an extrapolation of the prin
iple over a fairly largeinterval of q2, from zero to the on-shell ve
tor meson mass, is highly dubious; it is
ertainly far more implausible than the PCAC extrapolation from zero to m2�. Sur-prisingly, however, su
h a bold step turns out rather well from the phenomenologi
alperspe
tive: relations between the resulting predi
tions for �! e+e�, �! �+�� andthe phenomenologi
al �NN 
oupling used in nu
lear models [35℄ are reasonably wellsatis�ed. As with VMD, the reasons for the su

ess of universality are not known, pre-sumably lying in some approximate property yet to be unearthed from the dynami
s.Alternatively, there might of 
ourse just be some 
oin
iden
e amongst the parti
ularve
tor{meson 
ouplings whose values 
an be determined. This interesting question isan issue whi
h will re
eive some attention in the remainder of the thesis. Appendix Cin
ludes 
omment on whether dete
tion of the �0 ! �+��2�0 de
ay 
ould in pra
ti
eprobe the strength of the ��� vertex, whi
h would then strengthen or weaken theexperimental support for universality. Also, Chp. 6 in
ludes dis
ussion on whetheruniversality might arise from within the nonlo
al extended NJL model.

1.6. The Ve
tor Mesons



Chapter 2
Nonlo
al Extended NJL Model
2.1 NJL ModelThe Nambu{Jona-Lasinio (NJL) model [7, 36, 37℄ was des
ribed in the introdu
tion(Chp. 1) as a dynami
al model whi
h is very mu
h simpler than QCD but whi
hshares several qualitative features with it. Most notably, the NJL model supportsa dynami
ally{broken 
hiral symmetry, with the pions as approximate Goldstonebosons. Sin
e su
h features have long been known in low-energy strong physi
s, themodel has been widely used as a starting point for the des
ription of light mesoni
states as fermion{antifermion 
omposites, predating QCD and retaining its popularityto date. Viewed as a low-energy approximation to some underlying, strongly{
oupledfermioni
 theory, variations of the model have also been studied in the 
ontext of thetop-quark{
ondensate pi
ture of a 
omposite Higgs boson [38℄.The original NJL model is based on fermioni
 �elds intera
ting through a lo
al,
hirally{invariant, four-point vertex1. The lo
al nature of the intera
tion produ
es agreat simpli�
ation of the 
orresponding S
hwinger{Dyson and Bethe{Salpeter equa-tions. The main defe
ts of the model, however, are dire
t 
onsequen
es of this lo
ality.1The pre
ise form of the a
tion is dis
ussed in Chp. 2.3.

28
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al Extended NJL Model 29Spe
i�
ally, they are that the loop integrals diverge (and so must somehow be regu-lated) and that the model is non-
on�ning.The absen
e of 
on�nement in the NJL model o

urs be
ause the dynami
ally{generated 
onstituent quark mass is momentum independent. This fa
t imposes asevere restri
tion on the range of appli
ability of the model, sin
e a qq 
ontinuumopens up at energies of twi
e the 
onstituent mass. Only the pions lie unambiguouslybelow this threshold. The model also in
ludes the 
hiral partner of the pion, whi
h islo
ated on the threshold (indeed, just above it if one works beyond the 
hiral limit)and may, if desired, in
lude other mesoni
 states. Without 
on�nement, however, andwith an otherwise reasonable 
onstituent quark mass of � 300 MeV, the � meson andother su
h states would lie above the qq threshold and so 
ould de
ay into free qqstates.Sin
e the NJL model is non-renormalizable, in pra
ti
e it is ne
essary to applysome form of ultra-violet regularization with a 
ut-o� parameter that remains �nite.The details of the s
heme adopted must be regarded as a part of the spe
i�
ation ofthe model. A variety of s
hemes have been used in the literature, su
h as hard three{and four{momentum 
ut-o�s, proper time and Pauli{Villars regulators. Although themodel does 
ontain regularization{independent information [39, 40℄ and results withthe various regularization s
hemes have been found to be qualitatively similar [41℄, the
hoi
e of any parti
ular s
heme la
ks a sound physi
al motivation. A feature of manyof the s
hemes is that as well as the form of the 
ut-o�, a de�nite momentum routingmust be spe
i�ed for loop diagrams with two-or-more quark lines [42℄. In pra
ti
ea symmetri
 routing is often impli
itly taken in order to maintain Ward identities.Another aspe
t of 
on
ern is that the regularization s
heme must be spe
i�ed yetfurther if one wishes to 
al
ulate beyond leading order in the 1=N
 expansion, a new
ut-o� being required for meson loops [43, 44, 45℄.The need for a �nite regulator in the model is somewhat problemati
al in theanomalous se
tor. If low-energy theorems for anomalous pro
esses (su
h as that for
2.1. NJL Model
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) are to hold then a 
omplete set of quark states is required. This 
anbe a
hieved by leaving the anomalous diagrams ad ho
 unregulated [46℄ or else byin
luding additional terms in the Lagrangian in order to re
over the anomalous Wardidentities [40℄. Related problems o

ur in the presen
e of intera
tions of a ve
tor
hara
ter [46, 47, 48, 49℄ if one attempts to apply the regularization pres
ription toboth the anomalous and non-anomalous se
tors.2.2 Variations on the ThemeMany attempts have been made to generalize the original NJL model [50℄ with the aimof eliminating some of the unwanted features dis
ussed in Chp 2.1 but retaining itssu

essful phenomenologi
al aspe
ts [36, 37℄. One promising approa
h, whi
h providessome motivation for the model whi
h is studied here, is suggested by the instanton{liquid studies pioneered by Dyakonov and Petrov [51℄. In that pi
ture, the QCDva
uum is viewed in terms of a liquid of instantons (and anti-instantons), the gluoni

on�gurations whi
h 
onne
t topologi
ally{distin
t states within the va
uum. Theinstantons indu
e an e�e
tive quark vertex of the 't Hooft stru
ture [52, 53℄, whi
h isnonlo
al but has a separable form. The separable nature of this intera
tion retains asfar as possible the simplifying features of a lo
al model, with the nonlo
ality providinga natural 
ut-o� on all loop integrals. A similar 
lass of model assumes a separabledependen
e on the relative momentum of the qq pair and has been studied in Refs.[54,55, 56, 57℄.Other models with simple intera
tions have been suggested based on various othertypes of gluoni
 �eld 
on�gurations postulated within the QCD va
uum. For exam-ple, E�mov and 
oworkers [58, 59℄ start with a 
onstant (anti-) self-dual ba
kgroundgluon �eld in Eu
lidean spa
e and base their four-quark vertex on one-gluon ex
hangewithin su
h a ba
kground. Yet another re
ent model [60℄ used a four-quark vertex me-diated by a random 
olour matrix, as an attempt to simulate a strongly{
u
tuatingba
kground gluon �eld (see also[61℄). 2.2. Variations on the Theme
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al Extended NJL Model 31It should also be mentioned that there are expli
it studies of the QCD S
hwinger{Dyson equations based on one-gluon ex
hange for
es between the quarks, often us-ing e�e
tive gluon propagators [62, 63℄ (also see the review [5℄ and other referen
estherein).The work here develops and further explores a model proposed by Bowler andBirse [8℄. It is based on a nonlo
al, separable, four-quark vertex and is thereforesimilar to the instanton{liquid model of Ref. [51℄. The di�eren
es from the instantonmodel are that more general 
hoi
es of the intera
tion form fa
tor and the possible
ouplings are admitted. The parti
ular 
hoi
e of form fa
tor whi
h is adopted inthe numeri
al 
omputations 
an lead to quark 
on�nement, in the sense of a quarkpropagator without poles at real energies. It also ensures the 
onvergen
e of all quarkloop integrals, unlike that 
hosen in the separable model of Ref. [64℄. Only the pionsand their s
alar partner were studied in Ref. [8℄. In the spirit of the extended NJLmodel [37, 39, 40, 46, 65, 66, 67, 68, 69℄, other mesoni
 degrees of freedom, su
h asthe ve
tor mesons, 
an be in
orporated. In
luding these parti
les enables the role ofthe 
on�nement me
hanism to be probed, sin
e they have masses of around twi
e atypi
al 
onstituent quark mass.2.3 The Nonlo
al ModelFormally at least, one 
an imagine integrating out gluoni
 degrees of freedom to leavean e�e
tive a
tion for QCD expressed in terms of quark �elds only. As in the usualNJL model, su
h an a
tion is trun
ated to in
lude only the simplest intera
tionspossible, keeping the two-body for
es between quarks, as des
ribed by four-quarkverti
es. Indeed, at leading order in 1=N
, all six-quark and higher intera
tions 
ouldbe absorbed into e�e
tive 
ouplings for the four-quark terms, by repla
ing extra  � fa
tors with their va
uum expe
tation values. This is just the pro
edure followedin the three-
avour extended NJL model [68, 69℄ with a six-quark, U(1)A-breaking
2.3. The Nonlo
al Model
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al Extended NJL Model 32't Hooft determinant2 [52℄. If there is 
avour asymmetry then the pro
ess indu
ese�e
tive four-quark 
ouplings that depend on the 
avour 
hannel. However, there isno need to 
onsider su
h e�e
ts in any detail sin
e the present work spe
ializes to two
avours with isospin symmetry. The a
tion may be written asS = Z d4x (x)(i/� �m
) (x) +Xi Z Yn d4xnHi(x1; x2; x3; x4)� (x1)��i  (x3) (x2)�i� (x4): (2.1)The obje
t ��i in Eq. 2.1 denotes Dira
, 
olour and isospin matri
es. That the matrix
ombinations between the quarks at x1 and x3 are the same as those between x2 andx4 is a 
onsequen
e of parity and the Lorentz, 
avour and 
olour invarian
e of thea
tion. Imposing SU(2)l
SU(2)r
U(1)V symmetry restri
ts 
ertain of the possibleDira
 and isospin stru
tures to appear in the 
ombinationsH1(1
 1 + i
5�a 
 i
5�a); H2(
��a 
 
��a + 
�
5�a 
 
�
5�a);H5(�a 
 �a + i
5 
 i
5); H6(��� 
 ��� � ����a 
 ����a); (2.2)whilst the strengths of the following intera
tions are un
onstrained by symmetry 
on-siderations: H3(
� 
 
�); H4(
�
5 
 
�
5): (2.3)A wide variety of the models mentioned in Chp. 2.2 
an be expressed in the aboveform, di�ering a

ording to the ansatz taken for fHi(x1; x2; x3; x4)g. The original NJLmodel, for instan
e, has H1 � R d4xQn Æ(x � xn) and a 
onstant 
oupling strength,whereas one-gluon ex
hange models use Hi � Æ(x1 � x3)Æ(x2 � x4)D(x1 � x2). Thepresent approa
h is motivated in part by the instanton{liquid model [51℄. Withinthe zero-mode approximation to that pi
ture, there is a 2Nf -point quark intera
tion,whi
h is of separable form. Re
ent latti
e 
al
ulations o�er some support for su
hnotions [71℄, suggesting that instantons do indeed dominate the va
uum gluon stru
-tures and showing also the importan
e of the zero modes to the quark propagator. In2In fa
t, this six-quark intera
tion had been proposed several years earlier [70℄, albeit ona purely phenomenologi
al basis. 2.3. The Nonlo
al Model
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al Extended NJL Model 33momentum spa
e, a separable intera
tion is one of the formHi(p1; p2; p3; p4) = 12(2�)4Gif(p1)f(p2)f(p3)f(p4)Æ(p1 + p2 � p3 � p4): (2.4)In the model of Ref. [51℄ the fun
tion f(p) has a parti
ular form and for two 
avoursof quark the relation G1 = �G5 follows from the stru
ture of the 't Hooft determi-nant. Also present in that model is an intera
tion of tensor 
hara
ter but it is 1=N
suppressed.The model studied here is similar to that of Dyakonov and Petrov [51℄, in that itis based on an intera
tion with the separable form (Eq. 2.4). However, a more phe-nomenologi
al attitude is taken towards the form fa
tor f(p) and the allowed 
ouplings(Eqs. 2.2 and 2.3). Only intera
tions in the 
olour{singlet 
hannels are 
onsidered. Aunit matrix in 
olour spa
e is therefore assumed to be impli
itly in
luded whenevera matrix 
ombination ��i is written. The G1 
oupling (in the ladder approximation)produ
es the pions and their isos
alar s
alar partner, �. Couplings in the spin-1 
han-nels, G2, G3 and G4, are responsible for the �, a1, ! and f1 mesons. In
luding theG5 
oupling also allows the model to des
ribe an isove
tor s
alar and an isos
alarpseudos
alar meson. The lowest{lying meson with quantum numbers 
orrespondingto the former is a0(980), whilst the latter is a non-strange state with the quantumnumbers of the � and �0, to be referred to as �?.The analysis does not in
lude the possible tensor intera
tions, des
ribed by the
oupling G6. As 
an be seen from the following identity these 
an 
ontribute in the(axial) ve
tor 
hannels:( ��� )2 = 2T ��q2 ( ���q� : ���q� +  ���
5q� : ���
5q� ); (2.5)q being an arbitrary four-ve
tor and T �� the transverse proje
tor,T �� = g�� � q�q�q2 : (2.6)Su
h 
ouplings were dis
ussed in Ref. [68℄. They give rise to anomalous magneti
{moment 
ouplings of the ve
tor mesons to 
onstituent quarks3. In the absen
e of any3The pie
e of axial 
hara
ter in Eq. 2.5 would 
onstitute an independent 
hannel sin
e2.3. The Nonlo
al Model
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al Extended NJL Model 34strong phenomenologi
al need for su
h an e�e
t these terms 
an be safely omitted.For the sake of simpli
ity, all of the possible independent intera
tions are assumedto 
ontain the same form fa
tor, di�ering only through the 
onstant 
oupling strengths,fGig. In the analyti
 work, no assumptions are required about the detailed behaviour4of the form fa
tor. Of 
ourse, a spe
i�
 
hoi
e must be made to obtain numeri
alresults. As in Ref. [8℄, the form fa
tor is taken to be Gaussian in Eu
lidean spa
e5,f(pE) = exp(�p2E=�2): (2.7)This 
hoi
e was shown to be able to give quark 
on�nement. In fa
t, the possibilityof taking a di�erent � for ea
h of the independent 
ouplings has also been examined6.Doing so does not lead to any very signi�
ant e�e
ts. This is be
ause the mainqualitative features are dominated by the form of the quark self-energy whi
h, in theladder approximation, depends only on the G1 intera
tion.To give a 
omplete spe
i�
ation of the model, there are two additional 
hoi
eswhi
h have to be made. One of them 
on
erns an ambiguity in the transverse ve
torand axial 
urrents of the model. This is a general feature of any theory with a nonlo
ala
tion. Its resolution is des
ribed in the next se
tion. The other de
ision 
on
erns theanalyti
 
ontinuation of amplitudes from Eu
lidean to Minkowski spa
e. Numeri
alevaluations are performed in Eu
lidean spa
e be
ause the form fa
tor (Eq. 2.7) isde�ned for Eu
lidean momenta. Sin
e the quark propagator of the model 
ontainspoles at 
omplex energies, it follows that the usual Wi
k rotation of the integration
ontour [72℄ is not an appropriate 
ontinuation above a 
ertain value of the energy of anexternal line. Any theory of this type therefore requires an alternative 
ontinuationpres
ription above that energy. The method whi
h is followed, along with furtherits potential mixing with the transverse axial state vanishes in the 
avour symmetri
 
ase.4It is ne
essary only that the form fa
tor vanishes at large Eu
lidean momentum so thatsurfa
e terms may be dis
arded when integrations by parts are performed.5The Eu
lidean 
onventions used are that p0 = ip4E and p = �pE , so that pk = �(pk)Eand R d4p = i R d4pE.6Note that there are then some straightforward modi�
ations whi
h one must make tovarious of the analyti
 expressions to be presented. 2.3. The Nonlo
al Model
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al Extended NJL Model 35dis
ussion of these issues, is presented in Chp. 3.3.2.4 Nonlo
al CurrentsThe usual, lo
al expressions for the ve
tor and axial 
urrents do not satisfy the 
orre
t
ontinuity equations when one uses the equations of motion derived from the a
tion ofEqs. 2.1 to 2.4. The 
ontinuity equations for these lo
al 
urrents 
ontain terms whi
harise as a dire
t 
onsequen
e of the nonlo
ality of the a
tion. For example,12��( (x)
� (x)) = �iPi R Qn d4xnHi(x1; x2; x3; x4)� (x1)��i  (x3) (x2)�i� (x4) �Æ(x� x3)� Æ(x� x1)�: (2.8)In order to obtain symmetry 
urrents with the same divergen
es as the 
orrespondinglo
al 
urrents in QCD, and hen
e to maintain the 
orresponding Ward identities,one has to introdu
e additional, nonlo
al terms into the 
urrents. A Noether{likemethod of 
onstru
tion for these nonlo
al terms was developed7 in Ref. [8℄. Thepro
edure 
onsists of substituting for the di�eren
es of delta fun
tions in equationslike 2.8 a

ording to the identityÆ(x� x1)� Æ(x� x2) = Z 10 d�dz�d� ��Æ(x� z); (2.9)z(�) being some arbitrary path from x1 to x2. The right{hand side of Eq. 2.8 
an thenbe expressed as a divergen
e and a suitable 
onserved 
urrent de�ned.The divergen
e requirement for a 
urrent determines its longitudinal 
omponentwhi
h is, therefore, a path{independent obje
t. In Ref.[8℄ the 
hoi
e of path wasirrelevant sin
e the authors were interested only in the longitudinal 
omponent ofthe axial 
urrent, so as to determine the pion de
ay 
onstant. The transverse partof a 
urrent, however, is sensitive to the parti
ular path 
hosen for z(�). Indeed,ambiguity in the transverse 
urrent is a feature of any method used to 
onstru
ta (partially) 
onserved 
urrent 
orresponding to a nonlo
al a
tion. If one wishes7Some alternative, but more 
umbersome, methods are also mentioned in that referen
e.2.4. Nonlo
al Currents
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al Extended NJL Model 36to 
onsider ele
tromagneti
 pro
esses, as in Chp. 6, then it is ne
essary to assumesome form for the transverse 
urrent. This assumption is an additional part of thespe
i�
ation of the model. In subsequent 
al
ulations, the straight line ansatz [8℄,z(�) = (1� �)x1 + �x2; (2.10)is used, sin
e it respe
ts both Lorentz and translational invarian
e. In pra
ti
e, severalof the ele
tromagneti
 observables evaluated in Chp. 6 turn out to be dominated bythe lo
al pie
e of the ve
tor 
urrent and so should not be very sensitive to the 
hoi
eof path.The nonlo
al terms in the 
urrents, indu
ed by the nonlo
al nature of the a
tion,are given by the momentum{spa
e expressions presented below. (Note that wheremomentum derivatives with respe
t to pi � pj o

ur, then the 
ombination pi � pj isunderstood to be held �xed.) In the isos
alar ve
tor 
urrent, the nonlo
al pie
es areall of the stru
tureJ�(I) = 1(2�)12 Xi Gi Z Yn d4pn  (p1)��i  (p3) (p2)
i� (p4)� Æ(p1+p2+q�p3�p4) Z 10 d� f(p2)f(p4) ��(p1 + p3)� f(p1+�q)f(p3�q+�q); (2.11)whi
h is referred to as type I. The sum over Gi(��i 
 
i�) in Eq. 2.11 runs over thesame 
ombinations of 
ouplings and Dira
 and isospin matri
es as those found in thea
tion (Eqs. 2.2 and 2.3).The isove
tor ve
tor 
urrent also has nonlo
al 
ontributions of the type-I stru
-ture. In this 
ase the isospin and Dira
 matri
es appear in the 
ombinations8G1(�a 
 1 + i
5 
 i
5�a); G2(
� 
 
��a + 
�
5 
 
�
5�a);G3(
��a 
 
�); G4(
�
5�a 
 
�
5);G5(1
 �a + i
5�a 
 i
5); G6(����a 
 ��� � ��� 
 ����a): (2.12)8Although the G6 intera
tion will not appear in the 
al
ulations, the 
orresponding termsin the nonlo
al 
urrents are nonetheless stated. Note that a tensor intera
tion must be
onsidered in a des
ription of ve
tor states at NLO in 1=N
, a vertex of that 
hara
ter beinggenerated from the Fierz rearrangement of the other 
ouplings (see Chp. 2.5).2.4. Nonlo
al Currents
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al Extended NJL Model 37Another type of nonlo
al stru
ture also arises in this 
urrent,J�(II) = i�ab
2(2�)12 Xi Gi Z Yn d4pn  (p1)��i � b (p3) (p2)
i�� 
 (p4)� Z 10 d� "f(p1)f(p2) ��(p3 � p4)�f(p3 � q + �q)f(p4 � �q)�f(p3)f(p4) ��(p1 � p2)� f(p1 + q � �q)f(p2 + �q)# Æ(p1 + p2 + q � p3 � p4): (2.13)The above type-II stru
ture 
ontributes in those intera
tion 
hannels 
orrespondingto isove
tor states. The Dira
 matri
es appear in the 
ombinationsG1(i
5 
 i
5); G2(
� 
 
� + 
�
5 
 
�
5);G5(1
 1); �G6(��� 
 ���): (2.14)Turning now to the isove
tor axial 
urrent, the type-I terms are again present.They involve the matrix 
ombinationsG1�ab
(� 
 
 i
5� b); G2(
�
5 
 
��a + 
� 
 
�
5�a);G3(
�
5�a 
 
�); G4(
��a 
 
�
5);G5�ab
(i
5� b 
 � 
): iG6�ab
(���
5� 
 
 ���� b): (2.15)There are no type-II pie
es in this 
urrent, but a third kind of nonlo
al stru
ture doeso

ur, J�(III) = i(2�)12 Xi Gi Z Yn d4pn  (p1)��i  (p3) (p2)
i� (p4)� Z 10 d� "f(p2)f(p3) ��(p1 + p4)�f(p1 + q � �q)f(p4 � �q)�f(p1)f(p4) ��(p2 + p3)�f(p2 + �q)f(p3 � q + �q)# Æ(p1 + p2 + q � p3 � p4): (2.16)The relevant terms in this 
ase areG1(i
5�a 
 1); G2�ab
(
�
5� 
 
 
�� b);G5(i
5 
 �a); iG6(���
5�a 
 ���): (2.17)
2.4. Nonlo
al Currents



Chapter 2. Nonlo
al Extended NJL Model 38It is straightforward to see that a dependen
e on the path variable, �, does notappear in the longitudinal 
omponents of the 
urrents. Sin
e Lorentz invarian
e de-mands that the intera
tion form fa
tor depends only on the square of its argument,one has, in the 
ase of type-I 
ontributions,q� ��(p1 + p3)� f(p1 + �q)f(p3 � q + �q) = 12 dd�f(p1 + �q)f(p3 � q + �q): (2.18)The � integral in q�J�(I) is therefore trivial, and produ
es a di�eren
e in form fa
-tors. Similar results 
an be seen to hold for the longitudinal 
omponents of the othernonlo
al stru
tures (Eqs. 2.13 and 2.16).Useful 
he
ks on the above expressions for the 
urrents are provided by variousWard identities whi
h follow from (partial) 
urrent 
onservation. Several of theseidentities are demonstrated expli
itly in Chps. 4 and 6. In the 
ase of the axial
urrent, an extension of the arguments in Ref. [8℄ 
an be used to show that the Gell-Mann{Oakes{Renner (GMOR) relation [16℄ holds (Chp. 4.2). For the ve
tor 
urrents,
he
ks are made that the two{point 
orrelator of ve
tor 
urrents is purely transverse(Chp. 4.4), that the 
qq Ward identity is satis�ed (Chp. 4.3), that the pion 
harge isunity (Chp. 6.2), and that the low-energy theorem for the anomalous de
ay �0 ! 

is satis�ed (Chp. 6.3).2.5 Fierzed Intera
tions and CurrentsWhen the a
tion of Eq. 2.1 is used at leading order in the 1=N
 expansion the anti-quark lo
ated at x1 is always asso
iated with the quark at x3 whilst the position x2 issimilarly linked to x4. Working with a four-quark vertex beyond LO, however, thereare 
ontributions to be in
luded where this will no longer be the 
ase. These areknown as the Fo
k or \ex
hange" terms and may be isolated by �rst performing aFierz transformation on the a
tion. Su
h 
ontributions are then easily extra
ted byusing the Fierzed a
tion in just the same way that one uses the original a
tion at LO.
2.5. Fierzed Intera
tions and Currents



Chapter 2. Nonlo
al Extended NJL Model 39The Fierzed a
tion of this model 
onsists of the following terms:14N
 (G1 � 2G3 + 2G4 �G5 + 12G6) (1
 1 + i
5�a 
 i
5�a);14N
 (�2G2 +G3 +G4) (
��a 
 
��a + 
�
5�a 
 
�
5�a);14N
 (�2G1 + 6G2 +G3 +G4 � 2G5) (
� 
 
�);14N
 (2G1 + 6G2 +G3 +G4 + 2G5) (
�
5 
 
�
5);14N
 (�G1 � 2G3 + 2G4 +G5 � 12G6) (�a 
 �a + i
5 
 i
5);18N
 (G1 �G5 � 4G6) (��� 
 ��� � ����a 
 ����a): (2.19)The nonlo
al terms in the ve
tor and axial{ve
tor 
urrents of the model alsoinvolve four quark �elds and so will also be subje
t to su
h e�e
ts at NLO. TheseFo
k pie
es in the 
urrents will introdu
e further ambiguity through the de�nition oftheir transverse parts. One way of isolating a suitable set of terms would be simplyto 
onstru
t nonlo
al 
urrent terms from the Fierzed a
tion of Eq. 2.19 with exa
tlythe same method as was des
ribed in Chp. 2.4 for dedu
ing the nonlo
al LO 
urrentsfrom the standard a
tion (Eqs. 2.1 to 2.4). This method of determining the Fo
kterms of a 
urrent will be 
alled the Fierzed{a
tion method. It leads to nonlo
al
urrent stru
tures of the same forms as those presented previously (Eqs. 2.11, 2.13and 2.16), with the appropriate matrix insertions obtained by repla
ing the 
oupling
onstants in the original sets of insertions by the 
orresponding 
ombinations in theFierzed a
tion. So, for example, the presen
e of the type-I term G1�ab
(� 
 
 i
5� b) inthe axial 
urrent 
onstru
ted from the original a
tion implies that there is a type-IFo
k term of (4N
)�1(G1 � 2G3 + 2G4 �G5 + 12G6)�ab
(� 
 
 i
5� b).An alternative and equally obvious approa
h towards �nding the Fo
k termsof the model's 
urrents would be just to make a Fierz transformation of the LO
urrents already derived. This pro
edure is referred to as the Fierzed{
urrent method.Through its appli
ation one en
ounters new types of nonlo
al stru
ture. The Fierztransformation swops the roles of the  (p3) and  (p4) �elds. If the momenta are then2.5. Fierzed Intera
tions and Currents
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al Extended NJL Model 40relabelled so that p3 $ p4, the resulting nonlo
al terms will have di�erent types ofform{fa
tor stru
ture. It be
omes 
onvenient to de�ne new nonlo
al stru
ture types,IV and V, as:J�(IV ) = 1(2�)12 Xi Gi Z Yn d4pn  (p1)��i  (p3) (p2)
i� (p4)� Z 10 d� "f(p2)f(p3) ��(p1 + p4)�f(p1 + q � �q)f(p4 � �q)+f(p1)f(p4) ��(p2 + p3)�f(p2 + �q)f(p3 � q + �q)# Æ(p1 + p2 + q � p3 � p4); (2.20)J�(V ) = 1(2�)12 Xi Gi Z Yn d4pn  (p1)��i �a (p3) (p2)
i� (p4)� Z 10 d� "f(p1)f(p2) ��(p3 � p4)�f(p3 � q + �q)f(p4 � �q)+f(p3)f(p4) ��(p1 � p2)�f(p1 + q � �q)f(p2 + �q)# Æ(p1 + p2 + q � p3 � p4): (2.21)The matrix 
ombinations in the type I to V 
urrents whi
h 
onstitute the Fo
k termswithin the Fierzed{
urrent method are given below.For the Fo
k terms of the isos
alar ve
tor 
urrent only the type-IV stru
ture isrelevant. Apart from an overall symmetry fa
tor of a half, the insertions appearingin this 
ase are just the same as those in Eq. 2.19, the Fierzed a
tion. This resulthighlights the di�eren
e between the Fierzed{a
tion and Fierzed{
urrent methods of
onstru
tion, whi
h lies in the identity of the �elds whi
h one 
onne
ts via the z(�)path (Eq. 2.9). In the Fierzed{a
tion method, one �rst swops the roles of the  (p3)and  (p4) �elds and then 
onne
ts the  (p1) to the  (p4) �eld, ending up with thetype-I stru
ture after relabelling. In the Fierzed{
urrent method, however, the orderof operations is reversed, a path being established to link the  (p1) and  (p3) �eldsfollowed by the rearrangement whi
h swops the roles played by  (p3) and  (p4). There
an be no a priori physi
al reason to prefer one of these s
hemes over the other, sin
ethey are equally natural ways of arriving at suitable ex
hange 
urrents. For purelypra
ti
al reasons, however, the Fierzed{a
tion method may prove the more usefulwhen one wishes to perform NLO 
al
ulations involving transverse 
urrents. This is2.5. Fierzed Intera
tions and Currents
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al Extended NJL Model 41simply be
ause the nonlo
al stru
ture types I to III are retained, IV and V not beingrequired. One 
an therefore often write down an appropriate NLO diagram very easily,merely by 
hanging the overall 
oeÆ
ient in the expression for a 
orresponding LOdiagram.Cal
ulation of the nonlo
al Fo
k terms in the 
urrents by the two methods de-s
ribed above does at least provide a useful 
he
k on the algebra of the Fierz transfor-mations. The longitudinal 
omponents, of 
ourse, are di
tated by 
ontinuity require-ments and so should be identi
al in the two 
ases. For the isos
alar ve
tor 
urrentsu
h an equivalen
e is straightforward to verify, by noting the identityq�J�(IV )(��i 
 
i�) = q�J�(I)(��i 
 
i�) + q�J�(I)(
i� 
 ��i ): (2.22)The 
al
ulations of the Fo
k terms in the isove
tor 
urrents 
an be similarly 
he
ked,with the aid of the following identities:q�j�(II) = �2q�J�(III);q�j�(V )(��i 
 
i�) = q�J�(I)(��i 
 
i�)� q�J�(I)(
i� 
 ��i ); (2.23)where j�(V ) is de�ned to be the nonlo
al stru
ture of type-V (Eq. 2.21) but omittingthe �a matrix and j�(II) is to be understood as the type-II stru
ture (Eq. 2.13) withoutthe matri
es � b and � 
 and the overall fa
tor of �ab
.It remains to state the Fo
k terms of the isove
tor 
urrents within the Fierzed{
urrent approa
h. In the isove
tor ve
tor 
urrent, there are the following type-IIIterms: 18N
 (G1 + 2G3 � 2G4 �G5 + 12G6) �ab
(� b 
 � 
);18N
 (�G1 + 2G3 � 2G4 +G5 � 12G6) �ab
(i
5� b 
 i
5� 
);18N
 (2G2 �G3 �G4) �ab
(
�� b 
 
�� 
 + 
�
5� b 
 
�
5� 
);116N
 (G1 �G5 � 4G6) �ab
(���� b 
 ���� 
); (2.24)
2.5. Fierzed Intera
tions and Currents
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al Extended NJL Model 42together with the type-IV terms12N
 (�G3 +G4) (�a 
 1 + i
5�a 
 i
5);14N
 (�G1 + 2G2 +G3 +G4 �G5) (
��a 
 
�);14N
 (G1 + 2G2 +G3 +G4 +G5) (
�
5�a 
 
�
5); (2.25)and the type-V insertions14N
 (G1 �G5 + 12G6) (1
 1� i
5 
 i
5);14N
 (�G1 + 4G2 �G5) (
� 
 
�);14N
 (G1 + 4G2 +G5) (
�
5 
 
�
5);18N
 (G1 �G5 � 4G6) (��� 
 ���): (2.26)The Fo
k terms of the isove
tor axial 
urrent in
lude insertions into the type-I stru
-ture, 14N
 (G1 �G5 + 12G6) �ab
(� 
 
 i
5� b + i
5� 
 
 � b);14N
 (G1 � 4G2 +G5) (
� 
 
�
5�a � 
�
5�a 
 
�);14N
 (G1 + 4G2 +G5) (
��a 
 
�
5 � 
�
5 
 
�);i8N
 (�G1 +G5 + 4G6) �ab
(���
5� b 
 ���� 
); (2.27)along with pie
es of type-III stru
ture,14N
 (G1 � 2G3 + 2G4 �G5 + 12G6) (i
5�a 
 1);14N
 (G1 + 2G3 � 2G4 �G5 + 12G6) (�a 
 i
5);14N
 (2G2 �G3 �G4) �ab
(
�
5� b 
 
�� 
);i8N
 (G1 �G5 � 4G6) (���
5�a 
 ���); (2.28)
2.5. Fierzed Intera
tions and Currents
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al Extended NJL Model 43and the following type-IV terms:12N
 (�G3 +G4) �ab
(i
5� b 
 � 
);14N
 (G1 +G2 +G3 +G4 +G5) (
��a 
 
�
5);14N
 (�G1 +G2 +G3 +G4 �G5)(
� 
 
�
5�a): (2.29)

2.5. Fierzed Intera
tions and Currents



Chapter 3
Quark and Meson Propagators
3.1 Quark PropagatorAn essential ingredient of the 
al
ulations with the extended nonlo
al NJL modelis the dressed quark propagator. It is 
onstru
ted by means of the 
orrespondingS
hwinger{Dyson equation (SDE). Initially at least, this equation is treated in the lad-der approximation, trun
ating the one-quark irredu
ible kernel with just the tree{levelintera
tion. This is equivalent to working at leading order (LO) in a 1=N
 expansion.In order to de�ne su
h an expansion for a model based on four-quark intera
tion ver-ti
es, the 
oupling 
onstants must be designated as quantities of some parti
ular orderin N
. In the 1=N
 expansion of QCD [2, 73℄, the large N
 limit is de�ned by allowingthe number of 
olours to tend to in�nity but with the produ
t g2N
 being held 
on-stant. Setting fGig to be of order N�1
 is therefore 
onsistent with the interpretationthat the four-quark intera
tion is generated through one gluon ex
hange. There is,however, no need to appeal to that prejudi
e. SuÆ
ient justi�
ation for adopting this
hoi
e for the order of fGig is that it is ne
essary in order to produ
e the same largeN
 s
aling of observables (su
h as the meson masses and 
ouplings) as in QCD.Fig. 3.1 gives an illustration of the diagrams that are summed in the ladderapproximation. In terms of a momentum{dependent quark \mass" m(p) de�ned from

44
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S = + G1S

Figure 3.1: The S
hwinger{Dyson equation for the quark propagator in the ladderapproximation.the dressed quark propagator byS�1(p) = /p�m(p); (3.1)the LO SDE 
an be written asm(p) = m
 + iG1f 2(p)Tr Z d4k(2�)4 /k +m(k)k2 �m2(k)f 2(k): (3.2)The dressing at this order o

urs only through the intera
tion in the isos
alar s
alar
hannel, as des
ribed by the 
oupling G1. The integral in Eq. 3.2 is very similar tothat appearing in the quark 
ondensate (de�ned in Eq. 1.3), di�ering only through thepresen
e of the intera
tion form fa
tors, f 2(k). In the original NJL model there are nosu
h form fa
tors and so the 
ondensate and SDE integrals are identi
al. With boththe lo
al and nonlo
al models, however, it is 
lear that the dynami
al generation of aquark mass is intimately 
onne
ted to the appearan
e of a non-zero 
ondensate1. Inthe numeri
al treatment of the model, loop integrals like that in Eq. 3.2 are evaluatedin Eu
lidean spa
e, sin
e the form fa
tor has been de�ned for Eu
lidean momenta.Physi
al results are then obtained by analyti
ally 
ontinuing ba
k to Minkowski spa
e.Noti
e that the separable nature of the intera
tion produ
es a great simpli�
ationsin
e the dependen
e on the external momentum p fa
torizes out of the loop integral.1It is possible in prin
iple with a nonlo
al model to have a dynami
al quark mass withoutprodu
ing a non-zero 
ondensate. For this to o

ur in a separable model f2(k) would haveto 
hange sign at some point, a situation that is hardly physi
ally plausible.
3.1. Quark Propagator



Chapter 3. Quark and Meson Propagators 46The solution to the LO SDE 
an therefore be written in the formm(p) = m
 + �m(0)�m
�f 2(p): (3.3)Hen
e to obtain the full LO quark propagator it is ne
essary to determine only the
onstant m(0). This 
an be done straightforwardly using iterative methods. In pra
-ti
e it is 
onvenient to use Eq. 3.2 to determine the parameter G1 for a given value ofm0(0), the zero-momentum quark mass in the 
hiral limit. This requires a single inte-gral to be evaluated. With the 
hoi
e of a Gaussian form fa
tor, the Gauss{Laguerrete
hnique (taking p2E as the non-trivial integration variable) is eminently suitable forperforming su
h integrals, whi
h 
onverge with only a moderate number of abs
issae.If a non-zero 
urrent quark mass is introdu
ed, it is a simple matter to iterate fromm0(0) to �nd the solution for m(0).The denominator of the quark propagator, p2 �m2(p2), does not have a zero atpositive (Minkowski) p2 if m(0) is suÆ
iently large2. This property provides a suÆ-
ient, although not stri
tly a ne
essary [5, 74℄, 
ondition for 
on�nement. Althoughthere are still poles in the quark propagator, they are shifted into the 
omplex p2 plane.Su
h behaviour is by no means un
ommon in models of quark 
on�nement based onthe solution of a S
hwinger{Dyson equation [5, 63, 75, 76℄ in the ladder approxima-tion. Be
ause of the simpli�
ations due to the separable intera
tion, the present modelprovides a 
onvenient setting in whi
h to investigate some of the pra
ti
al impli
ationsof this me
hanism for 
on�nement. As pointed out by Lee and Wi
k [77℄ (see alsoRef. [78℄), parti
les whi
h have a 
omplex mass of this type should not be admittedas asymptoti
 states if one is to have a unitary S-matrix. When amplitudes havebeen de�ned in Eu
lidean spa
e, the pres
ription for analyti
ally 
ontinuing themba
k to Minkowski spa
e must respe
t this requirement, as des
ribed in more detailin Chp. 3.3.2The absen
e of a pole at a spa
elike momentum, whi
h would indi
ate ta
hyoni
 be-haviour, is guaranteed if the running quark mass is always positive (i.e., if the intera
tionform fa
tor is real).
3.1. Quark Propagator



Chapter 3. Quark and Meson Propagators 473.2 Meson PropagatorsThe meson masses and vertex fun
tions are found using the Bethe{Salpeter equation(BSE). This 
an be 
onsidered in its homogeneous or inhomogeneous form. As is usualin studies of NJL-like models, it is dealt with here in the framework of the latter, whi
hprovides a normalization for the on-shell vertex fun
tion. In order to maintain Wardidentities [79℄ one must use an trun
ation s
heme whi
h is 
onsistent with that appliedto the SDE (Chp. 3.1). In the 
ase of the BSE, the ladder approximation entailskeeping just the tree{level 
ouplings from the a
tion in the two-quark irredu
ibles
attering kernel. The separable nature of the intera
tion allows the qq s
atteringmatrix, T , to be written in the formT (p1; p2; p3; p4) =Yn f(pn) Æ(p1 + p2 � p3 � p4) T̂ (q); (3.4)where the total momentum of the qq pair is denoted by q = p1 � p3 = p4 � p2. TheLO BSE, shown s
hemati
ally in Fig. 3.2, may be 
onveniently expressed in terms ofT̂ as T̂ (q) = G+GJ(q)T̂ (q); (3.5)where G is simply a matrix of the 
oupling 
onstants from the a
tion (Eqs. 2.1 to 2.4)and J(q) is 
omposed of the loop integralsJij(q) = iTr Z d4p(2�)4f 2(p+)f 2(p�)�iS(p�)�jS(p+): (3.6)In the above equation the notation p� = p � 12q has been introdu
ed. The quarkpropagators to be used in Eq. 3.6 are the dressed propagators obtained by solving theladder SDE.The mesoni
 bound states are lo
ated at the poles of T̂ . These 
an be determinedfrom the equation det(1�GJ(q)) = 0: (3.7)Symmetry restri
tions on the possible form of the intera
tions mean that thematrixG is diagonal with respe
t to 
avour and Lorentz stru
tures. The full s
attering3.2. Meson Propagators
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T = G + G TSS

Figure 3.2: The Bethe{Salpeter equation for qq s
attering in the ladder approximation.matrix, however, is only blo
k{diagonal, sin
e there may be 
ertain non-zero o�-diagonal elements of J . In parti
ular there is a non-vanishing loop integral whi
hleads to mixing between the pseudos
alar and longitudinal axial 
hannels. This �a1(and �?f1) mixing is an example of the partial Higgs me
hanism that is dis
ussed inAppendix C.3 in relation to e�e
tive Lagrangians of �; � and a1 mesons. It produ
esan axial as well as a pseudos
alar 
omponent in the vertex fun
tion of the pion (and�?). In the 
avour symmetri
 
ase there is no analogous mixing between the s
alar andve
tor 
hannels. This 
an be seen from the fa
t that the integrand in the 
orrespondingelement of J (Eq. 3.6) is odd under p! �p. The absen
e of su
h a potential mixingmeans that the longitudinal ve
tor 
hannel is quite independent of the s
alar one. Itis therefore important to 
he
k numeri
ally that a pole does not develop in the former
hannel, sin
e that would be unphysi
al.For later ease of referen
e, the various non-zero elements of J are labelled asfollows for the Dira
 matri
es inserted:JSS : 1
 1; JTV V : T��(
� 
 
�); JLV V : q�2(�i/q 
 i/q);JPP : i
5 
 i
5; JAP : m�1� (�i/q
5 
 i
5); JPA : m�1� (i
5 
 i/q
5);JTAA : T��(
�
5 
 
�
5); JLAA : m�2� (�i/q
5 
 i/q
5); (3.8)where T�� is the transverse proje
tor de�ned in Eq. 2.6. Working in the above basisthe mixing elements are equal, JAP = JPA.To des
ribe the 
oupling of an on-shell meson to 
onstituent quarks one represents3.2. Meson Propagators
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hannel of T̂ , near to the 
orresponding pole position, asV (q)
 V (q)m2 � q2 ; (3.9)where V (q) and V (q) are referred to as the vertex fun
tions for the meson in theinitial and �nal states respe
tively. In the above expression any polarization indi
eshave been suppressed. The homogeneous BSE is written in terms of su
h vertexfun
tions and is only satis�ed at an on-shell point. O� mass shell any de
ompositioninto vertex and propagator whi
h one might make in a 
hannel of T̂ be
omes purely amatter of 
onvenien
e | the o�-shell vertex fun
tion and meson propagator are notthemselves well de�ned, only the 
ombination o

urring in T̂ being meaningful. Fromthe homogeneous BSE the relationship between the vertex fun
tions of the initial and�nal states 
an be found3, V = 
0V y
0. For the parti
les of interest, these fun
tionsare: V�(q) = (g�qq �m�1� eg�qq/q)i
5�a; V�(q) = g�qq;V�s(q) = g�qq/�s�a; Va1s(q) = ga1qq/�s
5�a; V!s(q) = g!qq/�s;V�?(q) = (g�?qq �m�1�? eg�?qq/q)i
5; Va0(q) = ga0qq�a: (3.10)For all parti
les ex
ept the pseudos
alars there is no mixing, and so ea
h has a single
oupling 
onstant giqq to des
ribe its on-shell 
oupling to quarks. These 
ouplings arerelated to the 
orresponding loop integrals (Eq. 3.6) by1g2iqq = (�1)S dJiidq2 �����q2=m2 ; (3.11)where S is the spin of the meson. The 
ouplings of the pion to quarks, g�qq and eg�qq,are given byg2�qq = �G1�1�G2JLAA(m2)�D0�(m2) ; g�qqeg�qq = G1G2JPA(m2)D0�(m2) ; (3.12)3See, for example, Ref. [55℄ where the authors work initially with a general intera
tionkernel for fermion{anti-fermion s
attering.
3.2. Meson Propagators



Chapter 3. Quark and Meson Propagators 50where the prime indi
ates a derivative with respe
t to q2 and the pseudos
alar{axialdeterminant D�(q2) is de�ned to beD�(q2) = �1�G1JPP (q2)��1�G2JLAA(q2)��G1G2J2AP (q2): (3.13)Similar expressions hold for the 
ouplings of the �?, with G5 and G4 playing the rolesof G1 and G2 respe
tively.3.3 Loop IntegralsWhen expressed in Eu
lidean spa
e, the loop integrals appearing in the ladder BSE(Eq. 3.6) take the formJij(q2) = �N
Nf Z d4p(2�)4 f 2(p+)f 2(p�)tij(p2; q2; p � q)(p2+ +m2+)(p2� +m2�) ; (3.14)where tij is the appropriate Dira
 tra
e and all momenta are to be understood asEu
lidean. The symbols m� are introdu
ed here as a shorthand for the quark massevaluated at p�. Consider su
h an integral evaluated at some timelike momentum, q =(0; iq0). Operating with a 
on�ning parameter set, ea
h quark propagator 
onsideredas a fun
tion of energy has four poles at 
omplex energies 
orresponding to a pair of
omplex{
onjugate poles in p2. As q0 is in
reased these poles in S(p�) are translatedparallel to the imaginary p4 axis. For any given value of jpj, there is a value of q0 forwhi
h poles of the p� and p+ quark propagators meet on the real p4 axis, pin
hingthe 
ontour of integration. For larger values of q0 the poles 
ross this axis and may
ontribute an imaginary part to the propagator in the meson 
hannel, dependingon the pres
ription used to 
ontinue the integral beyond the pin
h point. Su
h a
on�guration of the poles is shown in Fig. 3.3.The usual pres
ription for an analyti
 
ontinuation of amplitudes from Eu
lideanto Minkowski spa
e is based on a Wi
k rotation of the integration 
ontour [72℄. Thispro
edure would indeed give rise to an imaginary part of the meson propagator, 
orre-sponding physi
ally to the opening of a threshold for the de
ay of a meson into otherstates. As was explained in Chp. 3.1 that situation is inappropriate here.3.3. Loop Integrals
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Figure 3.3: The pole stru
ture of J loop integrals in the p4 plane. On the left{handside of the �gure, the pole positions at q0 = 0 are indi
ated. The open boxes denotethe poles of the p� propagator and the �lled 
ir
les those of the p+ propagator. Theright{hand side of the �gure shows the deformed integration 
ontour, beyond the pin
hpoint. The arrows here indi
ate the dire
tions in whi
h the poles move as q0 in
reases.A legitimate 
ontinuation, suitable for energies where the integration 
ontourbe
omes pin
hed, was originally suggested by Cutkosky et al [78℄. It amounts to thedeformation of the integration 
ontour displayed in Fig. 3.3. Whilst the pres
riptionensures that the resulting meson propagator does not develop an unphysi
al imaginarypart above the pseudo{threshold energy where the 
ontour be
omes pin
hed by the
omplex poles, it does mean that the propagator 
annot be analyti
ally 
ontinued pastthat point. Sin
e the method is not unique, the 
hoi
e of 
ontinuation pres
riptionmust be regarded as an additional assumption that forms part of the spe
i�
ation ofany model with a quark propagator of this type. The suggestion of Cutkosky et al.is adopted in the present 
al
ulations having been shown in Ref. [78℄ to be 
onsistentwith the requirements of unitarity and ma
ro
ausality.As dis
ussed by both Cutkosky et al. [78℄ and Lee and Wi
k [77℄, mi
ro
ausalityviolations 
an o

ur in models with a Eu
lidean metri
 and states of 
omplex mass.However, in order for su
h violations to be measurable, Lee and Wi
k [77℄ have es-timated that one would need to 
reate a wave pa
ket of width � 
�1, where the
omplex mass is M + 12 i
. In any event, mi
ro
ausality in this model is intrinsi
allybroken by the use of an a
tion with nonlo
al intera
tions.In the numeri
al evaluations of quark loop integrals, one 
an take a 
ontour in p43.3. Loop Integrals



Chapter 3. Quark and Meson Propagators 52that runs along the real axis. For energies jq0j above the pseudo{threshold, followingthe pres
ription of Cutkosky et al. means that one must also in
lude 
ontributionsfrom the residues of the poles that have 
rossed the axis. For a given external energythese 
ontributions are required at zero three{momentum up to a maximum value atthe pin
h point. At larger three{momenta the integration 
ontour in the p4 plane is justthe real axis. Both the naive integral over Eu
lidean four{momentum in Eq. 3.14 andthe residue 
ontributions diverge at the pin
h point, although these divergen
es 
an
elto leave a �nite result [78℄. This 
an
ellation o

urs at the level of the integrated resultrather than at all values of three{momentum 
owing round the loop. In numeri
alwork one therefore needs to regulate the two 
ontributions when evaluating themseparately. An a

urate knowledge of the lo
ations of the poles in the quark propagator(and hen
e of the pin
h point) is 
learly a prerequisite of any regulating method. It
an be eÆ
iently a
quired by applying the simplex te
hnique [80℄ to minimize themodulus of p2E +m20(pE).
.� jpj

p4 R1 R2R3R4
Figure 3.4: In evaluating the naive integral over Eu
lidean momenta the integrationregion is divided as in the �gure, the pin
h point being at the 
entre of the 
ir
le. Thesituation for negative values of p4 is obtained by a re
e
tion in the jpj axis.The method of regularization a
tually used involves dividing the region of inte-gration as shown in Fig. 3.4. A fun
tion with the same divergen
e as the naive integralis subtra
ted from it when p lies within a radius � of the pin
h point. The remainderis then integrated over the 
ir
ular region a

ording to the robust method of Sag andSzekeres [81℄. A similar fun
tion is used to 
an
el the divergent part of the residue3.3. Loop Integrals
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ontribution when jpj is less than � from its pin
h value and is 
hosen to 
an
el exa
tlywith the pie
e that has been 
ut out of the naive integral. Both the regulated andunregulated parts of the jpj integral over the residue 
ontributions are evaluated withthe NAG routine D01AJF. This routine uses an adaptive strategy, 
on
entrating itse�orts over any regions where the integrand behaves poorly. Sin
e the regulated inte-grands are ne
essarily the di�eren
e of two large numbers the de
ision to use robustmethods is one di
tated by safety 
onsiderations.The other integrations required in the evaluation of J are of the naive integrandover the regions labelled R1 : : : R4 in Fig. 3.4. The semi{in�nite range of integrationin R1 : : : R3 together with the parti
ular form fa
tor 
hosen (Eq. 2.7) strongly suggeststhat these regions be dealt with in terms of p2E and an angular variable, integrationover the former being performed using the Gauss{Laguerre te
hnique. The angularparts of these integrals are treated adaptively, whi
h proves to be useful in R2 owingto the shape of that region near to the angular limits. Integration over R4 is donewith the NAG routine D01FDF whi
h transforms the region onto a 
ir
le and thenuses the Sag and Szekeres method.Ea
h of the numeri
al integrations that are summed to give the value of J(q)depends on the regularizing parameter �. An important 
he
k on the regularizationused (and on the a

ura
y of the integration routines themselves) is that the overallresults obtained should be independent of �. This does indeed prove to be the 
asefor a wide range of values, although the results be
ome somewhat less a

urate when� is small (<� 20 MeV). At small � the 
ontributions from R1 : : : R3 are dominant.However, these are diÆ
ult to evaluate a

urately if they in
lude some of the area 
loseto the pin
h point, in whi
h the integrand may be badly behaved. A good des
riptionof the o�ending area requires many lo
al integrand evaluations, a pro
edure whi
h isnot well{suited to the Gauss{Laguerre routines. In pra
ti
e, the a

ura
y of evaluatingJ(q) is found to be best with � � 150 MeV.It should be noted that the quark propagator of the nonlo
al model has in fa
t
3.3. Loop Integrals
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omplex{
onjugate pairs of poles. Su
h an analyti
 stru
ture is also found in thepion propagator of the NJL model within the proper time regularization s
heme [82℄.In the present model these additional poles o

ur with both 
on�ning and non-
on�ning parameter sets and are found at large momenta. Sin
e their positions dependon the detailed behaviour of the form fa
tor for large momenta, they are regarded hereas being unphysi
al artifa
ts of the model. With the parameter sets sele
ted for the
al
ulations that are detailed in Chps. 5 and 6, the next set of poles would result inanother pseudo{threshold at energies of � 2 GeV. The model is not intended to be
redible at su
h momenta. Indeed, in Chp. 5.1 a more stringent upper limit is im-posed on the range of appli
ability of the model. Hen
e, the extra poles do not posea pra
ti
al problem.

3.3. Loop Integrals



Chapter 4
Ward Identities andEle
tromagnetism
4.1 Couplings to the Axial CurrentThe ele
tromagneti
 or weak de
ay 
onstant of a meson is given by the matrix elementbetween the va
uum and that meson of the appropriate 
urrent. In a nonlo
al modelof the type 
onsidered here, there are 
ontributions to su
h matrix elements arisingfrom both the usual lo
al 
urrent and the nonlo
al pie
es dis
ussed in Chp. 2.4. Bothof these must be in
luded in order to maintain related Ward identities, whi
h followfrom 
urrent 
onservation. The 
ontributions from the nonlo
al part of the 
urrentare generated by 
losing one of the  � stru
tures in on itself and using the other toforge the link to the meson. The 
orresponding diagrams are shown in Fig. 4.1.Consider for example the pion de
ay 
onstant, de�ned through Eq. 1.5. The loopintegral arising from the lo
al part of the axial 
urrent is very similar to JAP , ex
eptthat only two (rather than four) form fa
tors are present. One must also in
ludea nonlo
al 
ontribution generated by the G1(i
5�a 
 1) term with type-III stru
ture(Eq. 2.16) in the axial 
urrent. As was des
ribed by Bowler and Birse [8℄, this diagram
an be written as a sum of terms, ea
h of whi
h fa
torizes into two loop integrals. One
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V V

Figure 4.1: Coupling of a parti
le to an external 
urrent. V denotes the parti
le'svertex fun
tion (Eq. 3.9).of these is somewhat similar to that in the s
alar quark 
ondensate, whilst the otherhas a pseudos
alar insertion and a pion vertex fun
tion. It is 
onvenient to refer tothe loop integrals involved as being one-quark or two-quark, a

ording to the numberof quark propagators they 
ontain. The 
ontribution of this diagram to f� isiG12m2� Z d4k(2�)4 Tr[/k +m(k2)℄k2 �m2(k2) Z d4p(2�)4 TrV�(q)(/p� +m�)
5�a(/p+ +m+)(p2+ �m2+)(p2� �m2�)�f(p+)f(p�)hf 2(k)�f 2(p+)+f 2(p�)��f(p+)f(p�)f(k)�f(k+ q)+f(k� q)�i: (4.1)In the extended version of the model there is another nonlo
al 
ontribution, whi
his indu
ed by the term G2(
� 
 
�
5�a) with type-I stru
ture (Eq. 2.11) in the axial
urrent. In this 
ase, the one-quark loop has a ve
tor insertion. Although the va
-uum expe
tation value of  
� vanishes by Lorentz invarian
e, a non-zero integralis produ
ed by a 
ombination of form fa
tors whi
h is anti-symmetri
 in the loopmomentum. The 
ontribution of the diagram to f� is�iG22m2� Z d4k(2�)4 Tr
�[/k +m(k2)℄k2 �m2(k2) f(k)�f(k + q)� f(k � q)�� Z d4p(2�)4 TrV�(q)(/p� +m�)
�
5�a(/p+ +m+)(p2+ �m2+)(p2� �m2�) f 2(p+)f 2(p�): (4.2)These pie
es of f� arising from the nonlo
al 
urrent are signi�
ant numeri
ally andare needed in order to satisfy the Gell-Mann{Oakes{Renner relation, as demonstratedin the next se
tion.
4.1. Couplings to the Axial Current



Chapter 4. Ward Identities and Ele
tromagnetism 57In the numeri
al evaluation of integrals like those in Eqs. 4.1 and 4.2, there aretwo non-trivial integration variables. When the external energy lies below the pseudo{threshold (see Chp. 3.3), the Gauss{Laguerre te
hnique enables su
h integrals to beperformed qui
kly and a

urately. The integration variables used in su
h routines arep24 and p2, with p4 having been de�ned to be in the dire
tion of q.A determination of the 
oupling strength of the a1 parti
le to the transverse axial
urrent requires the 
al
ulation of diagrams very similar to those 
on
erning f�. The
ontributing terms from the nonlo
al 
urrent are also those relevant to the a1 
ase.There is, however, an important di�eren
e from the analogous nonlo
al diagrams for f�in that the integral over the path variable � for the transverse 
urrent is non-trivial. Ingeneral therefore, a numeri
al integration over � is also required. In pra
ti
e though,with a Gaussian form fa
tor (Eq. 2.7), su
h integrals 
an be performed analyti
ally,being expressed in terms of error fun
tions. In the type-I nonlo
al stru
ture (Eq. 2.11),� appears only in the form fa
tors asso
iated with one of the loops. Hen
e, a diagramindu
ed by a term of this stru
ture is the produ
t of two separate loop integrals. Thisis not so for 
ontributions indu
ed by type-II (Eq. 2.13) or type-III (Eq. 2.16) termsin the 
urrent, where the integrals for the one- and two-quark loops do not fa
torize.For those diagrams generated by a type-I term, the numeri
al situation is thatof a produ
t of two two-dimensional integrals, the integrand of one 
ontaining theanalyti
ally{derived 
ombination of error fun
tions. If the external energy is belowpseudo{threshold then these integrals are performed by Gauss{Laguerre methods asabove. Otherwise they must be 
omputed with residue 
ontributions in
luded, asdis
ussed in Chp. 3.3. The diagrams generated by type-II or type-III terms in thenonlo
al transverse 
urrent have a 
oupled{integral stru
ture. Using the analyti
alresult for the � integration then ne
essitates a four-dimensional numeri
al integral. Ittherefore be
omes more eÆ
ient to treat the � integral numeri
ally. At ea
h value of�, the integrand is a produ
t of two two-dimensional integrals ea
h of whi
h 
an bedealt with in the usual fashion. The � integration is itself straightforward sin
e the
4.1. Couplings to the Axial Current
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tromagnetism 58integrands that have been 
onsidered vary only very slowly in this variable.4.2 GMOR RelationThe GMOR relation (Eq. 1.7) was shown to hold at LO in Ref. [8℄, where a versionof the model was used whi
h had only the G1 
oupling. In this se
tion the proof isextended to allow for the other possible 
ouplings in the a
tion (Eqs. 2.2 and 2.3), againat LO. When the model is 
onsidered at NLO (Chp. 7), the 
orre
tions introdu
edare also shown to be 
onsistent with the GMOR relation. As a trailer for some of thearguments and 
an
ellations invoked in that 
ase, the mu
h simpler LO proof withonly the G1 
oupling is revisited below. The method di�ers from that of Ref. [8℄, beingbased on the identity/q
5 = S�1(p+)
5 + 
5S�1(p�) + (m+ +m�)
5: (4.3)Taking the diagram for the 
oupling of the pion to the lo
al axial 
urrent and
ontra
ting it with q� gives an expression for its 
ontribution to f�m2�. The lo
al
urrent gives rise to a fa
tor of /q
5 whi
h 
an be repla
ed by the right{hand side ofEq. 4.3 to giveif�m2� = g�qq2 N
Nf "Z d4p(2�)4f(p+)f(p�)(m+ +m�)tr
5S(p�)
5S(p+)+ Z d4p(2�)4f(p)(f(p+ q) + f(p� q))trS(p)# ; (4.4)where, in the absen
e of mixing, g�qq is determined from Eq. 3.11. In the nonlo
al
ontribution to the de
ay 
onstant (Eq. 4.1), the ladder SDE (Eq. 3.2) simpli�es thepie
e whi
h has a fa
tor of f 2(k) sin
e it allows one to repla
e G1 times the k loopby �i(m(0)�m
). A 
an
ellation 
an then be seen to operate between this pie
e andthe �rst of the integrals in Eq. 4.4, leaving only 2m
 from the fa
tor of (m+ + m�)that appears in Eq. 4.4. It is just this pro
ess of 
an
ellation between a lo
al{
urrentdiagram and part of a nonlo
al 
ontribution whi
h is so useful in the analysis of the4.2. GMOR Relation
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tromagnetism 59more 
omplex diagrams at NLO. Re
alling the de�nition of JPP (Eqs. 3.6 and 3.8) inorder to simplify the remaining part of Eq. 4.1, one hasif�m2� = m
g�qqN
Nf Z d4p(2�)4f(p+)f(p�)tr
5S(p�)
5S(p+)+g�qq2 N
Nf (1�G1JPP (q)) Z d4p(2�)4f(p)(f(p+ q) + f(p� q))trS(p): (4.5)To dedu
e the GMOR relation now requires only the 
hiral expansion of JPP (q).It is straightforward to verify the result1 of Bowler and Birse that1�G1JPP (q) = �G1m
 h  i0m0(0)2 �G1 q2Z�0 +O(q4; m2
); (4.6)where Z� is de�ned as g2�qq(G2 = 0). An expli
it expression for Z� in the 
hiral limitwas originally presented in Ref. [8℄ and is:Z�1�0 = 2N
Nfm0(0)2 Z d4pE(2�)4m0(pE)2 �m00(pE)m0(pE)p2E + (m00(pE))2p4E[p2E +m0(pE)2℄2 ; (4.7)a prime denoting di�erentiation with respe
t to the square of the momentum argument.Substituting the expansion of Eq. 4.6 into Eq. 4.5 and evaluating the integrals in the
hiral limit one arrives at f�0 = m0(0)g�qq0 ; (4.8)whi
h is the equivalent of the Goldberger{Treiman relation [83℄ in the model. Usingthis relation in Eq. 4.6, whi
h is set equal to zero at the pion pole, produ
es the GMORrelation.The pion mass and de
ay 
onstant are altered by mixing with the longitudinalaxial{ve
tor 
omponent of the G2 intera
tion (see Chp. 3.2). The above proof is nowdeveloped to in
orporate those e�e
ts, the other 
ouplings in the extended modelhaving no impa
t at LO.To 
al
ulate the pion mass at leading order in the 
urrent quark mass, the piondeterminant (Eq. 3.13) must be expanded up to �rst order in m
 and q2. Expandingthe JAP and JLAA integrals appropriately givesJPA = qq2 �I6 � 12 eI6�+ � � � ;1Note that the ladder SDE is 
alled upon to obtain the expression quoted.4.2. GMOR Relation
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tromagnetism 60JLAA = �12G1 + 3I82 + � � � ; (4.9)where the dots refer to irrelevant higher{order terms and the following integrals havebeen de�ned: In = 4N
Nf Z d4pE(2�)4 f 4(pE)m(n2�2)0 (pE)[p2E +m20(pE)℄2 ;eI6 = 4N
Nf Z d4pE(2�)4 f 4(pE)p2Em00(pE)[p2E +m20(pE)℄2 : (4.10)By substituting the 
hiral expansions of Eqs. 4.6 and 4.9 into the pion determinantone �nds that m2� = � m
Xm0(0)2 h  i0; (4.11)where X isX = �1 + G22G1 � 3G2I82 �"G2 �I6 � 12 eI6�2 + 1Z�0 �1 + G22G1 � 3G2I82 �#�1 : (4.12)The GMOR relation will therefore be satis�ed by the extended model under the 
on-dition f 2�0 = m0(0)2X : (4.13)Now, if one uses the expansions of the J integrals in the de�nitions of g�qq andeg�qq (Eq. 3.12) then, at leading order in the 
hiral expansion, these 
ouplings to quarksare found to be g2�qq0 = X ; eg�qqg�qq0 = G2m�(I6 � 12 eI6)(1 + G22G1 � 3G2I82 ) + � � � : (4.14)Noti
e that sin
e g2�qq0 = X, the 
ondition of Eq. 4.13 is simply the modi�ed Goldberger{Treiman relation in the extended model.The 
al
ulation of f� in the extended model 
an pro�tably be de
omposed intotwo parts. The �rst 
onsists simply of the same 
ontributions as when G2 = 0,although allowing for the 
hange in the g�qq 
oupling. In the remaining part a fa
torof eg�qq is extra
ted, so that f� = g�qqpZ� f�jG2=0 + eg�qql: (4.15)4.2. GMOR Relation
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tromagnetism 61Using Eq. 4.8 for f�0 at G2 = 0 together with Eqs. 4.12, 4.14 and 4.15, the Goldberger{Treiman 
ondition may be rewritten asl = m0(0)Z�0 g�qq0eg�qq �Z�0X � 1�+ � � � (4.16)= m0(0)m� �I6 � 12 eI6� + � � � : (4.17)Finally, it is ne
essary to make an expli
it 
al
ulation of l, at leading order inthe 
hiral expansion, from those additional 
ontributions to f� whi
h are generated bynon-zero G2. Considering the diagrams already present without the G2 intera
tion,su
h 
ontributions 
ome from the extra 
ovariant in the pion vertex fun
tion. Fromthe 
oupling of the pion to the lo
al axial 
urrent one obtainsllo
 = 1m� " h  i04m0(0) + 34I6m0(0)# : (4.18)There is also a similar 
ontribution originating from the two-loop diagram where theone-quark loop has a s
alar insertion (Eq. 4.1). However, this 
ontribution turns outto be sub-leading in the 
hiral expansion. The remainder of l 
omes from the entiretyof the nonlo
al diagram given in Eq. 4.2. With the assistan
e of Eq. 4.14 the �rstterm in its 
hiral expansion is found to belnon-lo
 = �1m� " h  i04m0(0) � 14I6m0(0) + 12 eI6m0(0)# : (4.19)Adding together Eqs. 4.18 and 4.19 does indeed produ
e the expression on the right{hand side of the 
ondition of Eq. 4.17, thereby establishing the proof.4.3 Couplings to the Ve
tor CurrentThe 
ouplings 
ontrolling the ele
tromagneti
 de
ays of the ve
tor mesons 
an be 
al-
ulated in a similar manner to the pion de
ay 
onstant, dis
ussed in Chp. 4.1 above.Again the nonlo
al 
ontributions are numeri
ally important and are essential if re-lated Ward identities are to be satis�ed. An example of su
h an identity is presentedin Chp. 4.4 below, where the 
orrelator of two ve
tor 
urrents is shown to be purely4.3. Couplings to the Ve
tor Current
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tromagnetism 62transverse. There is, however, an alternative approa
h towards 
al
ulating the 
ou-plings to the ve
tor mesons. One 
an instead work with a general formulation of thedressed 
qq vertex in the model. That vertex is des
ribed in some detail in this se
-tion sin
e it is a ne
essary ingredient in the 
al
ulation of many other ele
tromagneti
observables.Sin
e the 
oupling of dressed quarks to the photon is unknown2 one is obligedto take some ansatz for it in order to 
al
ulate ele
tromagneti
 pro
esses. A populars
heme in the literature [85, 86, 87℄, sometimes 
alled the impulse approximation,involves a dressed 
qq vertex only, negle
ting irredu
ible 
ouplings of the photon tomore than two quarks. The 
qq vertex itself is 
hosen to be of the Ball-Chiu [88℄ form,the 
hief virtue of whi
h is that it is a simple solution of the Ward{Takahashi identityq���(p; q) = S�1F (p+)� S�1F (p�); (4.20)where q is the photon momentum 
owing away from the vertex, ��, and p is themomentum 
owing through the vertex. (The isospin stru
ture has been suppressedhere.) For a quark propagator without wavefun
tion renormalization the Ball-Chiuvertex is �� = 
� + p�(p � q)(m� �m+): (4.21)With the nonlo
al NJL model studied here, use of the impulse approximationdoes not provide an appropriate pres
ription for the 
al
ulation of ele
tromagneti
observables. For example, as is dis
ussed in Chp. 6.2, it would not produ
e the
orre
tly{normalized value of the pion 
harge. In this model, the ele
tromagneti

ouplings are 
ompletely spe
i�ed on
e a parti
ular ansatz has been 
hosen for thenonlo
al part of the ve
tor 
urrent. The un
ertainty inherent in the 
onstru
tion ofthe transverse part of the 
urrent is dis
ussed in Chp. 2.4. Despite this, gross featuresof the nonlo
al 
urrent would remain un
hanged with di�erent path ansatze.The various pie
es of the full 
qq vertex within the treatment of the extended2Although some numeri
al work on a BSE for the 
qq vertex has been attempted byFrank [84℄. 4.3. Couplings to the Ve
tor Current
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� = +

+ T + T
Figure 4.2: The dressed 
qq vertex. T denotes the qq s
attering matrix in either thetransverse or longitudinal ve
tor 
hannel.nonlo
al NJL model are shown diagrammati
ally in Fig. 4.2. From the lo
al 
urrent,there is simply a 
ontribution to �� of the usual form, 
�. The nonlo
al 
urrent indu
es
ontributions where there is a 
losed one-quark loop, similar to those appearing in thepion de
ay 
onstant and des
ribed in Chp. 4.1. In the ele
tromagneti
 
ase, thediagram where the 
losed loop has a s
alar insertion 
an be simpli�ed by using theladder SDE (Eq. 3.2) to express it as��m(0)�m
� Z 10 d� ��p� f 2�p+ (�� 12)q�: (4.22)Together with the lo
al 
ontribution, this would 
onstitute the full vertex in a versionof the model without ve
tor mesons. Sin
e the Ward{Takahashi identity of Eq. 4.20imposes an important 
onstraint on the form of the vertex it should be veri�ed in thepresent approa
h. To do so, one uses the following identity, whi
h is a spe
ial 
ase of

4.3. Couplings to the Ve
tor Current



Chapter 4. Ward Identities and Ele
tromagnetism 64Eq. 2.18: q� ��p� f 2�p+ (�� 12)q� = dd�f 2�p + (�� 12)q�: (4.23)The � integral involved in q��� is then seen to be trivial, and hen
e the Ward identityis indeed satis�ed by the sum of 
� and Eq. 4.22.In the extended model, with ve
tor{meson degrees of freedom, there is another
ontribution to �� that involves a one-quark loop. This has a ve
tor insertion and isgiven by�i
�f(p�)f(p+)G2N
Nf Z d4k(2�)4 4k�k2 �m2(k2) Z 10 d� ��k� f(k�q+�q)f(k+�q): (4.24)In addition, there are pie
es whi
h 
ontain the propagator of an intermediate qq state inthe ve
tor 
hannels. As is illustrated in the �nal two graphs of Fig. 4.2, the propagationof su
h intermediates is des
ribed by the T matrix of the ladder BSE (Eq. 3.5), whi
hmay be 
oupled to the ve
tor 
urrent via lo
al or nonlo
al loops. The 
ontribution to�� from the longitudinal 
hannel isi /qq2f(p�)f(p+) G2N
Nf1�G2JLV V (q) Z d4k(2�)4 f(k�)f(k+)(k2� �m2�)(k2+ �m2+)�tre��(k; q)(/k� +m�)/q(/k+ +m+); (4.25)while the transverse 
hannel givesi 
� � q�/qq2 ! f(p�)f(p+) G2N
Nf1�G2JTV V (q) Z d4k(2�)4 f(k�)f(k+)(k2� �m2�)(k2+ �m2+)�tre��(k; q)(/k� +m�)
�(/k+ +m+); (4.26)where e��(k; q) is the two-quark{irredu
ible 
qq vertex 
onsisting of the sum of 
� andEqs. 4.22 and 4.24. In these expressions, m� denotes the quark mass evaluated at k�.To 
he
k that the additional 
ontributions in the extended version of the model(Eqs. 4.24 to 4.26) remain 
onsistent with the Ward identity for the vertex, note �rstthat the quark propagator is un
hanged. Hen
e, the sum of the lo
al pie
e and Eq. 4.22still saturates the identity. In the 
ontribution of the expression 4.24 to q���, Eq. 2.18
4.3. Couplings to the Ve
tor Current
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tromagnetism 65enables the integration over the path variable to be performed. This part of q��� isthen�i /qq2 f(p�)f(p+)G2N
Nf Z d4k(2�)4 4q � kk2 �m2(k2)f(k)�f(k + q)� f(k � q)�: (4.27)The purely transverse pie
e in Eq. 4.26, whi
h involves a propagating � meson, isobviously irrelevant in the Ward identity. Thus 
an
ellation must o

ur betweenEq. 4.27 and the pie
e 
oming from Eq. 4.25. To demonstrate this expli
itly, oneneeds the result for q�e��. This is given by the sum of Eq. 4.27 and the expression onthe right{hand side of Eq. 4.20. Using this fa
t, the 
ontribution to q��� from thelongitudinal qq intermediate states (Eq. 4.25) 
an be expressed asi /qq2f(p+)f(p�) "Z d4k(2�)4 tr(/q +m� �m+)(/k� +m�)/q(/k+ +m+)(k2+ �m2+)(k2� �m2�) f(k+)f(k�)�G2JLV V (q) Z d4k(2�)4 4q � kk2 �m2(k2)f(k)�f(k + q)� f(k � q)�# G2N
Nf1�G2JLV V (q) : (4.28)The Dira
 tra
e in the �rst line of the above expression may be written as4(q � k�)(k2+ �m2+)� 4(q � k+)(k2� �m2�): (4.29)Hen
e, in ea
h of the resulting terms of Eq. 4.29, one of the fa
tors k2� �m2� 
an be
an
elled with the denominator of the integral. Shifting the integration variable from kto k� as appropriate, then the �rst integral inside the square bra
kets of Eq. 4.28 maybe 
ast into the same form as the se
ond, demonstrating the required 
an
ellation.Note that the above dis
ussion of ve
tor{meson 
ontributions to the dressed 
qqvertex has referred to the presen
e of the G2 
oupling in the isove
tor intera
tion
hannel. The results in the isos
alar 
hannel are 
ompletely analogous, with therepla
ement of G2 by G3.For the purpose of pra
ti
al 
al
ulations, it is 
onvenient to 
olle
t together thevarious 
ontributions to the vertex into the following form:
4.3. Couplings to the Ve
tor Current



Chapter 4. Ward Identities and Ele
tromagnetism 66
��(p; q) = 
�Q+  
� � q�/qq2 ! f(p�)f(p+)B(q2)�2Q Z 10 d� (p+ (�� 12)q)�m0(p+ (�� 12)q); (4.30)where the prime denotes a derivative with respe
t to the square of the momentumargument and the 
avour stru
ture is reinstated by using the 
harge matrix Q =12(� 3+ 13). The fun
tion B(q2) a

ounts for the presen
e of ve
tor mesons in the modeland is given by B(q2) = 12 �� 3B2(q2) + 13B3(q2)� ; (4.31)where the fun
tions Bi(q2) are:Bi(q2) = ( 11�GiJTV V (q2))(Ai(q2) + iGiN
Nf Z d4k(2�)4 f(k�)f(k+)(k2� �m2�)(k2+ �m2+)� " 4m�m+ � 4k2 + q2 + 83  k2 � (q � k)2q2 !!�83(m+ +m�) k2 � (q � k)2q2 !Z 10 d�m0�k + (�� 12)q�#) ; (4.32)and the Ai(q2) in the above equation originate from the one-quark loop with a ve
torinsertion and are given byAi(q2) = �8i3 GiN
Nf Z d4k(2�)4 k2 � (q � k)2=q2k2 �m2(k2)� Z 10 d� �f 0(k + �q)f(k � q + �q) + f(k + �q)f 0(k � q + �q)�: (4.33)Writing Ai(q2) and Bi(q2) in Eu
lidean spa
e and then performing an integrationby parts in Eq. 4.33, one �nds that Bi(0) = 0. This is simply a 
onsequen
e of thedi�erential form of the vertex Ward identity, Eq. 4.20,��(p; 0) = Q ��p�S�1F (p): (4.34)Hen
e, in pro
esses where the photon is on-shell, the 
qq vertex is un
hanged by theexisten
e of ve
tor{meson degrees of freedom in the model.

4.3. Couplings to the Ve
tor Current
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tromagnetism 67Returning to the issue of 
oupling an on-shell ve
tor meson to the ve
tor 
urrent,the amplitude 
an be 
al
ulated from a quark loop linking the meson vertex fun
-tion to that part of the 
qq vertex whi
h does not in
lude the 
ontribution from thepropagating transverse ve
tor 
hannel (Eq. 4.26). Attempting to in
lude that pie
e ofthe vertex would 
ause the amplitude to diverge. Diagrammati
ally, it would merelyamount to the addition of another bubble onto the ve
tor{meson 
hain (see Fig. 7.3).Sin
e the expression 4.26 is purely transverse, the Ward identity for the vertex stillholds.4.4 Ve
tor{Current CorrelatorThis se
tion presents a proof that the model satis�es a Ward identity requiring the
orrelator of a ve
tor 
urrent with an arbitrary 
urrent, J , to be purely transverse.The diagrams to be 
onsidered are analogous to those dis
ussed in Chps. 4.2 and 4.3regarding the 
oupling of a meson to the ve
tor or axial 
urrent. The proof 
onstitutesa further useful test of the general pro
edure for the 
ouplings of 
urrents, as well asproviding a 
he
k on the result for the nonlo
al ve
tor 
urrent 
onstru
ted in Chp. 2.4.Suppressing any Dira
 or isospin indi
es that might be asso
iated with J , the 
orrelatoris de�ned as: �a�(q) = i Z d4xeiqxh0jTfV a� (x)J(0)gj0i; (4.35)with ve
tor{
urrent 
onservation implying the Ward identityq��a� = 0: (4.36)In the analysis that follows, use of the isove
tor ve
tor 
urrent is assumed when writingthe expressions, and so J must also be of isove
tor 
hara
ter to obtain a non-zero
orrelator. In the isos
alar 
ase, one pro
eeds in exa
tly the same way but with all �matri
es set to unity and with the 
oupling 
onstant G2 repla
ed by G3.The diagrams relevant to the 
orrelator are shown in Fig. 4.3. The �rst diagramappearing in that �gure shows a two-quark loop whi
h 
ouples J to the lo
al part of4.4. Ve
tor{Current Correlator
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V �lo
 J G1; G2 J

V �lo
 T J G1; G2 T JFigure 4.3: Diagrams 
ontributing to the ve
tor{
urrent 
orrelator.the ve
tor 
urrent. It makes the following 
ontribution to q��a�(q):i2 Z d4p(2�)4 Tr/q�a(/p� +m�)�J(/p+ +m+)(p2� �m2�)(p2+ �m2+) : (4.37)In writing the above expression, �J has been used to represent the matrix insertioninto the loop due to the J 
urrent. Note that it has 
omponents in the 
avour, 
olourand Dira
 spa
es.The se
ond diagram in Fig. 4.3 shows the dire
t 
oupling of J to nonlo
al termsin the ve
tor 
urrent. A diagram of this form is generated by the G1(�a 
 1) type-Iterm (Eq. 2.12) in the 
urrent and 
ontributes the following to q��a�(q):G12 Z d4k(2�)4 Tr (/k +m(k2))k2 �m2(k2) f 2(k) Z d4p(2�)4 Tr �a(/p� +m�)�J(/p+ +m+)(p2� �m2�)(p2+ �m2+)��f 2(p+)� f 2(p�)�: (4.38)The expressions given in Eqs. 4.37 and 4.38 are the only LO 
ontributions in a versionof the model whi
h has just the G1 
oupling. They should therefore 
an
el with ea
hother, sin
e the Ward identity of Eq. 4.36 must hold in that version. The Dira
 tra
ein Eq. 4.37 may be simpli�ed with the help of the identity/q = (/p+ �m+)� (/p� �m�) + (m+ �m�): (4.39)Ea
h of the �rst two terms on the right{hand side of Eq. 4.39 enables one to 
an
ela fa
tor of a quark propagator in the 
orresponding integrals. On translating the4.4. Ve
tor{Current Correlator
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tromagnetism 69integration variables, the resulting 
ontributions from these two terms 
an be seen to
an
el with ea
h other. Furthermore, sin
e the k integral of Eq. 4.38 is known fromthe ladder SDE (Eq. 3.2), the sum of Eqs. 4.37 and 4.38 be
omesi2 Z d4p(2�)4 Tr �a(/p� +m�)�J(/p+ +m+)(p2� �m2�)(p2+ �m2+) (m+ �m�)� i2(m(0)�m
) Z d4p(2�)4 Tr �a(/p� +m�)�J(/p+ +m+)(p2� �m2�)(p2+ �m2+) �f 2(p+)� f 2(p�)� (4.40)whi
h is zero, as required.If an intera
tion in the ve
tor 
hannel, G2, is in
luded in the model then there areadditional diagrams involved in the 
orrelator. One su
h diagram is similar to thatof Eq. 4.38 but with a ve
tor rather than a s
alar insertion into the one-quark loop.It is generated by the G2(
� 
 
��a) type-I term in the ve
tor 
urrent. The otheradditional diagrams (see Fig. 4.3) involve intermediate ve
tor states, des
ribed by theT matrix of the ladder BSE. When the intermediate qq state is 
onne
ted to the lo
alpart of the ve
tor 
urrent it produ
es a 
ontribution to q��a�(q) of�12q2 G21�G2JLV V (q) Z d4p(2�)4 Tr /q�a(/p� +m�)/q� b(/p+ +m+)(p2� �m2�)(p2+ �m2+) f(p+)f(p�)� Z d4k(2�)4 Tr /q� b(/k� +m(k�))�J(/k+ +m(k+))(k2� �m2(k�))(k2+ �m2(k+)) f(k+)f(k�): (4.41)The integral over p in the above expression may be rewritten by substituting fromEq. 4.39 for the /q insertion 
oming from the 
ontra
tion of q� and the lo
al 
urrent(i.e., the insertion asso
iated with the isospin matrix �a). One then obtains�12q2 G21�G2JLV V (q) Z d4k(2�)4 Tr /q� b(/k� +m(k�))�J(/k+ +m(k+))(k2� �m2(k�))(k2+ �m2(k+)) f(k+)f(k�)�(Z d4p(2�)4 Tr �a(/p� +m�)/q� b(/p+ +m+)(p2� �m2�)(p2+ �m2+) f(p+)f(p�)(m+ �m�)+ Z d4p(2�)4 Tr �a/q� b(/p +m(p2))p2 �m2(p2) f(p)�f(p+ q)� f(p� q)�) : (4.42)Consider now the diagram whi
h is generated by the nonlo
al G1(�a 
 1) type-I termand has an intermediate longitudinal ve
tor state. This diagram 
an
els the 
ontri-bution 
oming from the �rst of the p integrals in the expression 4.42. The origin of4.4. Ve
tor{Current Correlator
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tromagnetism 70that pie
e was the term m+ �m� in the /q identity used in writing Eq. 4.42. Hen
e,this pro
ess of 
an
ellation between a nonlo
al diagram with a s
alar insertion and ananalogous lo
al{
urrent diagram is identi
al to the one des
ribed above whi
h operatesbetween Eqs. 4.37 and 4.38.Taking sto
k, there remains a pie
e from Eq. 4.42 as well as the two diagramsindu
ed by the nonlo
al type-I stru
ture G2(
� 
 
��a). These diagrams 
ontributethe following to q��a�(q):G22q2 Z d4p(2�)4 Tr /q(/p +m(p2))p2 �m2(p2) f(p)�f(p+ q)� f(p� q)�� Z d4k(2�)4 Tr /q�a(/k� +m(k�))�J(/k+ +m(k+))(k2� �m2(k�))(k2+ �m2(k+)) f(k�)f(k+) (4.43)and: iG22(q2)2 G21�G2JLV V (q) Z d4p(2�)4 Tr /q(/p +m(p2))p2 �m2(p2) f(p)�f(p+ q)� f(p� q)�� Z d4`(2�)4 Tr /q�a(/̀� +m(`�))/q� b(/̀+ +m(`+))(`2� �m2(`�))(`2+ �m2(`+)) f 2(`�)f 2(`+)� Z d4k(2�)4 Tr /q� b(/k� +m(k�))�J(/k+ +m(k+))(k2� �m2(k�))(k2+ �m2(k+)) f(k�)f(k+): (4.44)Using the fa
t that the ` integral in Eq. 4.44 is by de�nition (Eqs. 3.6 and 3.8) just�iÆabq2JLV V (q); (4.45)the sum of Eqs. 4.43 and 4.44 
an be seen to 
an
el with the remaining pie
e ofEq. 4.42, thereby 
ompleting the proof.

4.4. Ve
tor{Current Correlator
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5.1 Numeri
al FitsThe nonlo
al extended NJL model, as de�ned in Chp. 2, has seven parameters whi
hmust be �xed from experimental information. They are: the 
urrent quark mass (m
),the range of the form fa
tor (�) and �ve intera
tion 
oupling 
onstants. Considering�rst the 
ouplings G1 and G2 only, the quantities 
hosen for �tting the model param-eters are m� = 140 MeV, f� = 93 MeV and m� = 770 MeV. At LO, these quantitiesdo not depend on the remaining three 
ouplings. This leaves one parameter undeter-mined whi
h may be used to 
hara
terize ea
h of several parameter sets investigated.This parameter is taken to be m0(0), the zero{momentum quark mass obtained in the
hiral limit of the ladder SDE (Eq. 3.2).The above approa
h to �xing the parameters is 
onvenient in that it 
an beperformed with a reasonably straightforward �tting pro
edure. One begins by sele
tingthe desired value for the 
hiral quark mass and guessing the values of � and m
. Fromthe 
hiral limit of the ladder SDE, the G1 
oupling is immediately dedu
ed. The
urrent quark mass 
an then be introdu
ed into the SDE whi
h is solved by iterationto obtain m(0). G2 is 
al
ulated as the inverse of JTV V (m2�) (see Eq. 3.7) whereupon allof the relevant model parameters are established in order for f� and m� to be found. �

71
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 72and m
 are then adjusted and the pro
ess repeated until the 
orre
t pion observablesare produ
ed.On
e a �t parameter set has been determined from the above pres
ription thenthe remaining three 
ouplings may be �xed independently to reprodu
e the mass ofthe 
orresponding meson: G3 is set by requiring m! = 783 MeV; G4 by mf1 = 1282MeV; and G5 by ma0 = 982 MeV. The meson masses are given by Eq. 3.7, whilst f�is set by the 
oupling of the pion to the axial 
urrent (Eq. 1.5) and is 
al
ulated asdes
ribed in Chp. 4.1. The 
ontributions to f� from the nonlo
al part of the 
urrentare signi�
ant: the s
alar and ve
tor loop pie
es des
ribed in that 
hapter a

ountingrespe
tively for � 35% and � �10% of the total value.In terms of m0(0), the possible �ts have a restri
ted range. Having a 
ouplingstrong enough to realize 
on�nement requires thatm0(0) >� 270 MeV. Below that value,the model should only be used up to an energy 
orresponding to the appearan
e ofthe qq 
ontinuum at twi
e the value of the (purely real) quark pole. In fa
t only avery limited range of non-
on�ning sets are possible be
ause the empiri
al masses ofthe ve
tor mesons are lo
ated in this 
ontinuum for m0(0) <� 250 MeV.An upper limit on the a

eptable values for m0(0) is imposed by the behaviour ofthe meson propagators above the pseudo{threshold energy (Chp. 3.3). The dramati

hanges in behaviour whi
h 
an o

ur beyond this point may be seen in Figs. 5.1and 5.2, where the denominators of the propagators in various s
attering 
hannels areplotted for a �t parameter set with m0(0) = 300 MeV (set C of Table 5.1).

5.1. Numeri
al Fits
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Figure 5.1: The �gure shows the denominator of the propagator in the sigma 
hannel,1�G1JSS, along with the pion determinant de�ned in Eq. 3.13, as fun
tions of timelikemeson momentum. Also displayed are the denominators of the � and a1 propagators,1�G2JTV V;AA, s
aled by a fa
tor of 10.

5.1. Numeri
al Fits
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Figure 5.2: The �gure shows the denominators of the propagators in the longitudinal
hannels, 1�G2JLV V;AA, as fun
tions of timelike meson momentum.

5.1. Numeri
al Fits
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ursat an energy of 895 MeV. At larger values ofm0(0) this energy de
reases. As suggestedby the behaviour in Fig. 5.1, for large enough m0(0) two additional poles appear inthe transverse{ve
tor 
hannel above the � pole. Su
h a situation is shown in Fig. 5.3.The �rst of these extra poles has a residue of the wrong sign to des
ribe a physi
alparti
le. Although one might be willing to 
onsider parameter sets with the extrapoles, provided that they lie well above the energies of interest, in pra
ti
e this ispossible only for values of m0(0) within a very narrow range1, � 320 to 330 MeV.

Figure 5.3: The �gure shows the denominator of the transverse{ve
tor propagator,1�G2JTV V , as a fun
tion of timelike meson momentum, for a set of parameters wherem0(0) is una

eptably large.A pronoun
ed 
hange in behaviour beyond the pseudo{threshold is also observedin the longitudinal{ve
tor 
hannel (Fig. 5.2) and seems to be important in ensuringthat no poles are present in this 
hannel. An unphysi
al pole does o

ur, however, inthe pion propagator (Fig. 5.1). This unwanted pole is lo
ated between 1:3 and 1:45GeV, depending on the parameter set used. As is implied by Fig. 5.2, its origin is the1Above this range, the minimum in Fig. 5.3 o

urs at a positive value and so the ve
tormeson be
omes an unfeasibly heavy state. 5.1. Numeri
al Fits
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attering 
hannel (whi
h 
hanges sign near to theunphysi
al pole). Sin
e this 
hannel appears in the pion determinant (Eq. 3.13) dueto �a1 mixing, the extra pole would not be present in a minimal version of the model,with the G1 intera
tion only. One should only attempt to use the extended modelat energies below the position of the unphysi
al pole. Note that although there is asimilar pole in the �? propagator, it lies at a higher energy than in the pion 
ase.In this and in subsequent 
hapters, numeri
al results are presented for parametersets whi
h lie near ea
h edge of the a

eptable range for m0(0). From evaluations withsome other parameter sets, the variation of results over the full range has been foundto be generally monotoni
; where it is not, the dependen
e on m0(0) is fairly weak.Spe
i�
ally, results are quoted for m0(0) = 280 MeV (hen
eforth referred to as setA) and 320 MeV (set B)2. Details of these parameter sets are given in Table 5.1. For
ompleteness, the parameter set at m0(0) = 300 MeV is also de�ned in that table (setC). This is a set in the middle part of the range, using whi
h many of the �gures havebeen drawn.Values of the zero{momentum quark masses 
al
ulated with these parameters atnon-zero m
 are also quoted in Table 5.1. They indi
ate that the e�e
t of non-zero m
in the ladder SDE is a signi�
ant one, a 
urrent mass of � 10 MeV 
ausing the zero{momentum dynami
al quark mass to in
rease by � 50 MeV. It is thus worth examiningthe related issue of deviations of f� and m� from the values whi
h would be obtainedat leading order in the 
hiral expansion. Evaluating the pion quark 
oupling with m
set to zero and then using the Goldberger{Treiman relation of Eq. 4.8 gives the valuesfor f�0 in Table 5.1. The shifts in f� indu
ed by the 
urrent quark mass are thereforeseen to be appre
iable, as might be anti
ipated from the shifts in the dynami
al mass.In 
ontrast, the GMOR relation stands up quite well, the entries m� (GMOR) inTable 5.1 giving the pion masses at leading order in m
. Su
h observations suggest2Note that set B, having m0(0) 
lose to the maximum admissible value, 
ontains unphys-i
al poles in the transverse ve
tor 
hannels of the type dis
ussed earlier. The �rst of theseo

urs at an energy of 1575 MeV in the isos
alar 
hannel and so lies above the unphysi
alpole in the pion 
hannel. 5.1. Numeri
al Fits



Chapter 5. Numeri
al Results | Hadroni
 77Parameter Set A Set B Set Cm0(0)(MeV) 280 320 300m(0)(MeV) 326 370 347m
(MeV) 8:4 11:0 9:6�(MeV) 995 846 918G1(GeV�2) 37:1 57:6 46:1G2(GeV�2) �5:70 �6:53 �6:57G3(GeV�2) �5:20 �5:86 �5:99G4(GeV�2) �0:80 �4:14 �2:24G5(GeV�2) 2:57 4:76 3:34f�0(MeV) 84:6 85:1 85:0m�(GMOR) (MeV) 143:6 143:2 143:3Table 5.1: Values of the model parameters, �tted as dis
ussed in the text. Also shownare the pion de
ay 
onstant in the 
hiral limit, the pion mass predi
ted by GMORand the dynami
al quark mass.that the restoring for
es against deviations from the 
hiral 
ir
le are rather weak inthis model. Asso
iated with su
h a softness of the va
uum, one would expe
t to �nda light sigma meson. This does indeed prove to be the 
ase, as is dis
ussed shortly.In the 
hiral limit, the model quark 
ondensate is �(206MeV)3 and �(189MeV)3for sets A and B respe
tively. With non-zero 
urrent quark mass, the 
ondensateintegral is quadrati
ally divergent. If it is regulated by subtra
ting the perturba-tive 
ondensate, slightly higher values of �(212MeV)3 and �(193MeV)3 are obtained.These are similar in size to values for the 
ondensate estimated from QCD sum rules [3℄.However, one should bear in mind that the 
ondensate in QCD is a quantity whi
h de-pends upon the renormalization s
ale and so one ought to be 
areful about 
omparingit dire
tly with the value obtained in a model of this type.Table 5.2 lists the positions of the �rst few sets of poles in the quark propagator.Sin
e it is only the �rst group of poles whi
h is 
onsidered to have physi
al relevan
e,the model should only be used up to a maximum energy of twi
e the real part of these
ond set of poles. This limit is at 2:3 GeV and 1:9 GeV for the parameter sets Aand B respe
tively, and so is suÆ
iently far above the upper limit imposed by theunphysi
al pole in the pion 
hannel not to be of pra
ti
al 
on
ern.5.1. Numeri
al Fits
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 78Set A Set B�496� 130i �404� 257i�1168� 790i �962� 702i�1488� 1155i �1242� 1005i�1742� 1436i �1463� 1240iTable 5.2: Positions of the lowest four sets of poles in the quark propagator. Thevalues given are of pp2 in MeV.5.2 Meson Spe
trumIn Table 5.3, the 
al
ulated meson masses are given, along with their on-shell 
ouplingsto quarks, as de�ned in Eqs. 3.11 to 3.13. As des
ribed in Chp. 5.1, in some instan
esthe empiri
al masses have been used to �x model parameters.Set A Set BParti
le Mass giqq egiqq Mass giqq egiqq� Fit 3:44 0:0739 Fit 3:91 0:0715� 443:2 3:51 { 465:8 4:06 {� Fit 1:12 { Fit 1:11 {a1 946:8 1:13 { 1061:5 2:27 {! Fit 1:07 { Fit 1:05 {f1 Fit 0:89 { Fit 2:51 {a0 Fit 0:75 { Fit 1:71 {�? 874:9 0:83 0:190 899:4 2:36 1:448Table 5.3: The 
al
ulated meson masses (in MeV) and the 
ouplings of the mesons toquarks.The s
alar isos
alar state is rather light. For 
omparison, the mass of the 
orre-sponding parti
le in the NJL model [36, 37, 66, 67℄ is m2� = m2�+4m2, where m is themass of the 
onstituent quark. Interestingly, the � mass in the nonlo
al model variesonly slowly with the dynami
al quark mass.There are a number of analyses of low-energy �� s
attering whi
h have attemptedempiri
al determinations of the mass of the s
alar isos
alar meson. However, the issuehas remained a 
ontentious one owing to the very strong 
oupling between this state5.2. Meson Spe
trum
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hannel. While some analyses �nd masses of O(1 GeV) [89℄, othersindi
ate a mu
h lighter state [90℄. The sigma masses of this model, like those in theNJL model, are 
ompatible with the latter. Phenomenologi
ally, however, it is perhapsa more important point that the 
oupling of the model s
alar meson to two pions isqualitatively strong (in Chp. 5.3 it is shown to be 
omparable to that for a parti
le ofequivalent mass in the linear sigma model). It is therefore eminently plausible that the1=N
 
orre
tions (whi
h in
lude two-pion intermediate states) to the s
alar isos
alar
hannel 
ould prove very signi�
ant. The results that have been obtained from a fullNLO treatment of the nonlo
al model are presented in Chp. 8.The 
al
ulated a1 mass in the nonlo
al model is somewhat smaller than the ob-served 1230 MeV [12℄. In the 
ase of parameter set A, it lies a little below the pseudo{threshold, but for most of the range of admissible m0(0) it is above that energy. The�-a1 mass splitting is found to in
rease with in
reasing dynami
al quark mass, althoughnot so rapidly as suggested by the NJL [66, 67℄ expression m2a1 = m2� + 6m2, obtainedfrom the derivative expansion of the bosonized model. As a 
onsequen
e of the upperbound on the 
onstituent mass, whi
h follows from the e�e
t of the pseudo-thresholdon the transverse{ve
tor 
hannel, it is not possible to reprodu
e simultaneously theempiri
al values of both the � and a1 masses in the ladder approximation. Sin
e thea1 meson is a very broad resonan
e this is not altogether surprising, NLO diagrams(su
h as one with a �� loop) being potentially important for an a

urate des
riptionof the 
hannel.Sin
e there are important 
avour{mixing e�e
ts in the isos
alar pseudos
alarse
tor, a realisti
 
al
ulation for these mesons would require a three{
avoured versionof the model. The �? mass in the two{
avour model should not therefore be dire
tly
ompared with experiment. It is nevertheless somewhat reassuring to note that thismass lies between the physi
al � and �0 masses of 547 and 958 MeV respe
tively.Another possibly important feature in the des
ription of the state is the e�e
t of axial{pseudos
alar mixing with the longitudinal f1 
hannel. Indeed, in a Bethe{Salpeter
5.2. Meson Spe
trum
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avour model [91℄, the /q
5 term in the vertex fun
tion of the �was found to make signi�
ant 
ontributions to both its mass (� 70 MeV) and de
ay
onstant (� 30 MeV). A similar e�e
t has also been observed in the NJL model [68℄.In the present model, if the f1 parti
le is omitted by setting G4 to zero, then the �?mass with parameter set A is redu
ed by around 20 MeV, whereas with set B it fallsby over 110 MeV. These rather di�erent behaviours are another 
onsequen
e of thedramati
 
hanges in the meson propagators whi
h 
an o

ur at the pseudo{threshold.When G4 = 0, the �? mass lies below the pseudo{threshold energy for the full rangeof admissible parameter sets. For non-zero G4, the mixing a
ts to in
rease the �?mass and for parameter sets with m0(0) >� 310 MeV the mass is pushed above thepseudo{threshold, where the e�e
t 
an be greatly enhan
ed. In addition, the gradientof the determinant D�? (
f. Eq. 3.13 and Fig. 5.1) 
hanges signi�
antly above thepseudo{threshold with the result that for these parameter sets the 
oupling of the �?to quarks is 
onsiderably stronger.5.3 Hadroni
 De
aysAt leading order in 1=N
, the three{meson verti
es are 
al
ulated from a quark loopwith insertions of three vertex fun
tions. In this se
tion results are presented for thoseinter{meson 
ouplings whi
h 
orrespond to physi
al de
ay amplitudes. In su
h 
asesall of the mesons are on-shell, where the vertex fun
tions (and hen
e the mesoni

ouplings) are unambiguous.For an initial state of momentum q de
aying to parti
les with momenta q1 and q2,the quark propagators in the triangular loop are evaluated at p� 12q and p+ 12(q2�q1).If the initial state has a mass whi
h is greater than twi
e the real part of the quarkpole, then its de
ay modes will be sensitive to pseudo{threshold e�e
ts. By analogywith the loop integral in the BSE for that parti
le, residue 
ontributions must betaken into a

ount in the three{point diagrams (see the dis
ussion of Chp. 3.3). It isalso possible that further residue 
ontributions would be required were a �nal{state5.3. Hadroni
 De
ays
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V V1

V2
Figure 5.4: 1! 2 meson de
ays. There is also a similar diagram where V1 $ V2.parti
le to lie above the pseudo{threshold energy. However, su
h a situation is noten
ountered in pra
ti
e for any of the amplitudes 
onsidered.The meson 
ouplings that have been evaluated are de�ned by the following matrixelements: h�a(q1)�b(q2)j�(q)i = �g���Æab;h�b(q1)�
(q2)j�a(q)i = ig����ab
(q2 � �� q1 � �);h�(q1)�b(q2)jaa1(q)i = 12 iga1��Æab(q1 � �� q2 � �);h�b(q1)�
(q2)jaa1(q)i = �ab
(ga1��(��� � �a1)� ha1��(q2 � ���)(q2 � �a1)): (5.1)The numeri
al values 
al
ulated for the above 
ouplings are given in Table 5.4, alongwith the 
orresponding de
ay widths. Working in the rest frame of the initial stateparti
le, the integrations have been performed in terms of the variables p4 (in thedire
tion of q), jpj and  (the angle between p and q1). If the angular integration isdone �rst then the result 
an be treated analogously to an element of J(q) (as des
ribedin Chps. 3.3 and 4.1). The variation of the integrands with  tends to be dominatedby a fa
tor of sin 
oming from the Ja
obian. It has therefore been advantageous to
hoose this as a weighting fun
tion in the NAG routine D01ANF whi
h evaluates the integral by approximating the other fa
tors with a Chebyshev series over adaptiveintervals.

5.3. Hadroni
 De
ays
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 82Set A Set BCoupling Value Width(MeV) Value Width(MeV)g���(MeV) 1438 108:0 1625 135:1g��� 5:52 126:0 5:26 114:0ga1�� 10:65 74:0 11:77 116:4ga1��(MeV) 2174 44:0 4604 376:2ha1��(GeV�1) 18:19 { 10:87 {R �0:048 { �0:087 {Table 5.4: The on-shell three{meson 
ouplings, as de�ned in Eq. 5.1. Also presentedin the table are the 
orresponding partial widths. R is the ratio of the d- to s-waveamplitudes in a1 ! �� and is spe
i�ed in Eq. 5.2.If the sigma meson of the model is to be interpreted analogously to the s
alarparti
le of the linear sigma model then its 
oupling to two pions should be strong.Whilst the values in Table 5.4 do not indi
ate a parti
ularly broad state, the width isappre
iably redu
ed by the small available phase spa
e. A useful 
omparison, however,is provided by the predi
tion for the two-pion 
oupling g��� from the linear sigmamodel [14℄. In that model, the 
oupling is g��� = (m2� �m2�)=f� whi
h, for the sigmamasses of parameter sets A and B, gives g��� = 1901 MeV and 2122 MeV respe
tively.These values are � 30% larger than those quoted in Table 5.4, indi
ating that the
oupling to pions of the s
alar meson in the nonlo
al NJL model is qualitatively similarto that of the linear{sigma{model parti
le. As mentioned previously, this strong
oupling highlights the importan
e of going beyond LO in 1=N
 in the des
riptionof the s
alar 
hannel.The 
al
ulated � meson de
ay width 
ompares reasonably well with the empiri
alvalue of 151 MeV. In 
ontrast, the equivalent LO 
al
ulation in an extended NJLmodel, using the physi
al � mass, signi�
antly underestimates the de
ay rate [92, 93℄.Even with the improved des
ription of the nonlo
al model, it is not possible to 
hoosemodel parameters that reprodu
e both the empiri
al mass and de
ay width of the �in the LO approximation. Note, however, that if the model parameters for a givenm0(0) are re�tted to the empiri
al value of g��� rather than to the � mass, then the
5.3. Hadroni
 De
ays



Chapter 5. Numeri
al Results | Hadroni
 83results for observables are not qualitatively di�erent from those of the original �t. Forinstan
e, this pro
edure would in
rease the � mass itself by � 20 to 60 MeV.The 
oupling ga1�� is not a dire
t observable, although the pro
ess it des
ribeswould be involved in the physi
al de
ay of a1 ! 3�. The partial widths for a1 ! ��found in this model are similar to those estimated from the extended NJL model3 [94℄and from Weinberg's mended realization of 
hiral symmetry4 [95℄. In 
ontrast, theParti
le Data Group [12℄ quotes an experimental upper bound on the �nal state �(��)Sof � 0:7% of the total a1 width of � 400 MeV. The strong 
ouplings obtained heresuggest that the model may not be 
onsistent with this experimental result. However,the situation is far from 
lear. The two{stage pro
ess a1 ! �� ! 3� would have tobe integrated over various momenta of the intermediate s
alar resonan
e, where thea1�� and ��� 
ouplings may redu
ed from their on-shell values. A hint that this mayindeed be so is provided by the ��� loop integral, whi
h vanishes5 when the totalenergy is around 800 MeV (see also Chp. 8.6). Furthermore, there is an amplitude forthe �(��)S �nal state originating from a dire
t, four{point a1 ! 3� diagram whi
hhas not been 
al
ulated. Although this 
ontribution has been estimated to be smallfrom the �rst term in the derivative expansion of the extended NJL model [67℄, higherorder terms in the expansion are liable to be important for pro
esses involving thea1. Hen
e, it remains plausible that the dire
t 
ontribution might 
onspire to 
an
elsome of the amplitude due to the intermediate s
alar state. As is dis
ussed in Ref. [96℄however, su
h a 
an
ellation is not required by any underlying prin
iple su
h as 
hiralsymmetry.The dominant de
ay mode of the a1 is to ��. Although the parameter set B3The authors of the 
ited referen
e quoted �(a1 ! ��) � 60 MeV.4On the basis of whi
h it is predi
ted that �(a1 ! ��) = 2� 32�(�! ��) � 53 MeV.5As noted previously, the 
ouplings a1�� and ��� for an o�-shell sigma meson are not wellde�ned. Ea
h 
ould be multiplied by an arbitrary fun
tion so long as the produ
t of the two
ouplings and the sigma propagator is preserved. However, although the magnitude of an o�-shell 
oupling is undetermined, any zeros in the 
orresponding loop integral must indi
atethat the 
oupling has genuinely vanished. The statement in the main text is thereforeindependent of the extrapolation s
heme used.
5.3. Hadroni
 De
ays
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e a 
redible, broad width, with set A the state seems to be very narrow.Sin
e the �nal state has a 
ombined mass of 910 MeV, the allowed phase spa
e forthe de
ay is drasti
ally redu
ed at the model a1 masses as 
ompared to the empiri
almass. Using parameter set A, the a1 mass is only 946:8 MeV and so the small de
aywidth of 44 MeV may simply be a 
onsequen
e of the phase{spa
e suppression.In order to examine whether the a1�� 
oupling is reasonably well des
ribed bythe extended nonlo
al NJL model, it is here 
ompared with the des
ription of thesame pro
ess using a phenomenologi
al mesoni
 Lagrangian. The CCWZ formalism(see Appendix C.4) o�ers a parti
ularly 
onvenient basis for the 
omparison sin
ethe a1 mass in that framework 
an be set to any desired value without violating the
onstraints of 
hiral symmetry. A suitable Lagrangian is one obtained by 
onvertingthe simplest Lagrangian of the massive Yang-Mills s
heme (Appendix C.3) into itsCCWZ equivalent and then adjusting the a1 mass6. The relevant intera
tion verti
esare in
luded in the Lagrangian of Eq. C.11, with the Yang-Mills 
ouplings being givenin Eq. C.13. They yield the predi
tions ga1�� = f�1� (g4(qa1 � q�) + g3(q� � q�)) andha1�� = f�1� (g4 � g3). Taking f� = 93 MeV, m� = 770 MeV and Z2 = 1=2 to be theparameters spe
ifying the original massive Yang-Mills Lagrangian, together with theempiri
al a1 mass, gives a broad state of width 490 MeV. Using the a1 masses foundin the model with parameter sets A and B, the e�e
tive Lagrangian gives very mu
hsmaller widths, 23 and 132 MeV respe
tively. This suggests that the small widths
al
ulated in the nonlo
al model are largely due to the the small a1 mass rather thanany underestimate of the 
oupling strength.The amplitude for the de
ay a1 ! �� is a mixture of s- and d-wave 
omponents.In terms of the de
ay parameters de�ned in Eq. 5.1, the ratio of the d- to s-wave6The same 
on
lusions are rea
hed if one starts from the simplest Lagrangian for �, � anda1 mesons in the hidden{symmetry formalism [97℄. The a1�� intera
tion terms in the CCWZrepresentation of both models are generated from the gauge{
ovariant kineti
 terms in theoriginal representations. These 
ontain AAV stru
tures, whi
h be
ome intera
tions of theappropriate form after the shift in the axial �eld indu
ed by diagonalization (Appendix C.3).With the minimal Lagrangians of both s
hemes one therefore has g3 = g4 due to the stru
tureof the original kineti
 terms, with g3 being set by the mixing parameter.
5.3. Hadroni
 De
ays
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 85amplitudes is R = �p2 (E� �m�)ga1�� + jq�j2ma1ha1��(E� + 2m�)ga1�� + jq�j2ma1ha1�� ; (5.2)where E� and q� are the energy and three{momentum of the �, in the a1 rest frame.This quantity has been determined by the ARGUS 
ollaboration [98℄ from � -de
aydata to be �0:11� 0:02. The e�e
tive Lagrangian approa
h dis
ussed above requireshigher{order 
ouplings in order to obtain a non-zero ha1�� and so this ratio provides atest of su
h higher{order e�e
ts. From the values of R given in Table 5.4, the ratio forthe parameter set A is seen to be rather low whereas the value for set B is 
onsistentwith the observed one. Overall, it is set B that provides the better des
ription of boththe a1 mass and its hadroni
 de
ays.

5.3. Hadroni
 De
ays
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Additional tests of models in whi
h mesons are 
onstru
ted as qq 
omposites areprovided by ele
tromagneti
 de
ays and form fa
tors that probe the internal mesonstru
ture. In order to 
al
ulate su
h pro
esses it is ne
essary to spe
ify the photon{quark 
oupling, whi
h requires additional assumptions to be made about the formof the nonlo
al 
urrent. This was dis
ussed in Chp. 2.4. The resultant 
oupling inthe nonlo
al extended NJL model and the means of 
al
ulating the ele
tromagneti
de
ays of the ve
tor mesons were des
ribed in Chp. 4.3.6.1 Meson Couplings to CurrentsThe photon{ve
tor-meson 
ouplings are de�ned byh0jJ�aj�bsi = �g�
Æab��s ;h0jJ�j!si = �g!
��s : (6.1)Their empiri
al values, dedu
ed from � ! e+e� and ! ! e+e�[12℄, are g�
 = 0:1177GeV2 and g!
 = 0:0359 GeV2. The 
al
ulated values for these 
ouplings, given inTable 6.1, are in reasonable agreement with the experimental ones. Similarly to the86
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ase of the pion de
ay 
onstant (Chp. 5.1), the nonlo
al diagrams with s
alar andve
tor one-quark loops are numeri
ally signi�
ant, produ
ing respe
tively � 8% and� �30% of the 
oupling.Set A Set B Set A Set BQuantity Value Value Quantity Value Valueg�
(GeV2) 0:0889 0:0773 g� 6:67 7:67g!
(GeV2) 0:0308 0:0265 g! 19:92 23:12hr2�i(fm2) 0:346 0:344 { { {g�

 0:505 0:501 { { {g!�
(GeV�1) �2:29 �2:25 �(! ! �
) (keV) 692 669g��
(GeV�1) �0:755 �0:707 �(�! �
) (keV) 71:6 62:7ga1�
(MeV) 140:2 201:5 �(a1 ! �
) (keV) 24:7 45:7Table 6.1: Ele
tromagneti
 properties of mesons. The various 
ouplings appearingin the table are de�ned in Eqs. 6.1, 6.2, 6.13, 6.23 and 6.27. Also given are the
orresponding radiative de
ay widths of the spin-1 mesons and the mean{square 
hargeradius of the pion.Values for the dimensionless quantities gV, as given bygV = m2VgV
 ; (6.2)
an also be seen in Table 6.1. Universal 
oupling of the � (see Chp. 1.6) would predi
tthat g� = g���. If one 
ompares the results for g� with those for g��� in Table 5.4 it is
lear that the universality relation is violated in the model, although notably less sowith parameter set A, where both of these 
ouplings are 
loser to the empiri
al ones.The deviations from universality re
e
t the fa
t that the ve
tor 
urrent of the modelis able to 
ouple through many possible states. Sin
e the � meson is just one su
hstate there is no a priori reason to expe
t universality to hold.Another interesting 
omparison one 
an make with regard to the �
 
oupling
on
erns the analogous 
oupling of the a1 meson to the transverse axial 
urrent. A
oupling strength ga1 is de�ned similarly to gV
,h0jJ�a5 jab1si = �ga1Æab��s : (6.3)
6.1. Meson Couplings to Currents
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oupling as des
ribed in Chp. 4.1 one obtains values for ga1 of 0:072GeV2 and 0:138 GeV2 with parameter sets A and B respe
tively. The 
oupling strengthfrom the lo
al{
urrent 
ontribution is here redu
ed by about a third due to the in
lu-sion of the nonlo
al diagram with a ve
tor one-quark loop. Another nonlo
al diagramis also present but its e�e
t is relatively minor. No dire
t experimental measure-ment of ga1 exists against whi
h to test these results, but the quantity does appearin Weinberg's sum rules [99℄. If one assumes 
omplete ve
tor and axial{ve
tor mesondominan
e1 in Weinberg's �rst and se
ond sum rules, then the following relations areobtained: g2�
m2� � g2a1m2a1 = f 2� ; (6.4)g�
 = ga1 : (6.5)The results of the model for parameter set A are 
onsistent with these ve
tor{dominan
eversions of the sum rules, at the � 15% level. In 
ontrast, the results with set B 
learlyfail to satisfy the relations.6.2 Pion Form Fa
torA further test of the extent to whi
h ve
tor{meson dominan
e holds in the nonlo
alNJL model is provided by the pion form fa
tor. This fun
tion re
eives 
ontributionsfrom the two kinds of diagram shown in Fig. 6.1.The diagram on the left{hand side of the �gure is based on a triangular loop,and is often the only one 
onsidered in 
al
ulations of the form fa
tor. For a timelikemomentum q 
arried by the external 
urrent, the situation is similar to that dis
ussedin Chp. 5.3 for the triangle diagrams in hadroni
 de
ays, with pseudo{threshold e�e
ts
oming into play at energies beyond twi
e the real part of the quark pole. The same1i.e., that the isove
tor ve
tor and axial{ve
tor spe
tral fun
tions are given entirely bydelta fun
tions at the � and a1 masses respe
tively. The assumption negle
ts the non-zerowidths of these parti
les as well as the existen
e of heavier resonan
es.
6.2. Pion Form Fa
tor
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V� V�� V� V�Figure 6.1: The spa
elike pion form fa
tor. There is another, similar triangle diagramwhere the photon 
ouples to the anti{quark.numeri
al methods are used as in that 
ase. For spa
elike momenta the triangulardiagrams 
an be evaluated in a similar manner, working in the Breit frame.The other kind of diagram in Fig. 6.1 links the ve
tor 
urrent to the initial{ and�nal{state pions by means of two-quark loops. It will be referred to as a two-bodydiagram and is generated by the terms G1(i
5
 i
5) and G2(
�
5

�
5) with type-IIstru
ture (Eq. 2.13) in the nonlo
al isove
tor 
urrent. The 
ontribution from thesediagrams 
an be written as a sum over terms, ea
h of whi
h is a produ
t of two loopintegrals that are somewhat similar to those in JPP ; JAP or JLAA. The path variable ina type-II nonlo
al 
urrent is asso
iated with both of the  � pairs and hen
e the twoloops are 
onne
ted to ea
h other through the integral over the path. Numeri
ally,su
h two-body diagrams are best evaluated in a way2 similar to the type-III nonlo
aldiagram whi
h is involved in 
oupling the a1 to the axial 
urrent (see Chp. 4.1). Sin
ethe quark propagators o

urring in the two-quark loops have arguments of p � 12q�,pseudo{threshold e�e
ts are not relevant here.Note that the two kinds of diagram in Fig. 6.1 are separately gauge invariant. Forthe triangular diagrams, gauge invarian
e follows dire
tly from the 
harge 
onjugationproperties of the dressed quark propagator and the verti
es (see Ref. [100℄ for example).With two-body diagrams of the form o

urring in this model, it is also a simple matter2Spe
i�
ally, a numeri
al integration over the path variable is performed, and has asits integrand the produ
t of two three{dimensional integrals. These latter integrals areevaluated with the same numeri
al methods as for the triangular diagrams.

6.2. Pion Form Fa
tor
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he
k that they 
an have no 
omponent whi
h is proportional to the momentum ofthe 
urrent. If su
h a diagram is 
ontra
ted with the 
urrent's momentum, Eq. 2.18
an then be used to perform the resulting path integral, whereupon the expressionvanishes.A need for two-body diagrams to be in
luded has also been noted in the 
ontext ofmodels where the four-quark intera
tion is dependent only on the relative momentumof the qq pair [55, 56℄. In su
h a model the analogue of the two-body diagram 
an beredu
ed to a single two-quark loop integral, where one of the the �qq vertex fun
tionsis modi�ed by the presen
e of the photon. Su
h diagrams make no 
ontribution to thepion 
harge, unlike the two-body diagrams required in the present model. Indeed, thefa
t that the pion's 
harge should be unity, F�(0) = 1, supplies an important 
he
kon the model 
al
ulations, both analyti
al and numeri
al. Cal
ulation of the 
hargefrom the full expressions for the 
ontributing diagrams would be quite 
ompli
ated,but it is rather more pra
ti
able to demonstrate the result analyti
ally if one works inthe 
hiral limit.Consider initially a simpli�ed version of the model where G1 is the only 
ouplingin
luded. When a bare 
� insertion is used at the 
qq vertex of the triangular loopsit yields the following 
ontribution to F�(0):2N
Nfg2�qq0 Z d4pE(2�)4 f 4(pE)� 12p2Ef 2(pE)f 20(pE)[p2E +m0(pE)2℄2 ; (6.6)the prime denoting di�erentiation with respe
t to p2E. The only other pie
e of the
qq vertex in this version of the model is an insertion of s
alar 
hara
ter (given inEq. 4.22). The resulting 
ontribution, however, turns out to be of O(m�) and so the
ondition 
an only be satis�ed through the introdu
tion of a 
ontribution that 
omesfrom the two-body diagram. This is:�2N
Nfg2�qq0 Z d4pE(2�)4 f 2(pE)f 20(pE)� 14p2E(f 20(pE))2 + p2Ef 3(pE)f 00(pE)p2E +m0(pE)2 : (6.7)In deriving the expression above one exploits the fa
t that the path variable, �, alwaysappears in 
onjun
tion with q and hen
e at q = 0 it vanishes from the integrand. The6.2. Pion Form Fa
tor
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t of two separated loop integrals, one of whi
his simply JPP (m2�). This fa
tor is not found in Eq. 6.7, however, sin
e it has beeneliminated (along with the fa
tor of G1 in the nonlo
al 
urrent) by invoking the pionBSE, G1JPP (m2�) = 1.Integration by parts 
an be used to remove the se
ond derivative of an intera
tionform fa
tor from Eq. 6.7. Adding the 
ontributions of Eqs. 6.6 and 6.7 then gives2N
Nfg2�qq0 Z d4pE(2�)4 f 4(pE)� p2Ef 2(pE)f 20(pE) + p4Ef 2(pE)(f 0(pE))2[p2E +m0(pE)2℄2 : (6.8)This integral should be 
ompared to the one in Eq. 4.7 for Z�1�0 . Re
alling thatequation, and the de�nition of Z�, the expression 6.8 is seen to redu
e to unity, asrequired.Pro
eeding now to the 
ase of the extended model, the 
ontributions dis
ussedabove are no longer suÆ
ient to produ
e the 
orre
t normalization of the pion 
harge.This is be
ause there are 
hanges to g2�qq0 whi
h 
ause it to deviate from Z�0. Amodi�
ation is also made to the dressed 
qq vertex, spe
i�
ally the introdu
tion ofthe pie
e of Eq. 4.30 that is proportional to B(q2). Sin
e B(0) = 0 however, this e�e
tdoes not have any impli
ations for the 
harge of the pion. The new 
ontributionsarising from the triangular diagrams therefore originate solely in the additional /q
5term of the pion vertex fun
tions. At leading order in the 
hiral expansion, and usingthe bare 
qq vertex, this extra term yields a 
ontribution of4N
Nf g�qq0eg�qqm� Z d4pE(2�)4 f 4(pE)m0(pE)[p2E +m0(pE)2℄2 ; (6.9)whilst the 
orresponding result from the dressed s
alar pie
e of the 
qq vertex is�2N
Nf g�qq0eg�qqm� Z d4pE(2�)4 p2Ef 4(pE)m00(pE)[p2E +m0(pE)2℄2 : (6.10)The two-body diagrams are also altered due to non-zero G2 be
ause of the extrainvariant at the pion verti
es. Furthermore, there is a new diagram of this kind whi
harises from the type-II term G2(
�
5 
 
�
5) in the nonlo
al ve
tor 
urrent. At q = 0both of the two-body diagrams simplify to a sum over terms whi
h are produ
ts of6.2. Pion Form Fa
tor
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h term, one of these integrals is just JPP (m2�),JAP (m2�) or JLAA(m2�). Sin
e JAP is O(m�) in the 
hiral expansion (Eq. 4.9), terms
ontaining it 
an be dis
arded. Although JLAA is of zeroth order in the pion mass, italways appears in these diagrams a

ompanied by at least one fa
tor of eg�qq, whi
h isitself of O(m�) (see Eq. 4.14). Only the terms that are proportional to JPP survivein the 
hiral limit. This means that the new diagram involving the G2 term from thenonlo
al 
urrent does not in fa
t 
ontribute to the pion 
harge at this level. In theremaining 
ontributions, 
onsider now the loop whi
h multiplies JPP . Where this loopdeals with the /q
5 stru
ture of a pion vertex there is an asso
iated fa
tor of eg�qq thatredu
es the 
ontribution to one of O(m�). Hen
e, non-zero G2 does not a�e
t thetwo-body 
ontribution in the 
hiral limit.Re
alling the notation de�ned in Eq. 4.10, the sum of 
ontributions to F�(0) inthe 
hiral limit of the extended model 
an be written asg2�qq0Z�0 + g�qq0eg�qqm� �I6 � 12 eI6� ; (6.11)the �rst term 
oming from Eq. 6.8 and the se
ond from Eqs. 6.9 and 6.10. Using nowEqs. 4.12 and 4.14 for the �qq 
ouplings in the 
hiral limit, the above expression iseasily shown to be unity, 
ompleting the proof.Numeri
ally one 
an test that the pion 
harge is unity to all orders in the 
hiralexpansion. This has indeed been veri�ed, the result holding to the a

ura
y of theintegration routines used.

6.2. Pion Form Fa
tor
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Figure 6.2: The absolute value of the pion form fa
tor, jF�(q2)j, is plotted against q2in GeV2. The solid line is the model result; the dashed line is the VMD approximationto it. The data points are from Refs. [29, 101, 102℄.

6.2. Pion Form Fa
tor
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tor over a range of values of q2 
an be seen inFig. 6.2, for a �t parameter set with m0(0) = 300 MeV (detailed in Chp. 5.1). Alsoshown on the �gure are experimental data points, taken from Refs. [101, 102℄ for theregion of spa
elike q2 and from Ref. [29℄ for timelike q2. In the LO approximation,the model form fa
tor has a pole at the � meson mass. Below the pole, very littlevariation with m0(0) is found in the results when other parameter sets are used. Inthis region the model 
urve is seen to be in fairly good agreement with the data,although its rise is a little shallower. This is 
on�rmed by the 
al
ulated values of themean{square pion radius, whi
h are given in Table 6.1. They are somewhat smallerthan the experimental result [101℄ of 0:439� 0:008 (fm)2.The dashed 
urve in Fig. 6.2, labelled VMD, is plotted to test whether or not themodel result for the form fa
tor is 
onsistent with VMD. Under the assumption of �dominan
e of the photon{pion 
oupling, the form fa
tor isF�(q2) = 1� g���g� q2q2 �m2� : (6.12)The ratio of g��� to g� is underestimated by the model3, and hen
e when one usesthe model 
ouplings in Eq. 6.12, the resulting VMD form fa
tor rises somewhat moreslowly than the data. Nonetheless this VMD approximation to the model 
urve is nota bad one, parti
ularly at low q2.

3The values of these 
ouplings are given in Tables 5.4 and 6.1. For the �t parameter setwith m0(0) = 300 MeV, as used in drawing Fig. 6.2, they are g��� = 5:26 and g� = 6:89.6.2. Pion Form Fa
tor
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Figure 6.3: Various 
ontributions to the pion form fa
tor, below the � pole. Thedi�erent 
ontributions are plotted against q2 in GeV2 and are de�ned in the text.

6.2. Pion Form Fa
tor
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ontributions to the form fa
tor, below the �pole. The 
urve labelled as \bare" is the 
ontribution 
oming from the triangle diagramwith the lo
al 
qq 
oupling (the 
� part of the vertex, as illustrated by the �rst diagramin the representation of the dressed 
qq vertex in Fig. 4.2). The 
urve labelled \s
alar"
omes from the triangle diagram with a nonlo
al 
oupling (as in the se
ond diagram ofFig. 4.2), the one-quark loop having a s
alar insertion (this part of the vertex is givenby Eq. 4.22). This \s
alar" 
ontribution is negligible over the range of q2 
onsidered.All other 
ontributions from the triangle diagrams are 
ombined into the 
urve labelled\ve
tor" and 
orrespond to the part of Eq. 4.30 that is proportional to B(q2). Sin
ethe transverse � meson propagator is 
ontained in the fun
tion B2(q2) (Eq. 4.32), this
urve makes the dominant 
ontribution 
lose to the � pole. At spa
elike momenta,however, it is found to supply only a very small 
ontribution, being even smaller thanthe \s
alar" pie
e. This is hardly surprising sin
e one would expe
t that a versionof the model without the � meson (and hen
e without any \ve
tor" 
urve) should beable to give a reasonable a

ount of the spa
elike form fa
tor. The point is veri�ed byFig. 6.4 in whi
h the model 
al
ulation with the extended model is 
ompared to thatprodu
ed when the model has only the G1 intera
tion. These model form fa
tors are
learly very similar in the spa
elike region but it is also obvious that the in
orporationof the � meson is ne
essary for a satisfa
tory des
ription of the timelike region.

6.2. Pion Form Fa
tor
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Figure 6.4: The absolute value of the pion form fa
tor, jF�(q2)j, is plotted againstq2 in GeV2. The solid line gives the result 
al
ulated from the extended model, justas in Fig. 6.2. The dashed line gives the form fa
tor 
al
ulated from the version ofthe model whi
h has the G1 
oupling only. Both 
urves use a �t parameter set withm0(0) = 300 MeV as spe
i�ed in Chps. 5.1 and 8.1.

6.2. Pion Form Fa
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ontribution from the two-body diagrams 
an be seen in Fig. 6.3 and provesto be relatively small in the vi
inity of the � mass. However it varies only very slowlywith momentum, and so quite rapidly be
omes important as the spa
elike momentumin
reases. This is as expe
ted sin
e, for large momentum transfer to the pion, the pionvertex fun
tions 
ut down the triangle{diagram 
ontributions. Even at q2 = 0 though,the two-body diagrams are signi�
ant. They are responsible for around a third of thepion 
harge, 
learly demonstrating the importan
e of in
luding their 
ontribution.It is interesting to note that, away from the pole, mu
h of the variation withmomentum is 
ontrolled by the \bare" 
ontribution to the form fa
tor, whi
h a

ountsfor � 77% of the mean{square 
harge radius, hr2�i. Although this 
urve has no � pole,when added to the \ve
tor" 
ontribution, the sum is quite 
lose to that of the VMDapproximation to the model. This implies that a 
an
ellation operates between the\bare" 
ontribution and states above the � in the \ve
tor" pie
e, leaving the � pole asthe dominant overall feature. In 
ontrast, although a similar mean{square radius hasbeen obtained with an extended NJL model [103℄, most of that value was as
ribed toa diagram involving an intermediate � meson, the bare photon vertex a

ounting forjust 32%.Above the � pole, the measured form fa
tor is not well des
ribed by the model
urve. A possible explanation is suggested by Fig. 6.5, whi
h breaks the form fa
tordown into its various 
ontributions for q2 > m2�.

6.2. Pion Form Fa
tor
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Figure 6.5: Various 
ontributions to the timelike pion form fa
tor, above the � pole.The di�erent 
ontributions are plotted against q2 in GeV2 and are de�ned in the text.

6.2. Pion Form Fa
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an
ellation at work betweenthe \bare" and \ve
tor" 
ontributions, while the \s
alar" and \two-body" pie
es arenegligible over this region. The net result is therefore liable to be very sensitive to�ne details of the model in this regime. In 
ommon with the results for the J loopintegrals (presented in Chp. 5.1), the \bare" and \ve
tor" 
ontributions to the pionform fa
tor are seen in Fig. 6.5 to undergo qualitative 
hanges of behaviour at thepseudo{threshold energy. This a
ts to disrupt the 
an
ellation between them near tothat point. A 
onsequen
e is the prominen
e of the rather strange stru
ture seen justabove the pseudo{threshold in Fig. 6.2. This 
an
ellation between large amplitudessuggests that the results of the model should not be regarded as reliable in the region.The statement is borne out by the strong dependen
e of the model results above the �pole on the parameter set 
hosen, whi
h is readily apparent if one 
ompares the plotsin Figs. 6.2 and 6.6.

Figure 6.6: The modulus of the pion form fa
tor, jF�(q2)j, above the � pole is plottedagainst q2 in GeV2, along with data points from Refs. [29, 101, 102℄. The results ofthe model with parameter sets A and B are shown on the left{ and right{hand sidesof the �gure respe
tively.
6.2. Pion Form Fa
tor
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 and Related Form Fa
torUse of the 
onserved 
urrent 
onstru
ted in Chp. 2.4 impli
itly ensures that ele
-tromagneti
 Ward identities are satis�ed by the model. Several examples of thesewere dis
ussed in Chps. 4.3, 4.4 and 6.2. Another important one is the amplitudefor the de
ay �0 ! 

, whi
h is an example of an anomalous pro
ess. Su
h pro-
esses involve the 
omplete set of quark states and so present a problem for the usualNJL model [40, 46, 47, 48, 49℄, where the use of a regulator means that high-energyquark states are dis
arded. In the nonlo
al model studied here, the low-energy the-orem for �0 ! 

 may be shown to be automati
ally satis�ed, provided that onein
ludes both of the diagrams displayed in Fig. 6.7. As well as the traditional trian-gle diagram [13, 79, 104℄, there is a two-body diagram that has a dressed 
qq vertex(Eq. 4.30) for one of the photons and a 
qqqq vertex for the other.
V� �1

�2 V� �1Figure 6.7: Diagrams 
ontributing to �0 ! 

. There are also similar diagrams with�1 $ �2.The anomalous nature of the axial part of the 
hiral symmetry group implies thatg�

 = 12 in the 
hiral limit [104℄, this 
oupling being de�ned through the amplitudeh
(q1)
(q2)j�0i = �2�EM�f� g�

�����q�1 q�2 ���1 ���2 : (6.13)Working in the 
hiral limit, 
onsider �rst the simpler 
ase where ve
tor meson degreesof freedom are not present in the model, setting G2 = G3 = 0. The triangle diagramswhere both of the photons are 
oupled through the lo
al 
urrent (bare 
� insertions
6.3. �0 ! 

 and Related Form Fa
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qq verti
es) 
ontribute an amplitude of4i�����q�1 q�2 ���1 ���2 e2g�qq0 Z d4p(2�)4 f 2(p)[p2 �m20(p2)℄3  �2m0(p2) + 4m00(p2)(p � q)2q2+4m00(p2) [p � (q1 � q2)℄2(q1 � q2)2 ! ; (6.14)where the prime denotes a derivative with respe
t to p2. The photons in the triangular{loop diagrams 
an also be 
oupled via the nonlo
al 
urrent, having an insertion ofs
alar 
hara
ter (this 
qq insertion is given in Eq. 4.22). The 
ontribution from dia-grams where one of the photons is 
oupled in this way is4i�����q�1 q�2 ���1 ���2 e2g�qq0 Z d4p(2�)4 f 2(p)4m00(p2)[p2 �m20(p2)℄3  p2 � (p � q)2q2� [p � (q1 � q2)℄2(q1 � q2)2 ! : (6.15)Diagrams with a nonlo
al 
oupling at both photon verti
es do not make any 
ontri-bution to the amplitude be
ause the resulting Dira
 tra
e vanishes. Converting thesum of Eqs. 6.14 and 6.15 into Eu
lidean spa
e, and 
hanging variable tot = m20(p2E)p2E ; (6.16)leads to a total amplitude of�2�����q�1 q�2 ���1 ���2 �EM� g�qq0m0(0) Z 10 dt(1 + t)3 : (6.17)The low-energy theorem now follows by invoking the analogue of the Goldberger{Treiman relation in the model. This is just Eq. 4.8, derived both in Ref. [8℄ and inChp. 4.2 by 
onsidering f� in the 
hiral limit.In the extended model with ve
tor mesons, the pion{quark 
oupling is a�e
tedby the pseudos
alar{axial mixing indu
ed by the G2 
oupling (see Eqs. 3.10, 3.12 and3.13). However, the form of f� is also modi�ed (as des
ribed in Chp. 4.1) in just su
h away that the Goldberger{Treiman relation remains valid (Chp. 4.2). In addition, notethat sin
e the photons in this pro
ess are on-shell the relevant dressed 
qq verti
es are
omposed solely of the same bare and nonlo
al (Eq. 4.22) pie
es as in the version of6.3. �0 ! 

 and Related Form Fa
tor



Chapter 6. Numeri
al Results | Ele
tromagneti
 103the model without ve
tor mesons (this issue is dis
ussed in Chp. 4.3). The sum of the
ontributions 6.14 and 6.15 therefore yields g�

 = 12 , just as in the simpler version ofthe model.The analysis outlined above is in agreement with the work of Ref. [79℄ whereit was shown that, for a quark propagator without wavefun
tion renormalization,the anomaly is saturated by taking only the leading part of the pion Bethe{Salpeteramplitude, together with dressed 
qq stru
tures subje
t to the Ward identity for thatvertex. The statement is non-trivial be
ause terms in the pion amplitude that arelinear in momentum 
an 
ontribute to the de
ay amplitude, even in the 
hiral limit.For instan
e, the /q
5 term whi
h appears in V�(q) for the extended version of thismodel gives rise to additional triangle{diagram 
ontributions. From su
h diagramswith two lo
al photon verti
es, one �nds4i�����q�1 q�2 ���1 ���2 e2 eg�qqm� Z d4p(2�)4 f 2(p)[p2 �m20(p2)℄3  �2p2 � 2m20(p2) + 4(p � q)2q2+4[p � (q1 � q2)℄2(q1 � q2)2 ! : (6.18)Sin
e eg�qq is of O(m�) in the 
hiral expansion (Eq. 4.14), the above 
ontribution is ofO(1). Similar diagrams with one lo
al and one nonlo
al photon vertex give4i�����q�1 q�2 ���1 ���2 e2 eg�qqm� Z d4p(2�)4 f 2(p)8m0(p2)m00(p2)[p2 �m20(p2)℄3  p2 � (p � q)2q2� [p � (q1 � q2)℄2(q1 � q2)2 ! : (6.19)The diagrams with two nonlo
al verti
es again have a vanishing Dira
 tra
e.Sin
e the sum of Eqs. 6.18 and 6.19 is non-zero, there must be some other 
ontri-bution that 
an
els them in the full amplitude for the anomalous pro
ess. The relevantpie
e arises from the two-body diagram that is displayed on the right{hand side ofFig. 6.7. Terms in the nonlo
al ve
tor 
urrent of the form4 G2(
�
5 
 
�
5) with atype-I (Eq. 2.11) stru
ture are responsible for the 
qqqq vertex. This diagram fa
tor-izes into two separate loop integrals, the loop between the two photons produ
ing the4For the sake of simpli
ity, isospin fa
tors have been suppressed here.6.3. �0 ! 

 and Related Form Fa
tor



Chapter 6. Numeri
al Results | Ele
tromagneti
 104anomalous ����� fa
tor. The other loop is nothing more than a linear 
ombinationof the familiar integrals JAP (m2�) and JLAA(m2�). This 
ombination 
an be simpli�edby re
alling the de�nitions of the pion{quark 
oupling 
onstants in Eq. 3.12. The
ontribution from this diagram in the 
hiral limit is given by4i�����q�1 q�2 ���1 ���2 e2 eg�qqm� Z d4p(2�)4 4f(p)f 0(p)[p2 �m20(p2)℄2  p2 � (p � q)2q2� [p � (q1 � q2)℄2(q1 � q2)2 ! : (6.20)Converting to Eu
lidean spa
e and integrating by parts, the above expression 
an beshown to 
an
el exa
tly with the sum of Eqs. 6.18 and 6.19, demonstrating that thelow-energy theorem for �0 ! 

 holds in the extended model.In pra
ti
e, the existen
e of non-zero 
urrent quark masses means that the physi-
al amplitude di�ers slightly from its value in the 
hiral limit. In an expli
it 
al
ulationof the full model amplitude, the two-body diagrams are treated by �rst performing thepath integration analyti
ally. One 
an then apply the usual methods (see Chp. 5.3) fordealing with a single three{dimensional loop integral. The numeri
al results 
al
ulatedwith the nonlo
al NJL model for g�

 are given in Table 6.1. The deviations from 12 aresmall and are 
onsistent with those in the experimental value [12℄, g�

 = 0:503�0:018.The related pro
ess where one of the photons is o�-shell, 

� ! �0, enables oneto probe the stru
ture of the neutral pion. A 
orresponding form fa
tor 
an be de�nedas F�
(q2) = h
�(q2)
j�0ih
(q2 = 0)
j�0i : (6.21)It is straightforward to develop the model 
al
ulations above in order to evaluate thisform fa
tor. The same numeri
al methods for dealing with the two-body diagrams
an be applied both o�- and on-shell. The triangular diagrams are again evaluatedanalogously to those in the hadroni
 de
ay amplitudes of Chp. 5.3, but working herein a frame 
hosen su
h that the spa
elike momentum of the o�-shell photon has no
omponent in the fourth Eu
lidean dire
tion.
6.3. �0 ! 
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tor were attempted atsmall timelike momenta [12, 105℄ but were subje
t to large un
ertainties. Until re
entlythe best results were those obtained by the CELLO 
ollaboration [105℄ in the spa
elikeregion, whi
h extends from �m2�. Their experiment investigated e+e� ! e+e��0events where one of the fermions is s
attered through a very small angle (i.e., is lostdown the beam pipe), thereby indi
ating that the intermediate photon it emitted wasalmost real. Five data points for the form fa
tor were quoted and are marked by open
ir
les in Fig. 6.8. Also displayed on that �gure is the new data reported by the CLEO
ollaboration [106℄ who revisited the experiment at improved pre
ision. Their datais marked with �lled boxes on the �gure whi
h also shows the results of the model
al
ulation at the �t parameter set with m0(0) = 300 MeV.The model results are not sensitive to the 
hoi
e of parameter set and are dom-inated by the 
ontribution from the triangle diagram with lo
al photon 
ouplings.They are in good agreement with the new experimental data and are 
omparable tothe results obtained in other Bethe{Salpeter approa
hes [86, 87℄.The dashed 
urve in Fig. 6.8 is the VMD predi
tion for the form fa
tor, given byF�
(q2) = 1� 2�2f�g�

 XV=�;! gV�
gV q2q2 �m2V ; (6.22)and using the values of the 
ouplings 
al
ulated in the model5. (The 
ouplings gV�
,des
ribing the de
ays V ! �
, are dis
ussed in the following se
tion.) In this 
ase,the VMD approximation to the model result is rather poorer than it was for the pionform fa
tor (Fig. 6.2). VMD is not in
onsistent with the model at low momenta inthis pro
ess, but the di�eren
e between them be
omes appre
iable as the spa
elikemomentum in
reases.
5whi
h are g�

 = 0:504, g� = 6:89, g��
 = �0:712 GeV�1, g! = 20:62 and g!�
 = �2:14GeV�1 for the �t parameter set with m0(0) = 300 MeV that is used in drawing Fig. 6.8.6.3. �0 ! 
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Figure 6.8: The �

�(q2) transition form fa
tor, de�ned in Eq. 6.21, is plotted againstq2 in GeV2. The solid line is the model result; the dashed line is the VMD approxima-tion to it. The data points are from Refs. [105℄ (open 
ir
les) and [106℄ (�lled boxes).In both of the experiments the data was measured in Q2 bins, the extents of whi
hare plotted here as the horizontal error bars. The verti
al errors in F�
 are statisti
alonly.
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hiral limit the 
hiral anomaly ensures that thee�e
ts of in
luding ve
tor mesons in the model 
an
el out. In fa
t, su
h 
an
ellationsseem to persist to a large extent in the o�-shell amplitude and at non-zero 
urrentquark mass. Eviden
e for this 
laim is supplied by Fig. 6.9, where the transition formfa
tor is shown in a simpler version of the model whi
h in
ludes only the pions andthe sigma meson. As in the 
ase of the pion form fa
tor at spa
elike momenta, thereis little di�eren
e between the extended and simple versions of the model, with bothgiving a good des
ription of the data.

Figure 6.9: The �

�(q2) transition form fa
tor is plotted against q2 in GeV2. Thesolid line gives the result 
al
ulated with the extended version of the model, just asin Fig. 6.8. The dashed line gives the result 
al
ulated from the version of the modelwhi
h has the G1 
oupling only. Both 
urves use a �t parameter set with m0(0) = 300MeV as spe
i�ed in Chps. 5.1 and 8.1.
6.4 Radiative De
ays and a Related Form Fa
torThis se
tion dis
usses the model results for the de
ays of spin-1 mesons into �
 �-nal states. S
hemati
ally, the 
al
ulations involve triangle and two-body diagrams,analogous to those of Fig. 6.7. 6.4. Radiative De
ays and a Related Form Fa
tor
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ay, the pie
e of the nonlo
al 
urrent that givesrise to the two-body diagrams for V ! �
 is the type-I (Eq. 2.11) term with Dira
stru
ture G2(
�
5 
 
�
5). These two-body diagrams may similarly be redu
ed to asingle two-quark loop integral, the other loop being a known 
ombination of pioni
J integrals. The resulting 
ontributions do not prove to be numeri
ally important inthese de
ays, produ
ing less than 1% of the total amplitudes.Results for these 
ouplings, as de�ned byh
(q1)�0(q2)j!i = ieg!�
�����q�1 q�2 ���
 ��! ;h
(q1)�b(q2)j�ai = iÆabeg��
�����q�1 q�2 ���
 ��� ; (6.23)are given in Table 6.1, along with the 
orresponding de
ay widths. Sin
e isospinsymmetry has been assumed there is no �ab3 
omponent to the ��
 matrix element.The de
ay widths obtained for the 
harged and neutral � mesons are therefore equal.These model results agree well with the experimental values [12℄:�(! ! �
) = 717� 43keV;�(�0 ! �0
) = 121� 31keV;�(�� ! ��
) = 68� 8keV; (6.24)the di�eren
e between the measured 
harged and neutral � de
ays not being 
onsideredstatisti
ally signi�
ant in view of the large error bars [107℄.Extending the !�
 amplitude to o�-shell photon momenta, the model des
ription
an be 
ompared to the form fa
tor as measured in Ref. [108℄. The rea
tion ��p !n! ! n�0�+�� was studied to investigate the form fa
tor in the range from 4m2� to(m! �m�)2. Working with a de�nition ofF!�(q2) = h
�(q2)�j!ih
(q2 = 0)�j!i ; (6.25)the model results and the experimental data are shown in Fig. 6.10. In 
ommon withthe other ele
tromagneti
 form fa
tors presented in this 
hapter, the �t parameter setwhere m0(0) = 300 MeV has been used in plotting the model results, whi
h have beenfound not to be sensitive to the set 
hosen.6.4. Radiative De
ays and a Related Form Fa
tor
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Figure 6.10: The !�
�(q2) form fa
tor is de�ned by Eq. 6.25. Its square is plotted ona logarithmi
 s
ale against q2 in GeV2. The solid line is the model result; the dashedline is the VMD approximation to it. Data points are taken from Ref. [108℄.
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 110In Fig. 6.10 the model is seen to be in agreement with the data points at lowq2 but there is a dis
repan
y at higher energies. The same observations are true ofother theoreti
al 
al
ulations [109℄. It may be that there is some e�e
t on this formfa
tor from the tail of the �0 resonan
e [30℄. Another potentially important missingingredient in the present 
al
ulation is !� mixing, sin
e a 
al
ulation of this formfa
tor within an SU(3) e�e
tive Lagrangian approa
h [110℄ has found a signi�
antdependen
e on the mixing strength. Improved data would be needed to draw any�rmer 
on
lusions and there are indeed hopes that the experimental situation will be
lari�ed by forth
oming experiments at VEPP-2M or DA�NE [107℄.For this form fa
tor, 
omparison with the VMD predi
tion,F!�(q2) = 1� g!��g!�
g� q2q2 �m2� ; (6.26)is not 
ompletely straightforward, sin
e the 
oupling g!�� 
annot be 
al
ulated on-shell. Nonetheless, a reasonable estimate of it 
an be made by extrapolating to thesoft{pion limit6 (zero pion four{momentum). For a variety of �t parameter sets overthe admissible range, the results for g!�� determined in this way are within 20% of thepredi
tion of universal 
oupling, g!�� = g!�
g�. The 
urve 
orresponding to Eq. 6.26with the estimated !�� 
oupling7 is that whi
h is labelled as VMD in Fig. 6.10. Itprovides a very good approximation to the results of the full 
al
ulation in the model.

6In that limit, the pseudos
alar{axial mixing element, JPA, vanishes. Hen
e, the vertexfun
tion for the soft pion is taken to be g�qqi
5�a.7For the parameter set used in plotting the �gure it is estimated to be 15:2 GeV�1. Theother 
ouplings needed are quoted in footnote 4.6.4. Radiative De
ays and a Related Form Fa
tor



Chapter 6. Numeri
al Results | Ele
tromagneti
 111

Figure 6.11: Various 
ontributions to the !�
�(q2) form fa
tor are plotted against q2in GeV2. The 
ontributions are de�ned in the text (see Chp. 6.2).
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omposing the form fa
tor as in Chp. 6.2, the individual 
ontributions areshown in Fig. 6.11. The two-body diagrams are negligible over the region 
onsidered.The 
ontribution 
oming from the \s
alar" part of the dressed 
qq vertex (Eq. 4.22)is larger but is still a minor e�e
t. As in the 
ase of the pion form fa
tor (Chp. 6.2),the model result turns out to be dominated by the bare, lo
al photon vertex andthe \ve
tor" part of the 
qq vertex. The latter 
ontribution in
ludes the model �meson propagator and so it be
omes in
reasingly important as the timelike momentumin
reases towards the � pole. It appears that a 
an
ellation is a
ting between the lo
al
ontribution and that from states other than the � meson in the \ve
tor" 
ontributionso as to produ
e a result whi
h is 
lose to that of VMD with universality.In the amplitude for the de
ay a�1 ! ��
, the 
ontribution due to two-body dia-grams is generated by the terms in the nonlo
al 
urrentG1(i
5
i
5) andG2(
�
5 
 
�
5)whi
h have a type-II stru
ture (Eq. 2.13). These are the very terms that gave riseto the two-body diagrams in the pion form fa
tor (Chp. 6.2). The same numeri
almethods are used in 
omputing the analogous a1�
 diagrams. Sin
e the a1 mass liesabove the pseudo{threshold energy for parameter set B, the evaluation of both thetriangle and the two-body diagrams requires residue 
ontributions in that 
ase.Gauge invarian
e imposes the following stru
ture on the de
ay amplitude:h
(q1)�b(q2)jaa1i = i�ab3ega1�
 "�a1 � ��
 + 2(q2 � �a1)(q2 � ��
)(m2a1 �m2�) # : (6.27)In the isosymmetri
 
ase, there is no Æab 
omponent to the amplitude, whi
h is 
on-sistent with the fa
t that the radiative de
ay of the neutral a1 meson has not beendete
ted [12℄. The values 
al
ulated for ga1�
, and the 
orresponding de
ay widths,
an be seen in Table 6.1. With parameter set A the s
alar part of the nonlo
al photon
oupling and the two-body diagrams make relatively small 
ontributions to the totalamplitude. Working with set B, these 
ontributions are substantial but largely 
an
elwith ea
h other. The �nal results for all 
hoi
es of parameters are mu
h smaller thanthe experimental measurement [111℄ of 640� 246 keV.
6.4. Radiative De
ays and a Related Form Fa
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Chapter 7
Next-to-Leading Order Treatment
7.1 NLO Corre
tionsFrom even the most 
ursory survey of the literature it is apparent that the NJL modelhas long been popular in low-energy strong physi
s. However, almost all 
al
ulationswith the model, and its various o�spring (Chp. 2.2), have been restri
ted to leadingorder (LO) in the 1=N
 expansion. To a large extent, this is be
ause the 
al
ulationsat next-to-leading order (NLO) are mu
h more 
ompli
ated, both analyti
ally andnumeri
ally. Part of the original motivation for the NJL model, and one of the reasonsfor its 
ontinued popularity, is its very simpli
ity at LO. One might therefore take theview that a large in
rease in 
omplexity is not justi�ed for a model that was neverintended to produ
e highly a

urate numeri
al results. An additional point of diÆ
ultyis that the model must be spe
i�ed further at NLO sin
e one has to regularize bothquark and meson loops.On the other hand, sin
e 1=N
 is su
h a modest expansion parameter, it does seemimportant to try to estimate the size of some NLO e�e
ts. Even if were of interestfor no other reason, this is a ne
essary aspe
t of the validation of the perturbativeapproa
h. For some quantities it may be that the expansion 
oeÆ
ients 
onspire tomake the NLO term similar in size to the LO one. This possibility has to be eliminated

113
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al
ulation is to be viewed as a reasonable approximation to the full modelresult.The most appealing point about a NLO analysis, however, is that the LO treat-ment of a four-quark model negle
ts physi
al pro
esses that are known to be quali-tatively important (see Chps. 5.2, 5.3 and 6.2). For instan
e, several of the parti
lesdes
ribed by su
h models (�, �, a1) are broad states, yet the model meson propagatorsat LO are purely real. At NLO the parti
le widths are in
orporated in a 
ompletelynatural way, by in
luding diagrams with purely mesoni
 intermediates in the BSE.Su
h diagrams might well prove important in model des
riptions of, say, the sigmameson.In this and the following 
hapter, work is presented whi
h aims to go some waytowards an improved understanding of four{quark models at NLO. Some aspe
ts ofthe original NJL model at NLO have been investigated by various authors. Severalsu
h works, however, have been 
on
erned only with subsets of the full NLO 
orre
-tions [93, 112, 113℄. As stressed in Refs. [43, 44℄, this is a somewhat unsatisfa
toryapproa
h sin
e failure to in
lude all of the relevant diagrams 
an 
ause Ward identitiesand 
hiral symmetry 
onstraints to be violated. To this author's knowledge, 
onsistentNLO treatments are only available in Refs. [43, 44, 45℄, using respe
tively an e�e
-tive a
tion method, an appropriate sele
tion of Feynman diagrams and a bosonizedapproximation. In the remainder of this 
hapter, the Feynman diagrams required atNLO in the nonlo
al NJL model are presented. This model is a parti
ularly 
onve-nient one in whi
h to examine NLO e�e
ts. Sin
e it does not need regularization, oneavoids ambiguities that o

ur in the original NJL model. In addition, the Gaussianform fa
tor (Eq. 2.7) of the nonlo
al model allows 
ompli
ated NLO diagrams to beevaluated eÆ
iently with Gaussian numeri
al te
hniques. Note that some preliminarywork on quark properties at NLO in the nonlo
al model 
an be found in Ref. [114℄.
7.1. NLO Corre
tions



Chapter 7. Next-to-Leading Order Treatment 1157.2 Quark Propagator at NLOAt NLO the quark self-energy is supplemented by two new kinds of diagram, spe
if-i
ally a tadpole and a meson 
loud 
ontribution. A starting point for dedu
ing bothof these 
ontributions is the Fo
k diagram, whi
h arises from the Fierzed form of thea
tion (dis
ussed in Chp. 2.5).
G1 (4N
)�1(G1 � 2G3 + 2G4 �G5 + 12G6)Figure 7.1: The LO and Fo
k diagrams in the S
hwinger{Dyson equation are shownon the left{ and right{hand sides of the �gure respe
tively. Note that they have beendistinguished by separating slightly the quark lines asso
iated with ea
h of the   fa
tors in the intera
tion.The intera
tion terms of the Fierzed a
tion (Eq. 2.19) des
ribe the 
onsequen
esof ex
hanging the quark �elds in the model a
tion of Eqs. 2.1 to 2.4. They lead todiagrams whi
h are very similar to those at LO but are suppressed by one power ofN
 due to a restri
tion on the sum over 
olour. Fig. 7.1 illustrates the point with a
omparison of the LO and Fo
k diagrams in the S
hwinger{Dyson equation. In theLO diagram, the one-quark loop is obtained by 
losing in on itself one of the   fa
tors from the G1 intera
tion. Any 
olour of quark 
an 
ow around the resultingloop. The Fo
k diagram though is 
onstru
ted by breaking the one-quark loop of theLO diagram and atta
hing the ends to the legs of the propagating quark. The same
olour index must then be maintained throughout the diagram.The Fo
k diagram in Fig. 7.1 
an be used as a seed for other NLO 
ontributionsto the SDE. An example is shown in Fig. 7.2. It is generated by inserting a two-quarkloop into the Fo
k diagram. Su
h a loop is simply a J integral from the LO BSE

7.2. Quark Propagator at NLO
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Figure 7.2: A diagram in the S
hwinger{Dyson equation at NLO.(Chp. 3.2). In 
omparison with the Fo
k diagram, the diagram in Fig. 7.2 has anadditional fa
tor of an intera
tion 
oupling 
onstant, whi
h is of O(N�1
 ). However,this is 
ompensated for by a fa
tor of N
 from the 
olour tra
e over the two-quark loopand so Fig. 7.2 
onstitutes another NLO 
ontribution. One 
an insert more two-quarkloops in a similar fashion, thereby generating many more NLO diagrams. Combiningall su
h diagrams amounts to a sum over 
hains of the two{quark loops (illustratedby Fig. 7.3).
Figure 7.3: A 
hain of two-quark loops. Sums of su
h 
hains are used in the 
onstru
-tion of the T matrix at LO.Re
alling Chp. 3.2, the sum of 
hains 
an be seen to produ
e the qq s
atteringmatrix at LO. In fa
t, at NLO, the full SDE 
an be expressed in terms of the ladderdiagram of Fig. 3.1 and the extra diagram shown in Fig. 7.4. The SDE be
omes:S�1F (p) = /p�m
 � iG1f 2(p)Tr Z d4k(2�)4SF (k)f 2(k)+if 2(p)Xi Z d4k(2�)4 T̂ (�i 
 
i; k)�iSF (p� k)
if 2(p� k); (7.1)

7.2. Quark Propagator at NLO
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; q) has been introdu
ed to denote that 
hannel of thes
attering matrix T̂ (q) whi
h des
ribes the propagation from a qq state with matrixstru
ture 
 to the state with stru
ture �. It is to be understood as the LO s
atteringmatrix of Eq. 3.5, whi
h is 
learly of O(N�1
 ). The summation over the index iindi
ates that all of the Dira
 and isospin stru
tures in the s
attering matrix are tobe in
luded.
TSF

Figure 7.4: The NLO part of the S
hwinger{Dyson equation.Note that the Fo
k diagram on the right{hand side of Fig. 7.1 is impli
it in these
ond of the integrals appearing in Eq. 7.1. As the seed for the s
attering matrix, it
an be isolated simply by taking the �rst term from the right{hand side of Eq. 3.5.Equation 7.1 illustrates that in general the quark SDE and meson BSE form partof a system of 
oupled integral equations. A perturbative expansion in 1=N
 thereforeprovides a great simpli�
ation by allowing the solutions to be built up separately oneorder at a time. Although the SDE as written above 
ontains all of the requiredterms at LO and NLO, it also in
ludes some unwanted higher order terms. In orderto restri
t it to the terms of interest the full quark propagator is written in the formS�1F (p) = S�1(p) + �N (p) + � � �SF (p) = S(p)� S(p)�N(p)S(p) + � � � ; (7.2)where � is the quark self-energy and a 
onvention is followed whereby a symbol withthe subs
ript N represents the NLO 
ontribution to that quantity. The same symbolwithout this subs
ript is to be understood as referring to the quantity evaluated at7.2. Quark Propagator at NLO
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ate irrelevant terms beyond NLO. Substitutingthe de
omposition into Eq. 7.1 and equating terms at ea
h order of 1=N
, one of 
oursere
overs the familiar ladder SDE (Eq. 3.2) at LO. The NLO terms meanwhile 
onsistof a 
ontribution involving the s
attering matrix along with a pie
e 
oming from aNLO self-energy insertion into the ladder self-energy diagram,�N (p) = iG1f 2(p)Tr Z d4k(2�)4S(k)�N (k)S(k)f 2(k)+if 2(p)Xi Z d4k(2�)4 T̂ (�i 
 
i; k)�iS(p� k)
if 2(p� k): (7.3)One 
an substitute for �N (k) in Eq. 7.3 using the full expression on the right{handside of that equation. This immediately leads to an expli
it expression for the NLOself-energy:�N (p) = 
f 2(p) + if 2(p)Xi Z d4k(2�)4 T̂ (�i 
 
i; k)�iS(p� k)
if 2(p� k); (7.4)where 
 = �G11�G1JSS(0)Xi Tr Z d4k(2�)4 Z d4`(2�)4 T̂ (�i 
 
i; k � `)�S(k)�iS(`)
iS(k)f 4(k)f 2(`): (7.5)The two pie
es of Eq. 7.4 are the tadpole and meson 
loud 
ontributions advertised atthe start of this se
tion. In diagrammati
 language, they are shown in Fig. 7.5. Thediagram on the left{hand side of the �gure is responsible for the 
ontribution 
f 2(p).It is generated by the ex
hange of a zero{momentum � meson between the quark anda virtual meson. Sin
e 
 is a momentum{independent 
onstant this 
ontribution is ofthe same form as the LO running quark \mass", m(0) � m
 (see Eqs. 3.1 and 3.3).The other diagram in Fig. 7.5 illustrates the emission and subsequent reabsorptionof a virtual meson. Its evaluation requires an expli
it integration to be performed atea
h value of the quark momentum and produ
es a wavefun
tion renormalization /p
omponent as well as a s
alar term.
7.2. Quark Propagator at NLO
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 �

11�(0) 
 �
Figure 7.5: Diagrams 
ontributing to the NLO quark self-energy. A double line is usedto denote the propagation of a qq state, as des
ribed by the LO s
attering matrix.The qq system has initial and �nal state matrix stru
tures that are spe
i�ed in theopen 
ir
les at the ends of the double line.7.3 Meson Propagators at NLOAt LO, the mesoni
 bound states are 
onstru
ted from the ladder Bethe{Salpeterequation, as des
ribed in Chp. 3.2. The natural basis for dis
ussion of the NLOversion of this equation deals with 
orre
tions to the basi
 two-quark loop, Jij. Onin
orporating the NLO 
ontributions into an expanded de�nition of J , the s
atteringmatrix will retain the form of Eqs. 3.4 and 3.5. Su
h NLO 
orre
tions are of threedistin
t kinds. They arise from a NLO quark self-energy insertion, from t-
hannelone-meson ex
hange between the quarks and from the 
ombination of two three-mesonverti
es.

ji
Figure 7.6: The LO loop in the Bethe{Salpeter equation.

7.3. Meson Propagators at NLO
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al notation of Fig. 7.6 is used in this se
tion. The �gure represents thetwo-quark loop that appears in the LO BSE. Ea
h 
ross denotes the relevant matrixinsertion (�i or �j) as well as two intera
tion form fa
tors (ea
h of these is evaluatedat the momentum of a 
onne
ted internal quark line).

ji

 �

11�(0)
(a) 
 � ji (b)Figure 7.7: Diagrams appearing in the BSE at NLO as a 
onsequen
e of the NLOquark self-energy. There are also similar diagrams, with fermion arrows in the oppositedire
tions.An obvious 
orre
tion to a LO J loop is generated by repla
ing a LO quarkpropagator with its NLO part. This results in the following 
ontribution to JNij(q2),whi
h is illustrated in Fig. 7.7:�iTr Z d4p(2�)4�iS(p�)�N (p�)S(p�)�jS(p+)f 2(p�)f 2(p+)�iTr Z d4p(2�)4�iS(p�)�jS(p+)�N (p+)S(p+)f 2(p�)f 2(p+): (7.6)Another kind of NLO 
ontribution is based on a Fo
k diagram. The Fo
k diagramin the BSE is 
onstru
ted by a rearrangement of the quark lines at one of the intera
-tion verti
es in a 
hain of LO loops. It is shown on the left{hand side of Fig. 7.8 below.Just as in Chp. 7.2, a diagram of the same order in 1=N
 
an be generated from it by7.3. Meson Propagators at NLO
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ji ji

Figure 7.8: The Fo
k diagram in the Bethe{Salpeter equation is shown on the left{hand side of the �gure. Note that it has been distinguished from two su

essive LO Jloops by slightly separating the quark lines asso
iated with ea
h of the  � fa
tors inthe intera
tion vertex. Another NLO BSE diagram is shown on the right{hand sideof the �gure.inserting a two-quark loop. Doing so gives the diagram shown on the right{hand sideof the same �gure. One 
an pro
eed to 
reate 
hains of su
h loops (Fig. 7.3). In fa
t,just as for the 
ase of the quark propagator, the Fo
k 
ontribution is only the �rstterm in a set of diagrams whi
h produ
e a LO s
attering matrix when summed. Theirtotal amounts to the ex
hange of a t-
hannel virtual meson between the two quarklines of a LO J loop. It is shown in Fig. 7.9
 and makes the following 
ontribution toJNij(q2):Xr Tr Z d4p(2�)4 Z d4k(2�)4 T̂ (�r 
 
r; p� k)�iS(k�)
rS(p�)�jS(p+)�rS(k+)�f 2(k�)f 2(k+)f 2(p�)f 2(p+): (7.7)

7.3. Meson Propagators at NLO
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� ji (
) 


�

� ji (d)Figure 7.9: Meson ex
hange diagrams in the BSE at NLO. There are also similardiagrams, with fermion arrows in the opposite dire
tions.Finally, there is a NLO 
ontribution that involves intermediate two{meson states(it is illustrated in Fig. 7.9d). Diagrams of this form allow the instability of a me-son to be re
e
ted in its propagator by introdu
ing an imaginary 
omponent abovethe threshold energy for physi
al meson de
ays into two parti
le �nal states. Theyare 
reated by joining together two LO three{meson verti
es1, ea
h of whi
h is ofO(1=pN
). In writing an expli
it expression for these BSE diagrams, it is 
onvenientto use fun
tions L and L that des
ribe the LO three{meson verti
es.

q; � q1; �1
q2; �2 q; �q1; �1

q2; �2
Figure 7.10: The three-point loops L and L. They are de�ned respe
tively by thediagrams on the left{ and right{hand sides of the �gure, together with similar diagramswhere the fermion arrows point in the opposite dire
tions.1Su
h verti
es were 
onsidered in the 
ontext of meson de
ays in Chp. 5.3.

7.3. Meson Propagators at NLO



Chapter 7. Next-to-Leading Order Treatment 123L is de�ned to be:L(q; q1; q2; �;�1;�2) = iTr Z d4p(2�)4�S(p�)�2S(p� 12(q1 � q2))�1S(p+)�f 2(p�)f 2(p+)f 2(p� 12(q1 � q2))+iTr Z d4p(2�)4�S(p�)�1S(p+ 12(q1 � q2))�2S(p+)�f 2(p�)f 2(p+)f 2(p+ 12(q1 � q2)); (7.8)and L is a similar fun
tion for the 2! 1 version of the loop,L(q; q1; q2; �;�1;�2) = iTr Z d4p(2�)4�S(p+)�1S(p� 12(q1 � q2))�2S(p�)�f 2(p�)f 2(p+)f 2(p� 12(q1 � q2))+iTr Z d4p(2�)4�S(p+)�2S(p+ 12(q1 � q2))�1S(p�)�f 2(p�)f 2(p+)f 2(p+ 12(q1 � q2)): (7.9)Clearly L and L are symmetri
 under 1$ 2. Using the 
ross notation, these fun
tionsrepresent the triangular loops shown in Fig. 7.10. The 
ontribution to JNij(q2) fromthe diagram of Fig. 7.9d 
an then be written as follows:�iXr;s Z d4p(2�)4 T̂ (�r 
 
r; p+)T̂ (�s 
 
s;�p�)L(q; p+;�p�; �i;
r;
s)�L(q; p+;�p�; �j;�r;�s): (7.10)7.4 Diagrams for Coupling to Currents at NLOA NLO determination of the 
oupling between a parti
le and an external 
urrentrequires the 
al
ulation of additional diagrams. Su
h diagrams are 
onsidered in thepresent se
tion, taking the pion de
ay 
onstant as an example. (Note that the a
tualexpressions for the various NLO 
ontributions to f� 
an be found in Appendix A.1.)At LO the pion de
ay 
onstant re
eives two kinds of 
ontribution, whi
h arise fromthe lo
al and nonlo
al parts of the axial 
urrent (see Chp. 4.1). At NLO several of7.4. Diagrams for Coupling to Currents at NLO
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an be straightforwardly derived by modifying loops whi
h appearin the LO diagrams. Starting from a one-quark or a two-quark loop at LO, thereare NLO 
orre
tions whi
h follow by analogy with diagrams from the SDE and BSErespe
tively. Both the one- and two-quark loops are 
orre
ted due to a NLO quarkself-energy insertion (whi
h is 
omposed of the two diagrams shown in Fig. 7.5). Atwo-quark loop should also be 
orre
ted due to t-
hannel virtual meson ex
hange anddue to intermediate two{meson states. Introdu
ing these 
orre
tions results in thediagrams of Figs. 7.11 and 7.12.Other NLO 
ontributions arise from the fa
t that the vertex fun
tion whi
h de-s
ribes the 
oupling between a meson and dynami
al quarks has a NLO 
omponent(Eq. 7.13). Diagrams (k) and (l) of Fig. 7.13 are the obvious 
onsequen
es of thispoint.
V� �N
(a); (b)Figure 7.11: The �gure shows the sum of the NLO diagrams (a) and (b) in the 
ouplingof the pion to the axial 
urrent. Diagram (a) in
ludes only that part of the NLO quarkself-energy shown on the left{hand side of Fig. 7.5; diagram (b) in
ludes only that partshown on the right{hand side of the same �gure.

7.4. Diagrams for Coupling to Currents at NLO
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�NV� (
); (d)


�V� (e)

 �


�V� (f) �NV� (g); (h)
�V� (i) 
 �

�V� (j)Figure 7.12: The �gure shows the sum of the NLO diagrams (
) and (d) in the 
ouplingof the pion to the axial 
urrent. Also shown is the sum of diagrams (g) and (h), aswell as the diagrams (e), (f), (i) and (j). Diagrams (
) and (g) in
lude only that partof the NLO quark self-energy shown on the left{hand side of Fig. 7.5; diagrams (d)and (h) in
lude only that part shown on the right{hand side of the same �gure. Notethat there are also similar diagrams, with fermion arrows in the opposite dire
tions.

7.4. Diagrams for Coupling to Currents at NLO
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e there are four quark �elds in the nonlo
al part of the axial 
urrent oneshould 
onsider the e�e
ts of ex
hanging the roles played by the �elds. As for theintera
tion verti
es, su
h e�e
ts 
an be des
ribed by Fo
k terms, whi
h are suppressedby one power of N
 in 
omparison with the original terms of the nonlo
al 
urrent (seeChp. 2.5). Although there is an ambiguity in de�ning their transverse 
omponents,this is of no 
on
ern in the 
al
ulation of the pion de
ay 
onstant. One 
ould of 
ourse
reate further NLO diagrams by appending two-quark loops to the Fo
k diagram.However, it is demonstrated in Appendix A.1 that su
h 
ontributions are automati
allyin
luded in other diagrams and therefore it is more 
onvenient to treat the Fo
kdiagram (Fig. 7.14) separately.There are two more NLO diagrams to be in
luded in the 
oupling of a meson toan external 
urrent. They are shown in Fig. 7.15. Diagram (o) is similar to some otherNLO 
ontributions in that it arises from the ex
hange of a virtual meson between twoquarks. It re
ognizes the possibility that the two quarks need not ne
essarily belongto the same quark loop. The remaining NLO diagram, (n), is somewhat similar todiagram (j) of Fig. 7.12 and o

urs be
ause the nonlo
al 
urrent 
an be 
oupledthrough two two-quark loops (
f. the two-body diagrams 
ontributing to several ofthe ele
tromagneti
 pro
esses des
ribed in Chp. 6).
VN� (k) VN� (l)Figure 7.13: The NLO diagrams (k) and (l) in the 
oupling of the pion to the axial
urrent. VN� is the NLO part of the pion vertex fun
tion.

7.4. Diagrams for Coupling to Currents at NLO
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V� (m)Figure 7.14: The NLO diagram (m) in the 
oupling of the pion to the axial 
urrent.Note that it has been distinguished from a similar LO diagram by slightly separatingthe quark lines asso
iated with ea
h of the   fa
tors in the nonlo
al 
urrent.



�

�V� (n) V� 
 �

(o)Figure 7.15: The NLO diagrams (n) and (o) in the 
oupling of the pion to the axial
urrent.Pion De
ay Constant at NLOAs mentioned in Chp. 4.2, the /q
5 identity of Eq. 4.3 is a useful tool for simplifyingthe various NLO 
ontributions to the pion de
ay 
onstant. As in the LO proof ofGMOR dis
ussed in that se
tion, the identity enables a diagram generated by thelo
al 
urrent to be rewritten in su
h a way as to eli
it a 
an
ellation with part of asimilar nonlo
al 
ontribution. After making su
h simpli�
ations, some other useful
an
ellations among the NLO diagrams 
an be identi�ed. These are dis
ussed inAppendix A.1, whi
h spe
ialises to a version of the model with the G1 
oupling only.In that 
ase, the NLO 
omponent of f� is shown to redu
e to the following:
7.4. Diagrams for Coupling to Currents at NLO



Chapter 7. Next-to-Leading Order Treatment 128
fN� = ig�qqG12m2� JNPP (q2) Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�+g�qqm
m2� �J (a)NPP with f 2(p�)f 4(p�)! f(p�)f 3(p�)�+g�qqm
m2� �J (b)NPP with f 2(p�)f 4(p�)! f(p�)f 3(p�)�+g�qqm
m2� �J (
)NPP with f 2(p+)f 2(p�)! f(p+)f(p�)�+g�qqm
m2� �J (d)NPP with L! L0�+i
g�qq2m2� (1�G1JPP (q2)) Z d4p(2�)4Tr [S(p)S(p)℄ f 3(p)�f(p+ q) + f(p� q)�� g�qq2m2� (1�G1JPP (q2))Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)Tr hS(p)�iS(k)
iS(p)i�f 3(p)�f(p+ q) + f(p� q)�f 2(k)+gN�qqg�qq f�(LO); (7.11)where J (x)Nij denotes the 
ontribution to JNij from the BSE diagram labelled (x) (seeFigs. 7.7 and 7.9) and L0 is a variation2 on L.7.5 GMOR at NLOIn the previous se
tions of this 
hapter, the diagrams required in a NLO treatment ofthe nonlo
al NJL model have been dis
ussed. In all 
ases the diagrams are dedu
edby inspe
tion, sometimes using the Fo
k terms as a guide. Obviously, it is importantto have a 
he
k that a 
onsistent set of diagrams has been identi�ed. To this end,the Gell-Mann{Oakes{Renner relation is demonstrated to hold at NLO in the model,albeit in the simpler version without ve
tor mesons. As a �rst step in establishing therelation, 
onsider the 
hiral expansion of the pion mass.The pion pole is lo
ated at1�G1JPP (q2)�G1JNPP (q2) = 0; (7.12)2It di�ers from Eq. 7.9 in having f(p+)f(p�) instead of f2(p+)f2(p�).7.5. GMOR at NLO
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e of mixing3, the 
oupling of the parti
le to dynami
al quarks isdetermined by the relation:(g�qq + gN�qq + � � �)�2 = d(JPP + JNPP + � � �)dq2 �����q2=m2� ;gN�qq = �g�qq2 dJNPPdq2 �����q2=m2� 24 dJPPdq2 �����q2=m2�35�1 : (7.13)If one substitutes the 
hiral expansion of JPP (q2) (Eq. 4.6) into the on-shell 
onditionof Eq. 7.12, it is immediately 
lear that the 
hiral expansion of JNPP (q2) must startat O(q2; m
) in order for the pion to remain a Goldstone boson in the 
hiral limit. Byde�nition, the 
oeÆ
ient of O(q2) in that expansion provides an expli
it expression forgN�qq0, the details of whi
h are not needed here. The 
al
ulation of the O(m
) term isdetailed in Appendix B, where it is also 
he
ked that there is indeed no term in JNPPwhi
h survives in the 
hiral limit. It is suÆ
ient here to quote the �nal result fromthat appendix, whi
h is obtained by imposing the on-shell 
ondition on Eq. B.15,m2� = �(g�qq0 + gN�qq0)2m
[h  i0 + h  iN0℄(m0(0)� 
0)2 +O(m2
): (7.14)Hen
e, the 
hiral expansion of the pion Bethe{Salpeter amplitude retains the samestru
ture as at LO (
f. Eq. 4.11), with NLO 
hanges to the expressions for its on-shell 
oupling to quarks and for the dynami
al quark mass. The shift in the former isjust that whi
h might be anti
ipated from the expanded de�nition of the pion{quark
oupling 
onstant. However, the dynami
al mass s
ale that appears in Eq. 7.14 isnot so obvious. The shift in this mass s
ale is given entirely by the 
oeÆ
ient of thetadpole diagram (see Fig. 7.5). This is despite the fa
t that the meson 
loud of adressed quark does make a 
ontribution to its s
alar self-energy at zero momentum3Although the G2 intera
tion (whi
h 
auses �a1 mixing) is not in
luded in the version ofthe model 
onsidered here, it may nevertheless seem plausible that a /q
5 
omponent to thepion Bethe{Salpeter amplitude 
ould appear as a NLO e�e
t. The possibility 
an be ruledout if the Fierz rearrangement of the (1
 1 + i
5�a 
 i
5�a) intera
tion does not 
ontain aNLO ex
hange intera
tion of the 
hara
ter (
�
5�a 
 
�
5�a). This is indeed so, as seen inChp. 2.5.
7.5. GMOR at NLO



Chapter 7. Next-to-Leading Order Treatment 130(see Chp. 8.2)4.The GMOR relation will be satis�ed if a modi�ed version of the Goldberger{Treiman relation holds in the 
hiral limit at NLO,f�0 = m0(0)� 
0g�qq + gN�qq= m0(0)g�qq � gN�qqg�qq :m0(0)g�qq � 
0g�qq +O(N�2
 ): (7.15)The term of O(N0
 ) on the right{hand side of this 
ondition was shown in Chp. 4.2 tobe given by the LO part of f�. Full details of the proof that the 
hiral limit of Eq. 7.11produ
es the O(N
) terms 
an be found in Appendix A.2.

4The meson 
loud also generates a term of O(m
) in the 
hiral expansion of JNPP (seeEq. B.5). 7.5. GMOR at NLO



Chapter 8
Numeri
al Results | NLO
8.1 Model ParametersThe model at NLO is 
onsidered in this 
hapter mainly in the simple 
ase whereonly the G1 intera
tion is present. Even so, the numeri
al integrals involved in theevaluation of NLO diagrams are rather 
ompli
ated and so are diÆ
ult to perform tohigh a

ura
y within a reasonable time. It is therefore 
onvenient to �t the modelparameters at LO and then 
onsider the NLO 
hanges to the observables. Apart fromthe ex
lusion of the 
ouplings G2 : : : G5, the parameters at LO are �tted a

ordingto the method des
ribed in Chp. 5.1. This means that m0(0) is left free and used to
hara
terize a possible parameter set. When ve
tor intera
tions are in
luded in themodel an upper bound on m0(0) is imposed by the behaviour above pseudo{thresholdof the LO s
attering matrix in the ve
tor 
hannel (see Chp. 5.1). In this simplerversion of the model, however, parameter sets over a wider range of m0(0) 
an beinvestigated. Details of the sets used1 are given in Table 8.1.

1Note that the parameters given di�er slightly from those quoted in Ref. [8℄ where a verysimilar �t was made at the same values of m0(0). This is simply be
ause the 
al
ulations ofRef. [8℄ were performed within the 
hiral expansion of the model [115℄.131



Chapter 8. Numeri
al Results | NLO 132m0(0) G1(GeV�2) m
 � m(0) Pole200 14:3 4:8 1459 245 �261250 30:5 7:8 1064 298 �384300 53:8 11:0 861 351 �415� 235i350 85:9 14:2 734 406 �338� 292i400 128:1 17:5 647 461 �287� 312i450 181:7 20:8 583 516 �252� 320i500 248:0 24:1 535 572 �225� 322iTable 8.1: Values of the model parameters, �tted at LO. Also shown is the dynami
alquark mass and the position of the lowest set of poles in the LO quark propagator.Apart from G1, all quantities are given in MeV.Table 8.2 lists the values of various quantities 
al
ulated at LO from the parametersets of Table 8.1. The results are qualitatively quite similar to those obtained in theextended version of the model (as dis
ussed in Chps. 5.2 and 5.3).m0(0) Cond. g�qq m� g�qq g��� �(� ! ��)200 246 2:56 385 2:56 1092 63:5250 210 3:13 423 3:24 1336 94:4300 189 3:70 454 3:91 1562 126:3350 173 4:28 477 4:54 1732 152:0400 162 4:87 492 4:98 1783 158:7450 153 5:46 489 4:56 1489 111:0500 146 6:04 478 5:25 1515 116:2Table 8.2: Cal
ulations at LO with the nonlo
al NJL model. The 
ouplings to quarks,g�qq and g�qq are dimensionless; all other quantities are given in MeV. `Cond.' refersto the quark 
ondensate, evaluated in the 
hiral limit. Relevant 
ouplings are de�nedin Eqs. 3.11 and 5.1.
8.2 Corre
tions to the Quark PropagatorNumeri
sThe form of the quark self-energy at NLO was des
ribed in Chp. 7.2. It 
ontainsa pie
e whose momentum dependen
e is entirely di
tated by the intera
tion form8.2. Corre
tions to the Quark Propagator
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al Results | NLO 133fa
tors (the tadpole diagram) and another pie
e whose evaluation needs a separateintegration at ea
h quark momentum. Determining the 
oeÆ
ient of the tadpolerequires an integral over �ve non-trivial dimensions whilst the other pie
e needs afour{dimensional numeri
al integration. The NLO quark self-energy is therefore farfrom easy to evaluate. Furthermore, this must be done many times and over a widerange of quark momenta in order to evaluate NLO diagrams in the BSE (see Eq. 7.6).Thus there are obvious bene�ts in simplifying the self-energy integrands.Two of the non{trivial integration variables in Eqs. 7.4 and 7.5 
ome from theevaluation of J integrals in the LO s
attering matrix. Working in Eu
lidean spa
e,and taking the momentum routings of Eqs. 7.4 and 7.5, these J integrals always havea spa
elike momentum argument. With that restri
tion they are smooth analyti
fun
tions, as is illustrated by Fig. 8.1.

Figure 8.1: The �gure shows the denominators of the pion and sigma propagators,1�G1JPP;SS, as fun
tions of spa
elike meson momentum. The pion 
hannel is plottedwith a solid line; the sigma 
hannel with a dashed line. The parameter set used isthat with m0(0) = 300 MeV in Table 8.1.The NLO self-energy integrals may be simpli�ed by approximating JSS and JPPwith analyti
 �ts. The remaining two and three dimensional integrations 
an then8.2. Corre
tions to the Quark Propagator
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kly and a

urately using Gauss{Laguerre te
hniques. Rapidly{
onverging �ts are provided by the series expansionsJij(q2) =Xn anTn �x(q2)� ; (8.1)where fTng are Chebyshev polynomials and x is 
hosen to bex = exp q2�2! : (8.2)In pra
ti
e ten evaluations in ea
h 
hannel of J are used to 
al
ulate the �rst ten termsin the series. That this pro
edure gives a good approximation to these fun
tions hasbeen tested from evaluations at other momenta2. Moreover, a few of the NLO BSEintegrals have been 
ompared to brute for
e determinations, where J is evaluatednumeri
ally at ea
h value of momentum. The results 
on�rm the validity of usingthe series �ts sin
e they are in agreement to within the un
ertainties introdu
ed bynumeri
al integration over the other variables.ResultsThe results for the NLO quark self-energy are presented below, using the notation ofEq. 1.4. They are in agreement with those found in Ref. [114℄, where an alternativedis
ussion of �N in the nonlo
al NJL model is available. Figs. 8.2 and 8.3 showthe fun
tions that des
ribe the ve
tor (a(p)) and s
alar (b(p)) 
omponents of theinverse quark propagator respe
tively. They are plotted for both spa
elike and timelikemomenta, but only up to an energy given by the real part of the pole in the LO quarkpropagator. This is be
ause of the form of the 
ontributions where the quark line isdressed by virtual pion and sigma 
louds (shown on the right{hand side of Fig. 7.5).The 
orresponding integral in Eq. 7.4 in
ludes the propagator S(p � k) and so thenaive 
ontour of integration along the real k4 axis be
omes pin
hed above that energy.2Over the range that dominates the self-energy integrands (up to � 500 MeV), the errorsin the �ts have been found to be less than 0:01% in all 
ases.8.2. Corre
tions to the Quark Propagator
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Figure 8.2: The �gure shows the dimensionless fun
tion a(p) from the inverse quarkpropagator, plotted against p2 in GeV2. The fun
tion is de�ned by Eq. 1.4 and onlybe
omes non-zero beyond LO. Also shown are the 
ontributions to a(p) obtained bydressing the quark line with pion and sigma 
louds. The parameter set used is thatwith m0(0) = 300 MeV in Table 8.1.
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al Results | NLO 136At LO there is no wavefun
tion renormalization of the quark propagator. Thereare however NLO 
ontributions to the /p 
omponent. Fig. 8.2 shows that these rangeup to � 0:25, whi
h is 
onsistent with the expe
ted magnitude of 1=N
 
orre
tions. Anintriguing aspe
t of the results is the appearan
e of a sudden dip in a(p) just beforethe LO pseudo{threshold energy. It would 
ertainly be interesting to examine thebehaviour of the fun
tion above this energy, although that would require a detailedanalysis of the pole stru
ture at NLO, whi
h is beyond the s
ope of the present work.Also plotted on the �gure are the individual 
ontributions to a(p) whi
h arise fromdressing the quark line with virtual pions and with virtual sigma mesons. The pion
loud is obviously the main e�e
t. Sin
e its propagator has a pole at small timelikemomentum, one expe
ts the T matrix in the pseudos
alar 
hannel to be large atmodest values of spa
elike momenta (the region whi
h dominates the NLO integrals).This is veri�ed by Fig. 8.1. Note also that an extra fa
tor of three is asso
iated withthe pion 
ontributions due to isospin multipli
ity.The s
alar 
omponent of the NLO quark self-energy re
eives 
ontributions fromboth the tadpole and the meson{
loud diagrams of Fig. 7.5. Fig. 8.3 demonstratesthat the addition of the tadpole 
ontribution to the LO fun
tion, m(p), has very littlee�e
t (i.e., the 
onstant 
 (Eq. 7.5) is mu
h smaller than m(0)). The meson{
louddiagrams are rather more signi�
ant, in
reasing b(0) by a typi
al 1=N
 level of � 25%.The NLO shift in the quark \mass" fun
tion b(p)=(1+ a(p)) is therefore fairly modest(an in
rease of � 15% at zero momentum).
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Figure 8.3: The �gure shows the fun
tion b(p) from the inverse quark propagator,plotted in GeV against p2 in GeV2. The fun
tion is de�ned by Eq. 1.4 and 
orrespondsto m(p) at leading order. It is shown at LO and at NLO, together with the sum ofthe LO result and the tadpole 
ontribution. The parameter set used is that withm0(0) = 300 MeV in Table 8.1.
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al Results | NLO 138The NLO quark self-energy has little impa
t on the values of the model 
on-densate, whi
h are quoted in Table 8.3. Although there are slight in
reases for theun
on�ned parameter sets the results are very 
lose to the LO values given in Ta-ble 8.2. The same observation holds true3 in the lo
al NJL model when proper timeregularization of the quark loops is used [43℄, although in the O(4) s
heme there areappre
iable NLO shifts.m0(0) Cond. 
 
0 
0(�) 
0(�)200 259 �25:0 �25:3 �90:2 64:9250 215 �12:4 �8:0 �44:2 36:2300 190 �5:2 1:7 �22:4 24:1350 174 �0:005 8:8 �8:6 17:4400 162 4:1 14:6 1:4 13:1450 153 7:7 19:6 9:5 10:2500 145 10:8 24:2 16:3 7:9Table 8.3: Properties of the quark propagator at NLO. All quantities are quoted inMeV. `Cond.' refers to the quark 
ondensate, evaluated in the 
hiral limit. The 
on-stant 
 from the NLO tadpole diagram is de�ned in Eq. 7.5, 
(�) being the 
ontributionto it from the tadpole in the 
hannel of the � meson.Fig. 8.4 shows the breakdown of the NLO part of b(p) into 
ontributions 
omingfrom intermediate pions and sigma mesons. As for a(p), the diagrams with a pion in-termediate are more important than those involving its 
hiral partner. Quark dressingdue to meson 
louds in the original NJL model has been investigated by Qua
k andKlevansky4 [112℄. They found that the pion 
loud tends to in
rease b(p) but that thisis partially 
an
elled by the sigma 
loud. The nonlo
al model studied here supportsthe 
on
lusion and is able to pla
e it on a �rmer footing sin
e there are no ambiguitiesasso
iated with the meson loop regularization5.
3At least for values of the quark mass below � 600 MeV.4Unfortuantely, the tadpole 
ontributions were not identi�ed by those authors.5Moreover, unlike Ref. [112℄, the present work does not repla
e the model meson propa-gators with their 
anoni
al forms. 8.2. Corre
tions to the Quark Propagator
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Figure 8.4: The �gure shows the NLO 
ontributions to the fun
tion b(p). The fullNLO 
omponent is plotted in GeV against p2 in GeV2, together with its de
ompositioninto the parts that involve intermediate pions and sigma mesons. The parameter setused is that with m0(0) = 300 MeV in Table 8.1.
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al Results | NLO 140Although the tadpole diagrams in the NLO quark self-energy are not numeri
allysigni�
ant, it is nevertheless interesting to 
onsider them in more detail. As noted inChp. 7.5, 
0 is an important quantity for NLO 
hanges to the pion mass and de
ay
onstant (see Eqs. 7.14 and 7.15). Sin
e 
0 and the NLO shift in the quark 
ondensateare both small, the pion observables will be little altered unless the state is mu
h morestrongly 
oupled to quarks at NLO. One might therefore wonder whether there shouldbe some physi
al reason for 
0 to be small, perhaps be
ause of 
hiral symmetry. Theentries in Table 8.3 for the pion and sigma tadpoles are quite suggestive at low andintermediate m0(0). For instan
e, with the set at m0(0) = 200 MeV, the pion tadpoleadds as mu
h as 45% of the LO 
hiral quark mass, but this is 
an
elled to a largeextent by the sigma tadpole. The pro
ess does not persist at larger m0(0), however,where the pion tadpole 
hanges sign.NLO Quark Self-Energy in the Extended ModelIn the extended version of the model there are additional 
ontributions to the NLOquark self-energy from the tadpoles and meson 
louds of other mesoni
 states. Al-though 
al
ulation of the properties of these mesons at NLO would demand a gooddeal of further work, it is straightforward to evaluate their 
ontributions to �N . Inso doing, the model 
ouplings G2 : : : G5 are taken to be those set by the the LOphenomenology. The parameter sets A, B and C of Chp. 5.1 produ
e the results ofTable 8.4. As in the simple version of the model, there is only a modest 
hange tothe 
ondensate and the 
onstant 
 is small. Comparison with the entries at similarm0(0) in Table 8.3 indi
ates that pseudos
alar{axial mixing is an important e�e
t,but one whi
h is 
an
elled owing to the simultaneous introdu
tion of the model �meson. Bearing in mind the freedom to set model 
ouplings independently, the entriesof Tables 8.3 and 8.4 argue against any suggestion that 
0 should be a priori smalldue to 
hiral symmetry.
8.2. Corre
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al Results | NLO 141Quantity Set A Set C Set Bm0(0) 280 300 320Cond. 187 180 175
 �9:1 �5:2 �1:2
0 �1:2 3:6 8:4
0(�) 17:9 16:8 11:3
0(�) 31:0 26:5 22:7
0(�) �63:8 �53:4 �38:4
0(�L) 25:9 22:3 16:5
0(a1) �5:6 �5:6 �4:8
0(!) �19:4 �16:2 �11:5
0(!L) 7:9 6:8 4:9
0(f1) �0:3 �0:7 �1:0
0(�?) 0:7 3:0 4:5
0(a0) 4:5 4:1 4:2Table 8.4: Properties of the quark propagator of the extended model at NLO. Allquantities are quoted in MeV. `Cond.' refers to the quark 
ondensate, evaluated inthe 
hiral limit. The 
onstant 
 from the NLO tadpole diagram is de�ned in Eq. 7.5,
(�) being the 
ontribution to it from the tadpole in the 
hannel of the � meson.The fun
tion b(p) for the parameter set C is plotted in Fig. 8.5. Its breakdownis shown in Fig. 8.6. As in the situation with the tadpoles, pseudos
alar{axial mixingmakes a de�nite di�eren
e to the 
ontribution from the pion 
loud (
ompare Figs. 8.4and 8.6). However, the e�e
t is 
an
elled by ve
tor meson 
louds to leave an overallresult whi
h is very similar to the one found in the simpler version of the model(
ompare Figs. 8.3 and 8.5).
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Figure 8.5: The �gure shows the fun
tion b(p) from the inverse quark propagator ofthe extended model. It is plotted in GeV against p2 in GeV2. The fun
tion is shown atLO and at NLO, together with the sum of the LO result and the tadpole 
ontributions.
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al Results | NLO 143In Fig. 8.7 the fun
tion a(p) is shown for the parameter set C. It is rather di�erentin 
hara
ter from result obtained in the simpler version of the model (Fig. 8.2). Mixingin the pion 
hannel and the 
louds of the spin-1 states are again signi�
ant. In a(p)however, these e�e
ts reinfor
e ea
h other. Thus the fun
tion is mu
h larger than inthe simpler model. This is potentially of 
on
ern be
ause it suggests that the NLOdiagrams tend to de
on�ne the quarks in the extended model. A de�nite statement
annot however be made without a full NLO analysis of meson properties. The set Cparameters are �xed from meson masses at LO. Sin
e 1=N
 e�e
ts 
ould alter thesesigni�
antly, it is quite possible that set C may not 
onstitute a reasonable 
hoi
e ofmodel parameters at the NLO level.An obvious di�eren
e between Figs. 8.2 and 8.7 is the absen
e in the latter ofa sharp dip just before the LO pseudo{threshold energy. The 
ontributions fromthe 
louds of the s
alar, purely pseudos
alar, transverse ve
tor and transverse axial
hannels all exhibit su
h a dip (Figs. 8.2 and 8.7). It is eliminated in the extendedmodel due to the 
ontributions from longitudinal qq states. In parti
ular, the removalthrough mixing of the steep drop that o

urs in the pion 
ontribution is 
ru
ial ina

ounting for this behaviour.8.3 Corre
tions to the Meson PropertiesNumeri
sThe NLO diagrams in the BSE are of the forms given in Eqs. 7.6, 7.7 and 7.10. Sin
eea
h of these requires an integration over several non-trivial variables, time 
onstraintssuggest that suitable approximation s
hemes be developed.In Chp. 8.2, an a

urate series �t to the LO J integrals at spa
elike momentawas used to assist in the evaluation of the NLO quark self-energy. In performing theBethe{Salpeter integrals of the stru
ture given in Eq. 7.6, �N 
an be evaluated justas in Chp. 8.2. It 
an then be treated as part of a two-dimensional integrand, whi
h
8.3. Corre
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al Results | NLO 144is integrated over the variables p2 and p24 using Gauss{Laguerre methods (p4 is in thedire
tion of q). For a timelike external momentum the arguments p2� of �N in Eq. 7.6are 
omplex in Eu
lidean spa
e and hen
e the NLO part of the quark self-energy 
anitself be 
omplex. In pra
ti
e, however, the imaginary part of �N does not 
ontributeto the BSE integral. To see this, note that �N is a real fun
tion6, satisfying S
hwarz'sre
e
tion property: �N (p2�) = ��N(p2). Sin
e this is the 
ase, the imaginary part of�N in the two terms of Eq. 7.6 
an be shown to 
an
el simply by reversing the signof one of the p4 integration variables7.Eq. 7.7 represents the ex
hange of a qq state between the two quark lines ofa LO bubble loop. With the routing used in that equation, the momentum of theintermediate state is always spa
elike and so its propagation 
an be approximated bya Chebyshev series �t (Eq. 8.1). One is then left with a �ve{dimensional integrandwhi
h may be expressed as a fun
tion of p4, k4, p2, k2 and  , the angle between p andk. Ea
h of these is summed in the usual way, the �rst four with Gaussian te
hniquesand the angular variable using the method des
ribed in Chp. 5.3 in the 
ontext ofthree-quark loops.The remaining NLO BSE integral is given in Eq. 7.10. It has a two{dimensionalintegrand and is summed using Gaussian methods in terms of the variables p2 and p4.At ea
h integration point the fun
tions T̂ , L and L must be determined numeri
ally.The three-quark loops, L and L, 
an be 
omputed in the same way as the 1 ! 2meson de
ays of Chp. 5.3. The LO s
attering matri
es in Eq. 7.10 
annot howeverbe represented by using Eq. 8.1 to �t to Jij. The Eu
lidean momenta of the qqintermediates in this diagram is 
omplex for a timelike external momentum. O� thereal axis, the LO J integrals are themselves 
omplex and 
an only be �tted as fun
tionsof two variables. In 
onstru
ting an appropriate �t, the momentum routing of Eq. 7.10is a judi
ious 
hoi
e. Sin
e k2�E = (k2+E)� and J(`2E) satis�es the S
hwarz re
e
tion6For this statement to be true, one requires that the intera
tion form fa
tor f(p) is areal fun
tion. It then follows that the LO quark self-energy is a real fun
tion (see Eq. 3.3),whereupon the property 
an be seen to hold for �N by inspe
tion of Eq. 7.4.7Assuming that �i = �j . 8.3. Corre
tions to the Meson Properties
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al Results | NLO 145property8, the range of the �t 
an be restri
ted to:=(`2E) : 0!1: (8.3)A further restri
tion 
an be imposed given that the BSE at NLO is only 
onsidered upto energies of EPT, the pseudo{threshold energy at twi
e the real part of the pole in theLO quark propagator9. Therefore, a non-zero value for j=(k2�E)j indi
ates a minimumpossible jk4j and hen
e a lower bound on the required values of <(`2E), spe
i�
ally:<(`2E) :  =(`2E)EPT !2 � E2PT4 !1: (8.4)Within the range of arguments probed, the J fun
tions in Eq. 7.10 
an be approxi-mated by the Chebyshev expansionsJij(`2E = u+ iv) =Xmn amnTm (x(u; v))Tn (y(v)) ; (8.5)where x and y are taken as: y(v) = exp��v�2 � ;x(u; v) = exp��u�2 � "1 + exp �umin(v)�2 !#�1 ; (8.6)and umin(v) should be understood as the minimum of <(`2e) in Eq. 8.4. A hundredevaluations in ea
h 
hannel of J have been used to �x the 
omplex 
oeÆ
ients10 inEq. 8.5 for m;n = 0 : : : 9. Although this is not a very eÆ
ient method for evaluatinga single NLO BSE integral of the form in Eq. 7.10, the �ts need only be done on
e fora given parameter set. Hen
e, there is a de�nite advantage in using them when onewishes to evaluate several su
h integrals with the same model parameters.8As with the LO and NLO quark self-energies, the property follows dire
tly if the inter-a
tion form fa
tor is a real fun
tion.9Although the LO J integrals 
ease to be 
apable of analyti
 
ontinuation when <(`2E) ismore negative than �14E2PT (see Chp. 3.3) , this is avoided for external energies below EPT.10By investigating evaluations at other momenta, the errors for these two{parameter �tsare found to be at the � 1% level. Sin
e this is 
onsiderably worse than for the �ts of Eq. 8.1,it is preferable to use the single{parameter �t in evaluating other NLO diagrams.
8.3. Corre
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al ThresholdsAbove the threshold for a physi
al 1! 2 meson de
ay, a NLO diagram of the form inFig. 7.9d generates an imaginary 
omponent to the meson propagator. This 
an be
al
ulated by applying the Cutkosky 
utting rules [104℄ to the diagram. Consider forexample the s
attering in the s
alar isos
alar 
hannel above the two{pion threshold.At the value of the LO sigma meson mass, the imaginary part redu
es to=�JSS(q2 = m2�)� = m�:�(� ! ��)g2�qq ; (8.7)where the de
ay width is identi
al to that 
al
ulated from the relevant three{mesonvertex in Chp. 5.3.Some 
are must be taken in the evaluation of the real part of su
h diagrams,owing to the singularities of the s
attering matri
es in the integrand. The diagram
an be de�ned more formally as the �! 0 limit of Eq. 7.7 with the repla
ementsT̂ = G11�G1J �! G11�G1J � i� : (8.8)The numeri
al routines sometimes attempt to evaluate the integrand 
lose to theposition of the singularity. Whether or not they do so, the results produ
ed have beenfound to be stable for � <� 0:01. For the sake of safety therefore, � has been set at thissmall but non-zero value in the numeri
al work.8.5 Corre
tions to Pion PropertiesFigs. 8.8 and 8.9 show the results for the real part of the pion Bethe{Salpeter deter-minant of Eq. 7.12. At small meson energies, the LO and NLO 
urves are very 
losetogether, indi
ating that both the pion mass and its 
oupling to quarks are extremelywell represented by the LO approximation. Although the NLO 
ontributions in thepion 
hannel must 
an
el in the 
hiral limit (as demonstrated in Appendix B), theresults here suggest that su
h 
an
ellations must persist to a large extent at higherorders. In parti
ular, there is no reason to expe
t the NLO shift in the pion{quark8.4. Physi
al Thresholds
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oupling to be small. In 
onjun
tion with the small value of 
0, the small 
hange tog�qq implies that the pion de
ay 
onstant is not sensitive to NLO e�e
ts (see Eq.7.15).A
tual determinations of the NLO shifts to m� and f� have not been made in thiswork. They are suÆ
iently small11 that the numeri
al pro
edures would have to be
onsiderably re�ned in order to quote values with any meaningful degree of a

ura
y.The fa
t that the NLO 
orre
tions to the pion mass and de
ay 
onstant are smallis an en
ouraging point in support of the usual LO treatment of four{quark models. Italso justi�es the de
ision to use the model parameters �tted to the LO pion properties(Chp. 8.1) in these NLO 
omputations with the simple version of the model.

11not more than a few MeV. 8.5. Corre
tions to Pion Properties
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al Results | NLO 148As the energy in the pion 
hannel in
reases, the NLO 
ontributions do start tobe
ome signi�
ant. Shortly before pseudo{threshold is rea
hed, they are suÆ
ientlyimportant to 
hange the qualitative behaviour of the pion Bethe{Salpeter amplitude.Indeed they are even able to generate an unphysi
al zero in the real part of thedeterminant, just before EPT. This is a potentially worrying point and indi
ates aneed for a 
areful study of the model at NLO around and above EPT. It may alsobe worthwhile to examine the pion determinant in the extended version of the model.The behaviour in Fig. 8.9 is reminis
ent of that exhibited by a(p) in Fig. 8.2. In thatinstan
e, the unusual feature was eliminated by the introdu
tion of pseudos
alar{axialmixing. This mixing is 
ertainly important in the LO pion amplitude (
ompare Fig. 5.1to Figs. 8.8 and 8.9) and might be so at NLO as well.In Fig. 8.10, a breakdown of the NLO 
ontributions to the pion amplitude isshown. Ea
h 
urve 
orresponds to a di�erent NLO integral: `a+b' represents a NLOquark self-energy insertion (the sum of Figs. 7.7a and 7.7b, given in Eq. 7.6); `
'represents meson ex
hange between two quark lines (Fig. 7.9
, given in Eq. 7.7);and `d' represents two-meson intermediate states (Fig. 7.9d, given in Eq. 7.10). Theresults demonstrate that the NLO part of the amplitude is small at low momenta onlybe
ause of the 
an
ellations amongst the various diagrams that are enfor
ed by 
hiralsymmetry. In both analyti
al and in numeri
al work, it is therefore 
ru
ial to in
ludeall of the diagrams 
onsistently in order to obtain an a

urate pi
ture of the pion atNLO.8.6 Corre
tions to Sigma PropertiesThe interpretation of the sigma meson in dynami
al quark models is subje
t to as-sumptions about its properties whi
h are not probed by su
h models at LO. Sin
e thestate is known to be strongly 
oupled to the two-pion 
hannel, the diagram of Fig. 7.9dmight well be important in model des
riptions of the s
alar 
hannel. The result of thenonlo
al NJL model for the real part of the s
attering matrix determinant is plotted8.6. Corre
tions to Sigma Properties
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al Results | NLO 149in Fig. 8.11.In the ladder approximation to four{quark models, the sigma meson tends to berather light in 
omparison with many �� s
attering analyses [89℄. Fig. 8.11 shows thatthis statement is also true at NLO. The point is emphasized by Table 8.5 whi
h liststhe LO and NLO sigma masses over the full range of parameter sets from Chp. 8.1.The NLO shift is quite modest and (in general) negative.m0(0) m� at LO m� at NLO200 385 404250 423 377300 454 373350 477 368400 492 365450 489 365500 478 365Table 8.5: Sigma meson masses at LO and NLO.

8.6. Corre
tions to Sigma Properties



Chapter 8. Numeri
al Results | NLO 150It should be noted that the \masses" quoted in Table 8.5 refer to the energy atwhi
h the real part of the s
attering matrix vanishes. A 
ommon alternative is to
onsider the 
omplex pole of the s
attering matrix. The de�nition used here has beensele
ted purely for 
onvenien
e, sin
e it would be more diÆ
ult to evaluate the BSEintegrals at 
omplex external energies.Using a derivative expansion of the bosonized NJL model, the 1=N
 
orre
tionsto the sigma mass were 
al
ulated by Pallante [45℄. In that framework, the 
orre
tionswere found to be large and negative12, prompting the author of Ref. [45℄ to spe
ulatethat the mass of this state is not well des
ribed by the 1=N
 expansion. The workpresented here indi
ates that higher order terms in momentum are important and thatthese redu
e the magnitude of the mass shift su
h that perturbation theory seems tobe reasonable.One must therefore take very seriously the view the sigma meson is intrinsi
allylight in four quark models of the NJL form. This view is supported by the observationthat the results for the sigma mass at NLO are remarkably insensitive to the parameterset 
hosen. Even allowing the zero-momentum 
hiral quark mass to vary by a fa
torof two, the sigma mass 
hanges by just 12 MeV . Thus, the light sigma is a propertyof su
h models whi
h 
annot be avoided by in
luding meson loops or by a suitable
hoi
e of parameters.A breakdown of NLO 
ontributions to the s
alar 
hannel of the s
attering matrix
an be found in Fig. 8.12. The same notation is used as in Chp. 8.5 for the pion
hannel. In Chp. 5.2, it was argued that the 
ontributions from two pion intermediates
ould be important in the des
ription of the s
alar 
hannel and indeed su
h diagramsdominate the NLO part of the s
alar amplitude. They a
t to redu
e the mass of thestate, as does the 
ontribution from t-
hannel meson ex
hange. Their signs are thesame as those of the 
orresponding 
ontributions to the pion 
hannel. There are also
ontributions from NLO quark self-energy insertions, whi
h, in both 
hannels, have12One should note, however, that the pre
ise value for the mass shift is highly sensitive tothe additional 
ut-o� parameter that is needed to regularize the meson loops.8.6. Corre
tions to Sigma Properties
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al Results | NLO 151the opposite e�e
t.The dis
ussion so far has 
on
erned the real part of JNSS. The imaginary partis shown in Fig. 8.13. Naively, one would expe
t it to in
rease with in
reasing energysin
e a larger region of phase spa
e be
omes available. In pra
ti
e, there is a veryslow in
rease from the threshold energy up to a peak at � 520 MeV, following whi
hthe imaginary part falls o� quite qui
kly. Thus, the 
oupling of the s
alar 
hannelto two pions must be
ome signi�
antly weaker as the energy in
reases. The fa
t thatthe model sigma meson is light is therefore inextri
ably linked with the fa
t that it isalso broad. Interestingly, a similar behaviour of the s
alar to two pion 
oupling wasobserved in the four{quark model13 studied by E�mov et al [58℄. In 
ontrast, however,a re
ent analysis using QCD sum rules [116℄ suggested that a light s
alar state wouldhave to be relatively narrow.Finally, note that the results of Fig. 8.13 support a suggestion made in Chp. 5.3.The weak 
oupling of the the s
alar 
hannel to two pions above the sigma mass impliesthat the broad width 
al
ulated for a1 ! �� in the model is by no means in
onsistentwith the experimental observation of a small 
ontribution to the total a1 width froma1 ! �(��)S.

13A value for the s
alar mass in their three{
avoured approa
h was used as a free parameterand was 
hosen with the intention of interpreting the model s
alar resonan
es as heavy,narrow states. The authors were however presented with a problem regarding the widths ofthese states whi
h was `resolved' by the ad ho
 introdu
tion of a ve
tor pie
e to the BetheSalpeter amplitude. 8.6. Corre
tions to Sigma Properties
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Figure 8.6: The �gure shows the NLO 
ontributions to the fun
tion b(p) in the ex-tended model. They are plotted in GeV against p2 in GeV2. The full NLO 
omponentis shown on the left{hand graph, together with the parts of it that involve interme-diate pions and sigma mesons. Contributions involving spin-1 states are shown onthe right{hand graph, the supers
ript L denoting a longitudinal state. Note that the
ontributions from the f1, a0 and �? parti
les are negligible and so are not shown.

8.6. Corre
tions to Sigma Properties
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Figure 8.7: The �gure shows the dimensionless fun
tion a(p) from the inverse quarkpropagator of the extended model. It is plotted against p2 in GeV2. The full NLOresult is shown on the left{hand graph, together with the parts of it that 
ome fromdressing the quark line with pion and sigma 
louds. Contributions from the 
loudsof spin-1 states are shown on the right{hand graph, the supers
ript L denoting alongitudinal state. Note that the 
ontributions from the f1, a0 and �? parti
les arenegligible and so are not shown.

8.6. Corre
tions to Sigma Properties
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Figure 8.8: The �gure shows the determinant of the s
attering matrix in the pion
hannel at LO (dashed 
urve) and at NLO (solid 
urve). The parameter set used isthat with m0(0) = 300 MeV in Table 8.1.
8.6. Corre
tions to Sigma Properties
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Figure 8.9: The �gure shows the determinant of the s
attering matrix in the pion
hannel at LO (dashed 
urve) and at NLO (solid 
urve). The 
urves are plotted forenergies up to the pseudo{threshold energy, EPT. The parameter set used is that withm0(0) = 300 MeV in Table 8.1.
8.6. Corre
tions to Sigma Properties
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Figure 8.10: The �gure shows G1JNPP and the various 
ontributions to it, plotted fortimelike meson momentum up to the pseudo{threshold energy, EPT. The 
ontributionsare de�ned in the main text. The parameter set used is that with m0(0) = 300 MeVin Table 8.1.

8.6. Corre
tions to Sigma Properties
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Figure 8.11: The �gure shows the real part of the determinant of the s
attering matrixin the s
alar 
hannel. The dashed 
urve gives the LO result and the solid 
urve givesthe result at NLO. They are plotted against timelike meson momentum, up to thepseudo{threshold energy, EPT. The parameter set used is that with m0(0) = 300 MeVin Table 8.1.
8.6. Corre
tions to Sigma Properties
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Figure 8.12: The �gure shows G1JNSS and the various 
ontributions to it, plotted fortimelike meson momentum up to the pseudo{threshold energy, EPT. The 
ontributionsare de�ned in the main text. The parameter set used is that with m0(0) = 300 MeVin Table 8.1.

Figure 8.13: The �gure shows the imaginary part of JSS. It is plotted from slightlyabove the two-pion threshold up to the pseudo{threshold energy, EPT. The parameterset used is that with m0(0) = 300 MeV in Table 8.1.
8.6. Corre
tions to Sigma Properties



Chapter 9
Con
lusions
The stru
ture of light mesons is a mu
h{studied subje
t but one whi
h is not yet wellunderstood. Treatments based on the QCD S
hwinger{Dyson equations provide anattra
tive approa
h to the problem, o�ering a 
lear link between the parti
ulate and
omposite levels. However, they are often 
omputationally intensive. Ansatze mustbe made in order to make the equations tra
table, but it is far from simple to testan ansatz through the resulting phenomenology. Su
h 
al
ulations are fa
ilitated byusing instead a model �eld theory, su
h as the NJL style of model. The work presentedhas investigated an extended version of the model proposed in Ref. [8℄, whi
h 
an beviewed as a nonlo
al generalization of the NJL a
tion. It has nonlo
al, four-fermionintera
tions, based on the separable form (Eq. 2.4) suggested by instanton{liquidstudies [51℄. Symmetry 
urrents 
onsistent with this a
tion have been dedu
ed. Theresults for the 
urrents have been extensively tested, by means of the 
onstraintsimposed by ele
tromagneti
 gauge invarian
e and a variety of Ward identities. Themodel has also been shown to in
orporate the 
hiral anomaly 
orre
tly. Moreover, NLO
orre
tions have been studied. Although a parti
ular model has been used throughout,many of the results from the NLO analysis are likely to be qualitatively true of four{quark models in general.
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Chapter 9. Con
lusions 160The intera
tion form fa
tors whi
h are used in the nonlo
al model (Eq. 2.7) en-sure the 
onvergen
e of all loop integrals and (over most of the range of a

eptableparameters) also lead to quark 
on�nement. The former point is parti
ularly impor-tant in the study of su
h models at NLO, sin
e it eliminates the need for a 
ut-o�parameter on meson loops. The latter point is relevant to the appli
ation of su
hmodels to heavier mesons than the pion, sin
e it avoids a threshold for qq produ
tiono

urring at an in
onveniently low energy. This feature makes the approa
h espe
iallywell suited as the basis for an extended model, with intera
tions that bind ve
tor andaxial-ve
tor mesons.The analyti
 stru
ture of the quark propagator, with poles at 
omplex momenta,means that a s
heme has to be spe
i�ed for 
ontinuing amplitudes to Minkowski spa
e.The s
heme used at LO (Chp. 3.3) follows the suggestions of Lee and Wi
k [77℄ and ofCutkosky et al. [78℄. It leads to nonanalyti
 behaviour of the meson propagators abovea pseudo{threshold energy. In pra
ti
e (see Chp. 5.1), this behaviour ensures that nopoles appear in the longitudinal ve
tor 
hannels. In addition, it provides restri
tionson both the admissible range of model parameters and the region of appli
ability of themodel. No attempt has been made to examine the model beyond the pseudo{thresholdenergy at NLO. This is be
ause the poles in the quark propagator are shifted by NLOterms in the quark self-energy. Su
h a shift is not expli
it in a perturbative treatmentof the BSE, whi
h therefore does not allow a simple extension of the 
ontinuationpres
ription.In order to 
al
ulate the pion de
ay 
onstant, whi
h sets the basi
 s
ale for themodel, one needs to use 
onserved 
urrents whi
h are 
onsistent with the nonlo
al in-tera
tion. Nonlo
al 
ontributions to the 
urrents have been determined (Chp. 2.4) a
-
ording to the Noether-like method of Ref. [8℄. These are analyti
ally and numeri
allyimportant to the pion de
ay 
onstant (and to many ele
tromagneti
 
ouplings). Wardidentities related to the 
urrent 
onservation follow automati
ally and several havebeen 
he
ked analyti
ally, in
luding the Gell-Mann{Oakes{Renner relation (Chp. 4.2)
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lusions 161and the low-energy theorem for �0 ! 

 in the 
hiral limit (Chp. 6.3). The latterinvolves the axial anomaly, whi
h has long posed a problem to the usual NJL modelwith its 
ut-o�s on the quark propagators. The nonlo
al terms in the ve
tor 
urrentof the model yield an ansatz for the photon{quark 
oupling (Chp. 4.3) whi
h di�ersfrom the Ball{Chiu ansatz, relied upon in many similar studies. In parti
ular, onemust in
lude two-body diagrams (Chp. 6.2) where the photon is irredu
ibly 
oupledto four quarks.Various ele
tromagneti
 quantities have been 
al
ulated in the model. The de
ayrates determined are in fairly good agreement with the observed ones, ex
ept for the
ase of a1 ! �
. The ele
tromagneti
 form fa
tor of the pion agrees well with thedata, at least below the � pole. The form fa
tors for 

� ! � and ! ! �
� are also inagreement with the (admittedly rather limited) data 
urrently available. These resultsfor ele
tromagneti
 form fa
tors have been 
ompared with ve
tor{dominan
e formulaeusing on-shell 
ouplings as 
al
ulated from the model. Although diagrams involvingintermediate ve
tor mesons are only signi�
ant 
lose to resonan
e, they 
ombine withdiagrams where the photon 
ouples dire
tly to the quarks to produ
e numeri
al resultsthat are very 
lose to those of VMD1. The model is thus able to illustrate how adynami
al system 
an lead to ve
tor dominan
e in photon{meson intera
tions.The meson masses and various strong de
ay rates were 
al
ulated in Chp. 5,working at tree level in terms of mesons (leading order in 1=N
) and to all ordersin momentum. With the � mass used to �x the strength of the relevant four-quarkvertex, the � meson width is reasonably well des
ribed. The nonlo
al model thereforeprovides an improvement on the underestimated width obtained in the extended NJLmodel [92℄. As in the lo
al NJL model, a light, broad sigma meson is found. The
al
ulated mass of the a1 meson is somewhat lighter than the observed value. By
utting down the available phase{spa
e, this means that the model gives too small awidth for the de
ay a1 ! ��.1ex
ept at large momenta.



Chapter 9. Con
lusions 162The 
al
ulations have been developed to in
lude meson{loop e�e
ts (1=N
 
or-re
tions) sin
e these 
ould be qualitatively important. Unlike all previous analysesof these e�e
ts in four-quark models, the present work has expli
itly evaluated therelevant integrals as fun
tions of momentum. These fun
tions are unambiguous, sin
eno regulator is required for the meson loops. It has been 
he
ked that the meson{loopdiagrams are 
onsistent with the Gell-Mann{Oakes{Renner relation (Chp. 7.5). In sodoing, it was established that (in the 
hiral limit) the 
hanges to the pion mass andde
ay 
onstant at this improved level of approximation are 
ontrolled by the quantity
0, the 
oeÆ
ient of the tadpole diagram from the quark self-energy.The numeri
al results obtained at next-to-leading order 
on�rm the validity of anexpansion in 1=N
. Both the s
alar and ve
tor 
omponents of the quark self-energyare in
reased by � 25% by the in
lusion of meson{loop diagrams, with the pion 
loudbeing the dominant e�e
t. When ve
tor mesons are in
luded in the model, it hasbeen observed that the ve
tor 
omponent is further in
reased, and that �a1 mixing isqualitatively important. The value of 
0 is found to be small, so that pion propertiesare a

urately represented by the leading order approximation. The sigma meson isvery strongly 
oupled to two-pion states and the asso
iated meson{loop diagram a
tsto redu
e the mass of this state. This is partially 
an
elled by the 
hanges to the quarkself-energy, but the net e�e
t is a redu
tion of the � mass to � 370 MeV. One shouldnote that this value (along with the results 
al
ulated for almost all observables inthe model) has been found to be qualitatively similar for all admissible values of themodel parameters.The empiri
al properties of the sigma meson are a subje
t of 
ontinuing debate.The issue was addressed on several o

asions at the HADRON 97 
onferen
e [117℄and is also dis
ussed in re
ent preprints (see for example Refs. [116, 118, 119℄). Insu
h dis
ussions models of the four{quark type are often 
ited as theoreti
al studies insupport of the interpretations that favour a light sigma meson. The support o�ered,however, 
ould hitherto only be regarded as tentative in view of the fa
t that the



Chapter 9. Con
lusions 163usual leading order approximation to su
h models does not take a

ount of meson loopsinvolving two pion states. In this work, it has been demonstrated that a full 
al
ulationat meson{loop level a
tually produ
es a lighter s
alar resonan
e. It therefore appearsthat the NJL type of model does indeed favour a light and broad sigma. Of 
ourse, anyresolution of `the sigma problem' will only be established by further analyses of existingand of new experimental data. It may be that future work 
auses the notion of a light,broad sigma to be reje
ted. In that 
ase, the results presented here would indi
atethat there must be some important physi
s missing from the NJL type of model. Inthis 
ontext, it is interesting to �nd in Ref. [119℄ that a group whose analyses �nd alight sigma has stated that an assumption made in their treatment [120℄ (the form ofthe �� s
attering amplitude) is similar to one that is made in NJL models.In this thesis, a four{quark model suggested in Ref. [8℄ has been explored in somedetail. With only a minimal in
rease in 
omplexity, the model is theoreti
ally moreattra
tive than the lo
al NJL model. It generates quark 
on�nement, does not requirea regulator and (through the in
lusion of nonlo
al terms in the symmetry 
urrents)satis�es the 
hiral anomaly in very natural way. Phenomenologi
ally, the level ofagreement with observed meson properties is satisfa
tory, given the simpli
ity of themodel. The results obtained when meson loops are in
luded imply that the usualleading order approximation to this type of model is qualitatively a good one for boththe pion and its 
hiral partner.



Appendix A
Pion De
ay Constant at NLO
A.1 Can
ellationsIt was noted in Chp. 7.4 that there are a number of useful 
an
ellations whi
h 
anbe made amongst the various diagrams 
ontributing to the NLO part of the pionde
ay 
onstant. The purpose of the present se
tion is to give a des
ription of those
an
ellations, whi
h lead to Eq. 7.11. Although the NLO diagrams in the 
oupling tothe axial 
urrent were dis
ussed quite generally in Chp. 7.4, this se
tion 
onsiders aversion of the model with the G1 
oupling only.It is easiest to begin with the diagrams (k) and (l) (see Fig. 7.13) whi
h aregenerated by the NLO part of the pion vertex fun
tion. Their sum is 
learly:f (k)� + f (l)� = gN�qqg�qq f�: (A.1)One may re
all the 
onvention by whi
h the uns
ripted f� in Eq. A.1 refers to thepion de
ay 
onstant at LO. The notation f (x)� also appears in the above equation andis used to denote the 
ontribution to the pion de
ay 
onstant from the NLO diagram(x) = (a) : : : (o) (see Figs. 7.11 to 7.15).Consider next the 
ontributions whi
h arise due to the tadpole diagram in theNLO quark self-energy. This is responsible for the diagrams (a), (
) and (g) (see
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ay Constant at NLO 165Figs. 7.11 and 7.12), whi
h make the following 
ontributions:f (a)� Æab = 
g�qqG12m2� Z d4k(2�)4Tr [S(k)S(k)℄ f 2(k)� Z d4p(2�)4Tr h
5� bS(p�)
5�aS(p+)i f(p+)f(p�)� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i ; (A.2)
f (
)� Æab = �i
g�qq2m2� Z d4p(2�)4Tr h
5� bS(p�)/q
5�aS(p+)S(p+)i f 3(p+)f(p�)�i
g�qq2m2� Z d4p(2�)4Tr h
5� bS(p�)S(p�)/q
5�aS(p+)i f(p+)f 3(p�); (A.3)f (g)� Æab = 
g�qqG12m2� Z d4k(2�)4Tr [S(k)℄ Z d4p(2�)4f(p+)f(p�)�Tr h
5� bS(p�)
5�aS(p+)S(p+)f 2(p+) + 
5� bS(p�)S(p�)
5�aS(p+)f 2(p�)i� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i : (A.4)The form fa
tor stru
ture in square bra
kets appearing in the expressions for diagrams(
) and (g) is 
hara
teristi
 of the type-III nonlo
al 
urrent stru
ture (Eq. 2.16). It isthe type-III term G1(i
5�a
1) whi
h produ
es these diagrams (and many of the othernonlo
al diagrams at NLO), just as it produ
ed the LO nonlo
al diagram of Eq. 4.1.By applying the /q
5 identity of Eq. 4.3 to the lo
al 
urrent diagram (
), the
ontribution 
oming from the (m+ +m�) term on the right{hand side of Eq. 4.3 
anbe partially 
an
elled with part of the 
orresponding nonlo
al diagram, (g). As inthe 
orresponding 
an
ellation between LO diagrams (see Chp. 4.2), only 2m
 fromthe (m+ + m�) fa
tor is retained in the sum. The other pie
es of Eq. 4.3 resultin 
ontributions with integrals somewhat similar to those of JSS(0) and JPP (q), buthaving slightly more 
ompli
ated form fa
tor stru
tures.De�ning the symbol J (x)Nij to represent the 
ontribution to JNij from the BSEdiagram of type (x) = (a). . . (d) (see Figs. 7.7 and 7.9), one 
an write the sum of theA.1. Can
ellations
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ay Constant at NLO 166diagrams that involve the tadpole asf (a)� + f (
)� + f (g)� = ig�qqG12m2� J (a)NPP Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�+i
g�qq2m2� (1�G1JPP (q2)) Z d4p(2�)4Tr [S(p)S(p)℄ f 3(p)�f(p+ q) + f(p� q)�+i
g�qq2m2� (1�G1JSS(0)) Z d4p(2�)4Tr [
5S(p�)
5S(p+)℄�f(p+)f(p�)�f 2(p+) + f 2(p�)�+g�qqm
m2� �J (a)NPP with f 2(p�)f 4(p�)! f(p�)f 3(p�)�: (A.5)The other part of the NLO quark self-energy 
omes from the meson 
loud diagramon the right{hand side of Fig. 7.5. It indu
es the diagrams (b), (d) and (h) (seeFigs. 7.11 and 7.12) in the pion 
oupling to the axial 
urrent.f (b)� Æab = ig�qqG12m2� Z d4p(2�)4Tr h
5� bS(p�)
5�aS(p+)i f(p+)f(p�)�Xi Z d4k(2�)4 d4`(2�)4 T̂ (�i 
 
i; k � `)Tr hS(k)�iS(`)
iS(k)i f 2(k)f 2(`)� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i (A.6)f (d)� Æab = g�qq2m2� Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)f(p+)f(p�)�Tr h
5� bS(p�)/q
5�aS(p+)�iS(k+)
iS(p+)f 2(p+)f 2(k+)+
5� bS(p�)�iS(k�)
iS(p�)/q
5�aS(p+)f 2(p�)f 2(k�)i (A.7)
f (h)� Æab = ig�qqG12m2� Z d4k(2�)4Tr [S(k)℄Xi Z d4p(2�)4 d4`(2�)4 T̂ (�i 
 
i; p� `)�Tr h
5� bS(p�)
5�aS(p+)�iS(`+)
iS(p+)f 2(p+)f 2(`+)+
5� bS(p�)�iS(`�)
iS(p�)
5�aS(p+)f 2(p�)f 2(`�)i f(p+)f(p�)� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i (A.8)A.1. Can
ellations
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ay Constant at NLO 167In f (d)� , the /q
5 identity of Eq. 4.3 
an again be used to de
ompose the insertionthat 
omes from the lo
al 
urrent. As before, the (m++m�) term of the de
ompositionallows 
an
ellation with the part of f (h)� that 
ontains a fa
tor of the ladder SDEintegral (Eq. 3.2).In Eq. A.6, the two pie
es of the nonlo
al form fa
tor stru
ture enable one tosimplify di�erent aspe
ts of the expression. The �rst pie
e yields a fa
tor of the sameintegral as appears in the de�nition of the 
onstant 
 (Eq. 7.5); the se
ond pie
eredu
es the p integral to JPP (q2). The simpli�ed sum of Eqs. A.6, A.7 and A.8 isgiven below. f (b)� + f (d)� + f (h)� = r(d)�+ ig�qqG12m2� J (b)NPP Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�� g�qq2m2� (1�G1JPP (q2))Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)Tr hS(p)�iS(k)
iS(p)i�f 3(p)�f(p+ q) + f(p� q)�f 2(k)�i
g�qq2m2� (1�G1JSS(0)) Z d4p(2�)4Tr [
5S(p�)
5S(p+)℄�f(p+)f(p�)�f 2(p+) + f 2(p�)�+g�qqm
m2� �J (b)NPP with f 2(p�)f 4(p�)! f(p�)f 3(p�)�; (A.9)where part of the lo
al 
urrent 
ontribution, Eq. A.7, has been isolated asr(d)� Æab = �g�qq2m2� Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)f(p+)f(p�)�Tr h
5� bS(p�)
5�a�iS(k+)
iS(p+)f 2(p+)f 2(k+)+
5� bS(p�)�iS(k�)
i
5�aS(p+)f 2(p�)f 2(k�)i : (A.10)It is en
ouraging to note that the term proportional to 
 in Eq. A.9 
an
els witha term in Eq. A.5.The other 
orre
tions to the two-quark loops of the LO diagrams are due eitherto virtual meson ex
hanges between the two quarks,
A.1. Can
ellations
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f (e)� Æab = g�qq2m2� Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)f 2(k+)f 2(k�)f(p+)f(p�)�Tr h
5� bS(k�)
iS(p�)/q
5�aS(p+)�iS(k+)i ; (A.11)
f (i)� Æab = ig�qqG12m2� Z d4k(2�)4Tr [S(k)℄Xi Z d4p(2�)4 d4`(2�)4 T̂ (�i 
 
i; p� `)�Tr h
5� bS(`�)
iS(p�)/q
5�aS(p+)�iS(`+)i f 2(`+)f 2(`�)f(p+)f(p�)� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i ; (A.12)or else to two-meson intermediate states,f (f)� Æab = �g�qq2m2� Xi;j Z d4p(2�)4 T̂ (�i 
 
i; p+)T̂ (�j 
 
j;�p�)�L(q; p+;�p�; i
5� b;
i;
j)L0(q; p+;�p�; /q
5�a;�i;�j); (A.13)

f (j)� Æab = �ig�qqG12m2� Z d4k(2�)4Tr [S(k)℄Xi;j Z d4p(2�)4 T̂ (�i 
 
i; p+)T̂ (�j 
 
j;�p�)�L(q; p+;�p�; i
5� b;
i;
j) hf 2(k)L�(q; p+;�p�; /q
5�a;�i;�j)�f(k)�f(k + q) + f(k � q)�L(q; p+;�p�; /q
5�a;�i;�j)i : (A.14)To assist in writing the above expressions the L; L notation de�ned in Chp. 7.3 hasbeen slightly extended. In diagram (f) there are no form fa
tors asso
iated withthe insertion at the lo
al axial 
urrent vertex, and hen
e the appropriate three-quarkloop, denoted by L0, di�ers from the integrals in the de�nition of L (Eq. 7.9) by havingf(p+)f(p�) instead of f 2(p+)f 2(p�). Similarly, the symbol L� is used to stand fora loop where f 2(p+)f 2(p�) in L is repla
ed by f 2(p+) + f 2(p�). The /q
5 identity ofEq. 4.3 leads to familiar 
an
ellations between the lo
al and nonlo
al diagrams above,yielding: A.1. Can
ellations
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f (e)� + f (i)� = r(e)�+ ig�qqG12m2� J (
)NPP Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�+g�qqm
m2� �J (
)NPP with f 2(p+)f 2(p�)! f(p+)f(p�)�; (A.15)and: f (f)� + f (j)� = r(f)�+ ig�qqG12m2� J (d)NPP Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�+g�qqm
m2� �J (d)NPP withL! L0�: (A.16)The 
ontributions given in Eqs. A.15 and A.16 still 
ontain some fairly 
ompli
atedpie
es, whi
h originated in the S�1(p+)
5 + 
5S�1(p�) part of the /q
5 identity. Theseare to be 
onsidered separately and are given by:r(e)� Æab = �g�qq2m2� Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)f 2(k+)f 2(k�)f(p+)f(p�)�Tr h
5� bS(k�)
i�S(p�)
5�a + 
5�aS(p+)��iS(k+)i ; (A.17)r(f)� Æab = � g�qq2m2� Z d4p(2�)4 G11�G1JPP (p+) G11�G1JSS(p�)�L(q; p+;�p�; i
5� b; i
5� 
; 1)�(Z d4k(2�)4Tr hS(k � 12p�)� 
S(k + 12p�)�ai f(k � 12p�)f(k + 12p�)��f(k � 12p�)f(k + 12p� + q) + f(k � 12p� � q)f(k + 12p�)�+ Z d4k(2�)4Tr hS(k + 12p+)
5� 
S(k � 12p+)
5�ai f(k + 12p+)f(k � 12p+)��f(k + 12p+)f(k � 12p+ + q) + f(k + 12p+ � q)f(k � 12p+)�o : (A.18)Fortunately, the overall result for the NLO part of the pion de
ay 
onstant isgreatly simpli�ed on
e the remaining NLO diagrams, (m), (n) and (o) are in
luded.The isolated 
ontributions, r(d)� , r(e)� and r(f)� , 
an then be eliminated. Consider �rstdiagram (n) of Fig. 7.15. This 
ontribution 
an be written as a sum of terms, in ea
hA.1. Can
ellations
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h one of the two-quark loops is given by a LO J integral whereas the other issimilar but has a di�erent 
ombination of form fa
tors:f (n)� Æab = g�qqG12m2� Z d4p(2�)4 G11�G1JPP (p+) G11�G1JSS(p�)�L(q; p+;�p�; i
5� b; i
5� 
; 1)�(JPP (p+)Æa
 Z d4k(2�)4Tr hS(k � 12p�)S(k + 12p�)i f(k � 12p�)f(k + 12p�)��f(k � 12p�)f(k + 12p� + q) + f(k � 12p� � q)f(k + 12p�)�+JSS(p�) Z d4k(2�)4Tr hS(k + 12p+)
5� 
S(k � 12p+)
5�ai f(k + 12p+)f(k � 12p+)��f(k + 12p+)f(k � 12p+ + q) + f(k + 12p+ � q)f(k � 12p+)�o : (A.19)Eq. A.19 is 
learly very similar to Eq. A.18 for r(f)� , whi
h arose as part of the NLOdiagram for the lo
al 
urrent with two-meson intermediates. In fa
t, the terms inEq. A.19 di�er from those in Eq. A.18 only by a fa
tor of �G1J . Hen
e, their sum
an be written as a set of 
ontributions whi
h have only a single intermediate mesonpropagator: (r(f)� + f (n)� )Æab =� g�qq2m2� Z d4p(2�)4 G211�G1JSS(p�)L(q; p+;�p�; i
5� b; i
5�a; 1)� Z d4k(2�)4Tr hS(k � 12p�)S(k + 12p�)i f(k � 12p�)f(k + 12p�)��f(k � 12p�)f(k + 12p� + q) + f(k � 12p� � q)f(k + 12p�)�� g�qq2m2� Z d4p(2�)4 G211�G1JPP (p+)L(q; p+;�p�; i
5� b; i
5� 
; 1)� Z d4k(2�)4Tr hS(k + 12p+)
5� 
S(k � 12p+)
5�ai f(k + 12p+)f(k � 12p+)��f(k + 12p+)f(k � 12p+ + q) + f(k + 12p+ � q)f(k � 12p+)�: (A.20)There are two diagrams of the form (o) whi
h appear in the 
al
ulations. Sin
eea
h 
ontains a two-quark and a three-quark loop as well as an intermediate mesonpropagator, it is plausible that they may be able to e�e
t a 
an
ellation with 
on-tributions like those in Eq. A.20. The type-III nonlo
al 
urrent term G1(i
5�a 
 1)A.1. Can
ellations
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ay Constant at NLO 171has been responsible for all of the NLO nonlo
al diagrams presented thus far. It alsomakes a 
ontribution in this 
ase, as does the type-I term G1�a
d(� d 
 i
5� 
). In anobvious notation the relevant diagrams are referred to as (oIII) and (oI).Dealing �rst with (oIII), one notes that there are always two form fa
tors ina type-III 
urrent that are not path{linked, enabling one of the quark loops to bere
ognized as either a J or an L loop. Making suitable 
hoi
es of the integrationvariables, the pie
es that involve an L loop 
an be shown to 
an
el with Eq. A.20.The other pie
es of the diagram (oIII) are(r(f)� + f (n)� + f (oIII)� )Æab = �g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 G1JPP (p� k)1�G1JPP (p� k)� nTr h
5� bS(p�)S(k+)
5�aS(p+)i f(p+)f(k+)+Tr h
5� bS(p�)
5�aS(k�)S(p+)i f(p�)f(k�)o�f(p+)f(p�)�f(p+)f(k+) + f(p�)f(k�)�+g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 G1JSS(p� k)1�G1JSS(p� k)f(p+)f(p�)� nTr h
5� bS(p�)
5�aS(k+)S(p+)i f(p+)f(k+)+Tr h
5� bS(p�)S(k�)
5�aS(p+)i f(p�)f(k�)o�f(p+)f(p�)�f(p+)f(k+) + f(p�)f(k�)�: (A.21)Comparing the above equation with Eq. A.10 for r(d)� one 
an see the same generalstru
tures appearing. Taking due a

ount of isospin fa
tors, r(d)� 
an be 
ombined withEq. A.21 to produ
e:

A.1. Can
ellations
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r(d)� + r(f)� + f (n)� + f (oIII)� = g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f(p+)f(p�)� nTr h
5S(p�)�S(k+)
5 � 
5S(k+)�S(p+)i f 2(p+)f 2(k+)+Tr h
5S(p�)�
5S(k�)� S(k�)
5�S(p+)i f 2(p�)f 2(k�)o�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 G1JPP (p� k)1�G1JPP (p� k)f 2(p+)f 2(p�)f(k+)f(k�)�Tr [
5S(p�)S(k+)
5S(p+) + 
5S(p�)
5S(k�)S(p+)℄+g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 G1JSS(p� k)1�G1JSS(p� k)f 2(p+)f 2(p�)f(k+)f(k�)�Tr [
5S(p�)
5S(k+)S(p+) + 
5S(p�)S(k�)
5S(p+)℄+g�qqm2� Z d4k(2�)4 Z d4p(2�)4 G11�G1JPP (p� k)f(p+)f(p�)� nTr [
5S(p�)S(k+)
5S(p+)℄ f 2(p+)f 2(k+)+Tr [
5S(p�)
5S(k�)S(p+)℄ f 2(p�)f 2(k�)o : (A.22)In Eq. A.22, the �rst term 
ontains pie
es from both Eqs. A.10 and A.21, a relativefa
tor of �G1J in the latter 
ombining to 
an
el the LO meson propagator in the sum.The se
ond and third terms are just the remainder of Eq. A.21 and the �nal term isthe rest of Eq. A.10. Now, apart from a fa
tor of � G1J , the se
ond and third terms ofEq. A.22 are very mu
h reminis
ent in stru
ture of r(e)� (see Eq. A.17). It is pro�tableat this point to reintrodu
e that 
ontribution. This enables the intermediate sigmapropagator in the se
ond term of Eq. A.22 to be 
an
elled and alters a fa
tor in thethird term. If one also lets k ! �k in the k� arguments of the �rst term, one hasthat:

A.1. Can
ellations
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r(d)� + r(e)� + r(f)� + f (n)� + f (oIII)� = g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f(p+)f(p�)�Tr h
5S(p�) h�S(k+)f 2(p+)� S(�k+)f 2(p�)�; 
5iS(p+)i f 2(k+)�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 1 +G1JPP (p� k)1�G1JPP (p� k)f 2(p+)f 2(p�)f(k+)f(k�)�Tr [
5S(p�)S(k+)
5S(p+) + 
5S(p�)
5S(k�)S(p+)℄�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f 2(p+)f 2(p�)f(k+)f(k�)�Tr [
5S(p�)
5S(k+)S(p+) + 
5S(p�)S(k�)
5S(p+)℄+g�qqm2� Z d4k(2�)4 Z d4p(2�)4 G11�G1JPP (p� k)f(p+)f(p�)� nTr [
5S(p�)S(k+)
5S(p+)℄ f 2(p+)f 2(k+)+Tr [
5S(p�)
5S(k�)S(p+)℄ f 2(p�)f 2(k�)o : (A.23)The above equation remains somewhat 
umbersome. Moreover, one may feel a littleuneasy that it 
ontains pion intermediates but no s
alar ex
hanges. The situation is
lari�ed dramati
ally, however, by bringing in the diagram (oI). This features a two-quark loop that 
onne
ts an intermediate meson with one of the matrix stru
turesfrom the type-I nonlo
al 
urrent term G1�a
d(� d 
 i
5� 
). For the 
avour tra
e overthis loop to be non-zero, the meson involved must be a pion. Furthermore, the type-Istru
ture (Eq. 2.11) ensures that the form fa
tors asso
iated with this two-quark loophave no path links, and hen
e the loop redu
es to JPP . One 
an write the 
ontributionfrom this diagram as:f (oI)� = g�qqG1m2� Z d4k(2�)4 Z d4p(2�)4 G1JPP (p� k)1�G1JPP (p� k)f 2(p+)f 2(p�)f(k+)f(k�)�Tr [
5S(p�)S(k+)
5S(p+) + 
5S(p�)
5S(k�)S(p+)℄�g�qqG1m2� Z d4k(2�)4 Z d4p(2�)4 G1JPP (p� k)1�G1JPP (p� k)f(p+)f(p�)� nTr [
5S(p�)S(k+)
5S(p+)℄ f 2(p+)f 2(k+)+Tr [
5S(p�)
5S(k�)S(p+)℄ f 2(p�)f 2(k�)o ; (A.24)A.1. Can
ellations
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ay Constant at NLO 174an isospin summation having been performed. The �rst term of Eq. A.24 is of pre
iselythe right form to 
ause the 1 +G1JPP (p � k) pie
e o

urring in Eq. A.23 to be
ome1 � G1JPP (p � k) when the two are added, thereby 
an
elling the pion propagator.Furthermore, the other part of Eq. A.24 
an
els the other pion propagator found inEq. A.23, so that the sum has no net meson intermediates,r(d)� + r(e)� + r(f)� + f (n)� + f (oI)� + f (oIII)� = 3g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f(p+)f(p�)�Tr h
5S(p�)�S(k+)f 2(p+)
5 + 
5S(�k+)f 2(p�)�S(p+)i f 2(k+)�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f(p+)f(p�)�Tr h
5S(p�)�
5S(k+)f 2(p+) + S(�k+)f 2(p�)
5�S(p+)i f 2(k+)�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f 2(p+)f 2(p�)f(k+)f(k�)�Tr [
5S(p�) f
5; S(k+)gS(p+) + 
5S(p�) fS(k�); 
5gS(p+)℄ : (A.25)Shifting the k integration variable su
h that the LO quark propagators are evaluatedonly at k and p�, and substituting from Eq. 3.1 for the expli
it form of S(k), Eq. A.25be
omesr(d)� + r(e)� + r(f)� + f (n)� + f (oI)� + f (oIII)� = g�qqG1 Z d4k(2�)4 m(k)k2 �m2(k)f 2(k)� Z d4k(2�)4Tr [
5S(p�)
5S(p+)℄ f(p+)f(p�)�f 2(p+) + f 2(p�)��g�qqG1JPP (q2) Z d4k(2�)4 m(k)k2 �m2(k)f(k)�f(k + q) + f(k � q)�= �14N
 (nonlo
al f� diagram at LO); (A.26)where Eq. 4.1 for the LO nonlo
al diagram has been re
alled to arrive at the pun
hline.There remains one more 
ontribution to the pion de
ay 
onstant at NLO whi
hhas not yet been in
luded in this appendix. This is the Fo
k diagram, (m), as shownin Fig. 7.14. It 
onsists of a LO nonlo
al 
urrent diagram, with an N
 suppressed
A.1. Can
ellations
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oeÆ
ient dedu
ed by Fierz rearrangement (see Chp. 2.5). The only Fo
k 
ontribu-tion to f� 
omes from the type-III term ex
hange term G1(4N
)�1(i
5�a 
 1). Thisobservation then 
ompletes the 
an
ellations amongst the NLO diagrams for f�, sin
er(d)� + r(e)� + r(f)� + f (m)� + f (n)� + f (oI)� + f (oIII)� = 0: (A.27)Combining Eq. A.27 with others from this appendix, the full set of NLO 
ontributionsto the pion de
ay 
onstant 
an be seen to produ
e Eq. 7.11.A.2 Chiral ExpansionThis se
tion des
ribes the 
hiral expansion of the NLO part of the pion de
ay 
onstant.As in Appendix A.1 it spe
ialises to the 
ase where the G1 
oupling is the only onepresent in the a
tion. The aim is to demonstrate that the various 
ontributions pro-du
e the two O(1=N
) terms on the right{hand side of Eq. 7.15, thereby establishingthe GMOR relation at NLO in the model.In Chp. 7.4, the various diagrams 
ontributing to f� at NLO were presented.There are several useful 
an
ellations whi
h operate among the diagrams, holdingto all orders in the 
hiral expansion. They were explained in Appendix A.1 and
ulminated in Eq. 7.11, the starting point for this se
tion.The �rst point to noti
e about Eq. 7.11 is that ea
h term is of O(1) in the 
hiralexpansion. Hen
e, in all of the integrals the 
hiral limit may be taken dire
tly, withoutmaking an expansion of the integrand. Consider �rst the term in Eq. 7.11 proportionalto 
. Using Eq. 4.6 for the expansion of the 1� G1JPP (q2) fa
tor, the 
hiral limit ofthis term is �g�qq0m2� 
0G1JSS0(0) m
h  i0m20(0) + m2�Z�0! : (A.28)The other term in Eq. 7.11 whi
h has an expli
it fa
tor of 1�G1JPP (q2) also has anintegral very like the one in the de�nition of 
 (Eq. 7.5). Indeed, the only di�eren
e isthe presen
e of q in the form fa
tor stru
ture f(p+ q) + f(p� q) and so in the 
hiral
A.2. Chiral Expansion
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ay Constant at NLO 176limit this term in Eq. 7.11 is also proportional to 
, being:�g�qq0m2� 
0(1�G1JSS0(0)) m
h  i0m20(0) + m2�Z�0! : (A.29)The sum of Eqs. A.28 and A.29 is just�g�qq0m2� 
0  m
h  i0m20(0) + m2�Z�0! ; (A.30)the se
ond term in bra
kets being 
learly identi�able as one of the O(1=N
) pie
essought in the 
ondition of Eq. 7.15. Note also that the �nal term of Eq. 7.11 givespre
isely the stru
ture of the other part of the 
ondition but has the wrong sign,gN�qq0g�qq0 :m0(0)g�qq0 : (A.31)Consider now the �rst term of Eq. 7.11. It 
an be dealt with straightforwardly,using the ladder SDE to perform the k integral and the results of Appendix B for the
hiral expansion of JNPP . This yields:�2m0(0)gN�qq0Z�0 +m
g�qq0m2� :h  iN0m0(0) +m
g�qq0m2� :h  i0m0(0) : 2
0m0(0) : (A.32)The �rst term of the above equation is exa
tly that needed to reverse the sign ofEq. A.31 in the sum. The 
ontributions dis
ussed so far are therefore:�
0g�qq0 � gN�qq0g�qq0 :m0(0)g�qq0 + g�qq0m0(0) :m
m2�  h  iN0 + 
0m0(0)h  i0! : (A.33)It remains only to 
an
el the last term in Eq. A.33 with the other terms of Eq. 7.11.These terms are expli
itly proportional to m
 and 
ontain integrals very similar tothose in JNPP , but with di�erent 
ombinations of form fa
tors. The integrals similarto J (b)NPP ; J (
)NPP and J (d)NPP are not des
ribed here. Pro
edures for manipulating su
hintegrals so as to simplify their sum were detailed in Appendix B and are not a�e
tedby the di�erent form fa
tors appearing in the present 
ase. It therefore suÆ
es tostate the end result for the sum of these 
ontributions to f�, whi
h is:
A.2. Chiral Expansion
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m
g�qq0m2�m0(0)N
Nf Z d4k(2�)4 d4p(2�)4 G1f 2(p)f 2(k)1�G1JSS0(p� k)� [4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄+ m
g�qq0m2�m0(0)N
Nf Z d4k(2�)4 d4p(2�)4 3G1f 2(p)f 2(k)1�G1JPP0(p� k)� [�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄ : (A.34)If one 
ompares Eq. A.34 to Eq. B.13 and takes a

ount of the subsequent dis
ussion,it is 
lear that repla
ing m
 by m
 + �m(p) in Eq. A.34 would make it proportionalto h  iN0. Su
h a repla
ement 
an in fa
t be made when the �nal 
ontribution fromEq. 7.11 is in
luded. This is the term whi
h is similar to J (a)NPP . By analogy with thedis
ussion of J (a)NPP in Appendix B, the loop whi
h has a modi�ed form fa
tor stru
tureredu
es in the 
hiral limit to a fa
tor1 � I6 (whi
h was de�ned in Eq. 4.10). Thus this
ontribution from Eq. 7.11 
an be shown to produ
e:2g�qq0m2� m

0I6: (A.35)Adding the above expression to the �nal term in bra
kets of Eq. A.33 gives:g�qq0m
m2� : 
0m0(0) :h  i0m0(0) �! g�qq0m
m2� : 
0m0(0)  h  i0m0(0) + 2m0(0)I6!= �g�qq0m2� : 
0m0(0)2I8�m(0); (A.36)where Eq. B.3 has been 
alled upon to introdu
e �m. The situation 
an now be
lari�ed by noti
ing that the 
ombination I8
0 is given by the same integrals as thosein Eq. A.34, apart from an additional fa
tor of f 2(p). This is exa
tly what is neededfor the sum of Eqs. A.36 and A.34 to give Eq. A.34 with m
 ! m
+�m(p). One hastherefore produ
ed a pie
e proportional to h  iN0. As required, this pie
e 
an
els withthe unwanted term in Eq. A.33. In summary, the 
hiral limit of the NLO 
omponent1
f. a fa
tor of � I8, whi
h 
ame from the 
orresponding loop in J (a)NPP .

A.2. Chiral Expansion
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ay Constant at NLO 178of the pion de
ay 
onstant (given by the sum of Eqs. A.33, A.34 and A.35) is shownto be pre
isely that whi
h satis�es the GMOR relation,fN�0 = �
0g�qq0 � gN�qq0g�qq0 :m0(0)g�qq0 : (A.37)

A.2. Chiral Expansion



Appendix B
Chiral Expansion of NLO PionAmplitude
This appendix dis
usses the 
hiral expansion of JNPP (q2), 
on
entrating on the 
asewhere G1 is the only 
oupling 
onstant in the a
tion. As des
ribed in Chp. 7.5, theexpansion has two important aspe
ts. That there is no term of O(1) is required inorder to preserve the Goldstone nature of the pion in the 
hiral limit. Also of interestis the 
oeÆ
ient of the term of O(m
) sin
e this is a ne
essary ingredient in provingthe GMOR relation at NLO.Consider �rst the 
ontribution J (a)NPP (q2) 
oming from the NLO BSE diagram oftype (a) (it is drawn in Fig. 7.7 and given by Eq. 7.6 with 
f 2(p) repla
ing �N (p)).The 
onstant 
 is given by a three-quark loop with an intermediate pion or sigmameson (see Eq. 7.5). In the former 
ase, as in some other NLO diagrams involvingpion states, there is an asso
iated fa
tor of three due to isospin multipli
ity. In therest of J (a)NPP , it is useful to note that the Dira
 tra
e in the 
hiral limit yields a fa
torthat 
an
els with the denominator of one of the three LO quark propagators. Theresulting integral is then proportional to I8 (de�ned in Eq. 4.10) and 
an therefore be
an
elled with a fa
tor from the �(0) propagator, sin
e1�G1JSS(0) = G1(JPP0(0)� JSS(0)) = 2G1I8 +O(m
): (B.1)179
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hiral expansion of this diagram.J (a)NPP (q2) = �N
Nfm0(0) Z d4k(2�)4 G11�G1JSS0(k)f 2(p� k)f 4(p)� Z d4p(2�)4 [8m0(p)(p2 � p � k) + 4(p2 +m20(p))m0(p� k)℄[p2 �m20(p)℄2[(p� k)2 �m20(p� k)℄+3N
Nf Z d4k(2�)4 G11�G1JPP0(k)f 2(p� k)f 4(p)� Z d4p(2�)4 [8m0(p)(p2 � p � k)� 4(p2 +m20(p))m0(p� k)℄[p2 �m20(p)℄2[(p� k)2 �m20(p� k)℄�N
Nfm0(0) Z d4k(2�)4 d4p(2�)4 G1f 4(p)f 2(k)1�G1JSS0(p� k)�(4[4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄3[k2 �m20(k)℄ m0(p)(m
 +�m(p))+2[4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄2 m0(k)(m
 +�m(k))+ [8(m
 +�m(p))(m0(p)m0(k) + p � k) + 4(m
 +�m(k))(p2 +m20(p))℄[p2 �m20(p)℄2[k2 �m20(k)℄ )�N
Nfm0(0) Z d4k(2�)4 d4p(2�)4 3G1f 4(p)f 2(k)1�G1JPP0(p� k)�(4[�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄3[k2 �m20(k)℄ m0(p)(m
 +�m(p))+2[�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄2 m0(k)(m
 +�m(k))+ [8(m
 +�m(p))(�m0(p)m0(k) + p � k)� 4(m
 +�m(k))(p2 +m20(p))℄[p2 �m20(p)℄2[k2 �m20(k)℄ )�m
N
Nfm0(0) Z d4k(2�)4 d4p(2�)4 G21RSS(p� k)[1�G1JSS0(p� k)℄2� [4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄ f 4(p)f 2(k)�m
N
Nfm0(0) Z d4k(2�)4 d4p(2�)4 3G21RPP (p� k)[1�G1JPP0(p� k)℄2� [�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄ f 4(p)f 2(k)+2 
0m
m0(0)3 h  i0 +O(q2) +O(m2
; q4): (B.2)



Appendix B. Chiral Expansion of NLO Pion Amplitude 181In the above equation the 
ombinationm
+�m(p) has been used to denote the O(m
)term in the 
hiral expansion of m(p). From the ladder SDE (Eq. 3.2), one has that�m(p) = �m
 f 2(p)2I8  h  i0m0(0) + 2m0(0)I6! : (B.3)The other unde�ned quantities in Eq. B.2 are RSS and RPP . These are obtained fromthe 
hiral expansion of J ,Jij(q2) = Jij0(q2) +m
Rij(q2) +O(m2
): (B.4)The BSE diagram of type (b) (see Fig. 7.7) 
ontains part of the NLO quark self-energy. It is given by substituting the appropriate part of �N (the se
ond term ofEq. 7.4) into Eq. 7.6. As with diagram (a), there is a useful fa
tor from the Dira
tra
e of J (b)NPP whi
h 
an
els (in the 
hiral limit) one of the denominators of the LOquark propagators:
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J (b)NPP = N
Nf Z d4k(2�)4 G11�G1JSS0(k)f 2(p� k)f 6(p)� Z d4p(2�)4 8[p2 � p � k +m0(p)m0(p� k)℄[p2 �m20(p)℄2[(p� k)2 �m20(p� k)℄+3N
Nf Z d4k(2�)4 G11�G1JPP0(k)f 2(p� k)f 6(p)� Z d4p(2�)4 8[p2 � p � k �m0(p)m0(p� k)℄[p2 �m20(p)℄2[(p� k)2 �m20(p� k)℄+2N
Nf Z d4k(2�)4 d4p(2�)4 G1f 6(p)f 2(k)1�G1JSS0(p� k)�( 8[p � k +m0(p)m0(k)℄[p2 �m20(p)℄2[k2 �m20(k)℄2m0(k)(m
 +�m(k))+ 4m0(p)(m
 +�m(k))[p2 �m20(p)℄2[k2 �m20(k)℄ + 24m0(p)[p � k +m0(p)m0(k)℄[p2 �m20(p)℄3[k2 �m20(k)℄ (m
 +�m(p))+4[m0(k)(p2 � 3m20(p))� 2p � km0(p)℄[p2 �m20(p)℄3[k2 �m20(k)℄ (m
 +�m(p)))+6N
Nf Z d4k(2�)4 d4p(2�)4 G1f 6(p)f 2(k)1�G1JPP0(p� k)�( 8[p � k �m0(p)m0(k)℄[p2 �m20(p)℄2[k2 �m20(k)℄2m0(k)(m
 +�m(k))� 4m0(p)(m
 +�m(k))[p2 �m20(p)℄2[k2 �m20(k)℄ + 24m0(p)[p � k �m0(p)m0(k)℄[p2 �m20(p)℄3[k2 �m20(k)℄ (m
 +�m(p))�4[m0(k)(p2 � 3m20(p)) + 2p � km0(p)℄[p2 �m20(p)℄3[k2 �m20(k)℄ (m
 +�m(p)))+2m
N
Nf Z d4k(2�)4 d4p(2�)4 G21RSS(p� k)[1�G1JSS0(p� k)℄2� 4[p � k +m0(p)m0(k)℄[p2 �m20(p)℄2[k2 �m20(k)℄f 6(p)f 2(k)+6m
N
Nf Z d4k(2�)4 d4p(2�)4 G21RPP (p� k)[1�G1JPP0(p� k)℄2� 4[p � k �m0(p)m0(k)℄[p2 �m20(p)℄2[k2 �m20(k)℄f 6(p)f 2(k)+O(q2) +O(m2
 ; q4): (B.5)
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ontributions 
an how-ever be 
ombined to advantage if one rewrites the Dira
 tra
es involved in various ofthe diagram (a) terms as follows:�4m0(k)(p2 +m20(p)) + 8m0(p)p � k = �4m0(k)(p2 �m20(p))+8m0(p)(p � k �m0(p)m0(k)): (B.6)The se
ond term o

urring in the representation on the right{hand side has the samestru
ture as pie
es appearing in 
ontributions from diagram (b). Meanwhile, the �rstterm simpli�es the remaining integrals by 
an
elling the denominator of a quark prop-agator. With the assistan
e of Eq. B.6, one �nds thatJ (a)NPP + J (b)NPP = N
Nf Z d4k(2�)4 " �G11�G1JSS0(k) + 3G11�G1JPP0(k)#� Z d4p(2�)4 4f 4(p)f 4(p� k)[p2 �m20(p)℄[(p� k)2 �m20(p� k)℄ +O(q2; m
): (B.7)Moving on to diagram (
) (Fig. 7.9 and Eq. 7.7), the Dira
 tra
e in the 
hirallimit takes a parti
ularly 
onvenient form for both the sigma and pion ex
hanges. Itfa
torizes into pie
es whi
h 
an
el the denominators from two LO quark propagators,leaving J (
)NPP = �N
Nf Z d4k(2�)4 " G11�G1JSS0(k) + G11�G1JPP0(k)#� Z d4p(2�)4 4f 4(p)f 4(p� k)[p2 �m20(p)℄[(p� k)2 �m20(p� k)℄+16N
Nf Z d4k(2�)4 d4p(2�)4 " �G11�G1JSS0(p� k) + G11�G1JPP0(p� k)#� m0(k)(m
 +�m(k))[p2 �m20(p)℄[k2 �m20(k)℄2f 4(p)f 4(k)�m
N
Nf Z d4k(2�)4 d4p(2�)4 " G21RSS(p� k)[1�G1JSS0(p� k)℄2 + G21RPP (p� k)[1�G1JPP0(p� k)℄2#� 4f 4(p)f 4(k)[p2 �m20(p)℄[k2 �m20(k)℄ +O(q2) +O(q4; m2
): (B.8)Finally, there is a diagram of type (d) to be 
onsidered (Fig. 7.9 and Eq. 7.10).It has an intermediate pion and sigma meson. A two sigma intermediate is forbidden
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 tra
e over thetriangular loops. In the 
hiral limit of the ��� loops, the denominator of a quarkpropagator is 
an
elled through a fa
tor from the tra
e, produ
ing:J (d)NPP = i Z d4k(2�)4 G11�G1JSS0(k) G11�G1JPP0(k)�(8N
Nfm0(0) Z d4p(2�)4 4f 4(p)f 4(p� k)[p2 �m20(p)℄[(p� k)2 �m20(p� k)℄)2�(1 +m
 G1RSS(k)1�G1JSS0(k) +m
 G1RPP (k)1�G1JPP0(k))+16i(N
Nf )2 Z d4k(2�)4 G11�G1JSS0(k) G11�G1JPP0(k)� Z d4p(2�)4 4f 4(p)f 4(p� k)[p2 �m20(p)℄[(p� k)2 �m20(p� k)℄�(Z d4`(2�)4 8m20(`)m0(`� k)(m
 +�m(`))f 2(`)f 2(`� k)[`2 �m20(`)℄2[(`� k)2 �m20(`� k)℄+ Z d4`(2�)4 2m0(`)(m
 +�m(`� k))f 2(`)f 2(`� k)[`2 �m20(`)℄[(`� k)2 �m20(`� k)℄ )+O(q2) +O(q4; m2
): (B.9)Sin
e the diagram (d) 
ontribution involves two intermediate meson propagators it isnot immediately obvious how it may be 
ombined with the other 
ontributions, ea
hof whi
h has only one su
h propagator. The 
ru
ial point to noti
e is that the integralsfrom the triangular loops in J (d)NPP are proportional in the 
hiral limit to the di�eren
ebetween LO J loops,JSS(q2)� JPP (q2) = iN
Nf Z d4p(2�)4 8m20(0)f 4(p)f 4(p� q)[p2 �m20(p)℄[(p� q)2 �m20(p� q)℄ +O(m
):(B.10)The above equation allows one to repla
e the produ
t of s
alar and pseudos
alar mesonpropagators in Eq. B.9 with their di�eren
e:J (d)NPP = im20(0) Z d4k(2�)4 " �G11�G1JSS0(k) + G11�G1JPP0(k)# (JSS0(k)� JPP0(k))+O(q2; m
): (B.11)
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he
k that the Goldstone nature of the pion has been main-tained in the NLO treatment of Chp. 7. From Eqs. B.7, B.8 and B.11 it 
an be seenthat, as required, JNPP (0) vanishes in the 
hiral limit.The same statement 
an also been shown to hold in the extended version of themodel1. The details of the proof are not given here sin
e the general features of the
an
ellation are similar to those in the above dis
ussion:� the sum from the diagrams of types (a) and (b) may still be simpli�ed by rewrit-ing the Dira
 tra
es in J (a)NPP ;� the 
an
ellation of the denominators of two quark propagators in the diagramsof type (
) also works for other intermediate mesons;� the produ
ts of two meson propagators o

urring in the type (d) diagrams 
anbe dealt with2 using relations analogous to Eq. B.10, sin
eJSS(q2)� JPP (q2) = JTV V (q2)� JTAA(q2) = JLV V (q2)� JLAA(q2): (B.12)Returning to the simpler version of the model with the G1 
oupling only, many ofthe simplifying properties des
ribed above 
an be exploited in the sum of 
ontributionsto the O(m
) term of JNPP :

1In the extended model, the pion pole is determined by the zero of the full determinantof Eq. 3.13. Therefore, to 
omplete the proof that the pion is a Goldstone boson at NLO, itwould be ne
essary to establish further that JNAP0(0) = 0.2An additional point of signi�
an
e is that su
h diagrams involving the /q
5 
omponentof the pion vertex give triangular loops whi
h are proportional to JAP in the 
hiral limit.
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JNPP = �N
Nfm20(0) Z d4k(2�)4 d4p(2�)4 G1f 2(p)f 2(k)1�G1JSS0(p� k)(m
 +�m(p))� [4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄�3N
Nfm20(0) Z d4k(2�)4 d4p(2�)4 G1f 2(p)f 2(k)1�G1JPP0(p� k)(m
 +�m(p))� [�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄+2 
0m
m0(0)3 h  i0 +O(q2) +O(q4; m2
) (B.13)Re
alling the form of the 
orresponding O(m
) term at LO (see Eq. 4.6) and bearingin mind that the GMOR relation in
ludes the quark 
ondensate, it be
omes tempt-ing to 
ompare the integrals in Eq. B.13 with those in the NLO 
ontribution to the
ondensate, h  iN = �iTr Z d4p(2�)4SN(p) = iTr Z d4p(2�)4S(p)�N(p)S(p): (B.14)If one substitutes for �N (p) from Eq. 7.4 and takes the 
hiral limit then some straight-forward algebra is suÆ
ient to show that the 
ombination of integrals in Eq. B.13 isindeed re
e
ted in the 
ondensate at NLO. In total, the pion determinant at NLO isgiven by:1�G1JPP �G1JNPP = �G1m
 h  i0m20(0) �G1m
 h  iN0m20(0) �G1m
 h  i0m20(0) : 2
0m0(0)�G1 q2Z�0 +G1 q2Z�0 :2gN�qq0g�qq0 +O(q4; m2
)= �G1m
 h  i0 + h  iN0(m0(0)� 
0)2 �G1 q2(g�qq0 + gN�qq0)2 +O(q4; m2
): (B.15)



Appendix C
�! 4� in E�e
tive Lagrangians
C.1 E�e
tive Chiral LagrangiansA serious pra
ti
al diÆ
ulty with QCD is that, be
ause of 
on�nement, the degreesof freedom used in writing the QCD Lagrangian do not dire
tly 
orrespond to theobserved asymptoti
 states. The problem is parti
ularly severe at low energies wherethe fundamental degrees of freedom are far from being straightforwardly manifest inthe data. The available data in this regime provides information on the properties ofand the intera
tions amongst the light mesons and baryons. It is therefore liable to bemu
h easier to perform meaningful 
al
ulations if equipped with a theory formulatedin terms of �elds whi
h treat the parti
les dete
ted as the basi
 degrees of freedom.In prin
iple at least, e�e
tive theories of that type should be 
ompletely derivablefrom QCD. Although any pro
edure for so doing seems a most impra
ti
al prospe
tat present, there remain useful restri
tions whi
h 
an be imposed on the 
andidatesfor su
h theories. These follow by requiring the symmetries inherent in QCD tobe re
e
ted at the hadroni
 level. Many su
h restri
tions are 
onsequen
es of theapproximate 
hiral symmetry, dis
ussed in Chp. 1.The linear sigma model [14℄ was mentioned in Chp. 1 as a simple theory 
onsistentwith 
hiral symmetry. It in
ludes an expli
it s
alar �eld, the dynami
s of whi
h are

187
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tive Lagrangians 188an essential feature if one wishes to 
onsider 
hiral symmetry restoration [121℄ with asimple model of that form. When working at zero temperature and density, however,the absen
e of an unambiguous suitable s
alar meson to identify dire
tly with the �eldmeans that one would prefer to deal with the pseudos
alars only. To that end, various�eld rede�nitions 
an be made [13, 122℄ to produ
e a 
hirally{invariant s
alar �eld,the mass of whi
h 
an then be sent to in�nity. In the resultant theory, the Goldstonemodes should only have derivative intera
tions, sin
e any other terms would havea lo
al 
hiral invarian
e and so 
ould be transformed away. At lowest order in thenumber of derivatives, the theory one arrives at is 
alled the non-linear sigma model,and has the Lagrangian: LNL�M = 14f 2�h��U��U yi; (C.1)where the notation h� � �i has been used to denote a tra
e in 
avour spa
e of the matrixen
losed in angled bra
kets. The matrix U spe
i�es an allowed 
on�guration of thepion �elds [123℄ and as su
h must be an element of the va
uum symmetry, SU(2)V ,transforming under 
hiral symmetry asU ! GlUGyr: (C.2)It 
an be parameterized with the exponential representation,U = exp(i� :�=f�): (C.3)When the above Lagrangian (Eq. C.1) is used at tree-level, it yields the same re-sults [122℄ as 
ould be obtained with the more laborious te
hniques of 
urrent algebraand PCAC (see Chp. 1.5). Indeed, it was on that very basis that e�e
tive 
hiralLagrangians originally be
ame popular (as advo
ated in Ref. [124℄ for example).To pro
eed further in a systemati
 
onstru
tion of an e�e
tive theory of pions,one appeals to the power{
ounting s
heme demonstrated by Weinberg [125℄. Althoughthe most general e�e
tive theory whi
h 
an be postulated 
ontains an in�nite numberof terms, ea
h term may be 
hara
terised by the number of derivatives involved. A
C.1. E�e
tive Chiral Lagrangians
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tive Lagrangians 189tra
table theory may therefore be obtained by trun
ating at some �nite order in mo-mentum. Hen
e, the e�e
tive theory 
an be regarded as an expansion in powers of p=�,where � is a quantity of the order of the mass of the lightest parti
le negle
ted in thee�e
tive treatment. Obviously it di
tates the energy s
ale below whi
h the low-energytheory may sensibly be applied. The des
ription of the would-be Goldstone bosons inWeinberg's s
heme is 
alled 
hiral perturbation theory (ChPT)[126, 127℄. At O(p4) inthe expansion there exists suÆ
ient experimental information to �x the 
oeÆ
ients ofthe terms needed. This is not the 
ase, however, at O(p6) [128℄ and higher where thenumber of undetermined 
oeÆ
ients proliferates1. When 
al
ulations are attemptedat O(p6), a 
ommon pres
ription for estimating the relevant 
oeÆ
ients [129℄ is toassume ea
h of them to be generated solely through the ex
hange of the lightest res-onant state with the appropriate dis
rete quantum numbers. The feasibility of thismethod rests on its su

essful appli
ation to the O(p4) 
oeÆ
ients [126, 130, 131℄,the empiri
al values of whi
h are found to be dominated by the 
ontributions fromresonan
e ex
hange.Instead of working to progressively higher orders in momentum, an alternativeway in whi
h to improve low-energy e�e
tive theories of pions is to introdu
e expli
it�elds whi
h des
ribe the heavier mesons. The �rst of these parti
les to be en
ounteredare the ve
tor mesons � and !. Sin
e the 
oeÆ
ients of terms appearing in any low-energy e�e
tive theory are dependent upon the properties of the more massive parti
lesomitted, the development of models whi
h in
orporate the ve
tor mesons may provehelpful in improving both the spe
i�
ation and understanding of ChPT. Unfortunately,however, the 
onstru
tion of e�e
tive theories that in
lude resonant states is hamperedby the loss of power 
ounting, the organizing prin
iple so 
ru
ial to ChPT. In essen
ethe breakdown of power 
ounting o

urs be
ause the pions are liable to be of highmomenta in pro
esses where there is an on-shell resonant parti
le. Hen
e, large ordersin momentum may be required for the a

urate representation of su
h pions.1there are over a hundred terms of O(p6).
C.1. E�e
tive Chiral Lagrangians
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tive Lagrangians 190The loss of power 
ounting is re
e
ted in the 
onsiderable freedom allowed in
hoosing a possible interpolating �eld to des
ribe the ve
tor mesons. If one wereto rede�ne su
h a �eld then the predi
tions of a given Lagrangian would of 
ourseremain unaltered. However, intera
tions whi
h were ostensibly of some parti
ularorder in momentum may be transformed into terms of di�erent orders in the newrepresentation.The foregoing 
omments do not mean that a useful e�e
tive theory of pions andresonant parti
les 
annot be formulated: they simply note the loss of the s
hemewhi
h determined the relative importan
e of ea
h of the in�nite number of possibleintera
tions. What is undoubtedly 
lear, however, is that there is a strong desireto �nd some other approa
h whi
h avoids the ne
essity of 
onsidering all possibleterms. A pra
ti
al attitude is to exploit the freedom in the 
hoi
e of interpolating�eld. It seems reasonable to suppose that there should exist some 
hoi
e of �eld inthe framework of whi
h an a

urate e�e
tive theory2 is embodied in a fairly simpleform. In sear
hing for a useful theory, a natural starting point is therefore to de�nesome representations for the �elds of the resonant parti
les and then to examine thephenomenology of the simplest Lagrangians in ea
h basis. There are four distin
tformulations whi
h are 
ommon in the literature:1. The hidden{gauge form of Bando et al [132℄ ;2. The massive Yang-Mills form, as suggested in Refs. [124, 133℄ ;3. The formalism developed by Coleman, Callan, Wess and Zumino (CCWZ) [134℄based on a suggestion by Weinberg [135℄ ;4. The use of anti-symmetri
 tensor �elds, as pioneered by E
ker et al [131, 136℄.Reviews of these approa
hes are available in Refs. [137, 138℄. As emphasized byBirse [138℄, the approa
hes are believed to be equivalent [136, 138, 139℄, di�ering onlyin the representation taken for the spin-1 �elds.2whatever that might prove to be. C.1. E�e
tive Chiral Lagrangians
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tive Lagrangians 191From both pra
ti
al and phenomenologi
al perspe
tives, the simplest Lagrangiansof the massive Yang-Mills and hidden{gauge approa
hes are of parti
ular interest.Within these approa
hes, one 
an propose an e�e
tive Lagrangian whi
h has only twoundetermined parameters: the � mass and a gauge 
oupling. The latter 
an be set toreprodu
e the empiri
al �! 2� de
ay width, 
ompletely spe
ifying a possible e�e
tivetheory. Furthermore, these representations are motivated on the grounds that they
an easily en
apsulate phenomenologi
al notions su
h as VMD and universality (seeChp. 1.6).In Appendix C.6, the rare de
ays � ! 4� are 
al
ulated with various 
hirale�e
tive models. Before doing so, the models used are brie
y des
ribed below. Sin
ethorough dis
ussion of these models 
an be found in the 
ited literature, it suÆ
esto outline some general points about the approa
hes and to highlight some of theirphenomenologi
al aspe
ts.C.2 Hidden{Gauge LagrangiansThe hidden{gauge and massive Yang-Mills s
hemes adopt a gauge style of approa
h,whi
h is 
learly well{suited to the notion of universality. In the hidden{gauge methodof Bando et al. [132℄, the Lagrangian of the non-linear sigma model (Eq. C.1) is rewrit-ten with the introdu
tion of an unphysi
al lo
al symmetry, whi
h may be transformedaway. However, if a kineti
 term for the gauge �eld is also in
luded, then the lo
alsymmetry be
omes physi
al, generating a non-trivial extension of the model. Al-though the lo
al symmetry group may 
ontain SU(2)A [97℄, it is usual to work with ave
tor gauge �eld only. The simplest Lagrangian of �, � and ! mesons in the s
hemetherefore involves these parti
les only, there being no need to in
lude the a1 meson.External gauge �elds 
an be unambiguously introdu
ed into the formalism byseparately gauging the global 
hiral group [140℄. The model 
an also be extended toin
lude an anomalous se
tor [141℄. With the anomalous Ward identity being satis�edby the Wess{Zumino a
tion [142℄, low-energy theorems, su
h as those for �0 ! 

C.2. Hidden{Gauge Lagrangians
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tive Lagrangians 192and 
 ! 3�, are automati
ally satis�ed. There are a further four possible terms3of odd intrinsi
 parity, with undetermined 
oeÆ
ients. These have no e�e
t on thelow-energy theorems4 and their strengths should therefore be 
hosen to reprodu
e asatisfa
tory phenomenology of various other anomalous pro
esses.The 
ouplings in the minimal hidden{gauge model satisfy the relationsm2� = m2! = aeg2f 2� ; g��� = a2 eg; g
�� = e�1� a2� ; g�
 = 2f 2�g���; (C.4)where a is a free parameter, eg is the gauge 
oupling 
onstant and g
�� has been de�nedthrough the vertexh�a(q1)�b(q2)j
�(q1 + q2)i = ig
���ab3(q2 � �� q1 � �): (C.5)g��� is de�ned similarly in Eq. 5.1. The �nal relation of Eq. C.4 holds independently ofthe model parameters and is known as the KSRF relation [144℄ in its �rst form. It 
anbe derived straightforwardly as a soft pion theorem for the �! 2� de
ay [17℄. Withthe parameter 
hoi
e a = 2 the Lagrangian is brought into agreement with severalother phenomenologi
al ideas. Combining the �rst and se
ond relations of Eq. C.4(with a = 2) gives m2� = 2g2���f 2� ; (C.6)whi
h is referred to as the se
ond form of the KSRF relation. This version follows fromthe �rst under the assumption of the universality relation g�
 = m2�=g���. Universalityin the model is therefore imposed at a = 2, the value whi
h also produ
es 
ompleteve
tor dominan
e of the 
�� 
oupling.3Six su
h terms were originally listed in Ref. [141℄ but it was soon noti
ed [143℄ that twoof them (L3 and L5) are CP odd.4although they do 
ontrol the relative sizes of di�erent 
ontributions to su
h amplitudes.

C.2. Hidden{Gauge Lagrangians
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tive Lagrangians 193C.3 Massive Yang-Mills LagrangiansIn the massive Yang-Mills approa
h [124, 133℄, the spin-1 mesons are represented asthough they were external gauge bosons of 
hiral symmetry5. The simplest Lagrangianwhi
h 
an be postulated in the s
heme is just the gauged non-linear sigma model alongwith kineti
 and mass terms for the gauge �elds. Lo
al 
hiral symmetry is broken bythe mass terms. A signi�
ant di�eren
e from the hidden{gauge formalism is thatglobal 
hiral symmetry demands that the a1 must be in
luded as the 
hiral partner ofthe � meson.Expanding the matrix U (Eq. C.3) in the minimal Lagrangian of the s
heme,one �nds a mixing term between the axial �eld and the gradient of the pseudos
alar�eld. To remove this and diagonalize the free{�eld part of the Lagrangian, a termproportional to the pseudos
alar gradient 
ould be subtra
ted from the axial �eld. Itis then ne
essary to res
ale the pseudos
alar �eld6 in order to obtain the 
anoni
alnormalization of the pion kineti
 term. Su
h a pro
edure 
onstitutes a minimal di-agonalization and leads to physi
al pion and a1 �elds whi
h have 
ompli
ated 
hiraltransformation properties. Other pro
edures might also be 
hosen. For example, ifthe Lagrangian is �rst 
onverted into its equivalent CCWZ representation, then a verysimilar pro
edure is followed to remove a mixing term. In that 
ase, however, it is 
on-venient to subtra
t a pie
e from the axial �eld proportional to the multi{pion obje
tu� (see Appendix C.4), whi
h means that the transformation properties of the mixedand physi
al �elds are the same. Whatever the diagonalization performed, the pro
essindu
es a mass splitting between the axial and ve
tor �elds so that ma1 = Z�1m�,where Z is the s
aling fa
tor, Z =  1� g2f 2�m2� !12 : (C.7)In the above equation, g is the gauge 
oupling of this s
heme.5To in
lude a photon �eld in su
h a model it is then usual to assume VMD, adding theappropriate terms by hand.6with a 
orresponding fa
tor being applied to identify the pion de
ay 
onstant.C.3. Massive Yang-Mills Lagrangians
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tive Lagrangians 194The diagonalization is 
ommonly referred to as a partial Higgs me
hanism. Inthe standard Higgs me
hanism the degrees of freedom of the would-be Goldstoneboson are transmuted into those required to give a mass to the gauge �eld. In themassive Yang-Mills formalism, however, the Goldstone boson is preserved be
ause ofthe gauge{symmetry{breaking mass term.The minimal �eld rede�nition des
ribed above has a side e�e
t of produ
ingmore 
ompli
ated intera
tion verti
es, sin
e additional intera
tion terms are generatedin rewriting the gauge{invariant kineti
 energies of the spin-1 �elds. Where su
hadditional terms 
ontribute to verti
es present in the remainder of the Lagrangianthe extra terms always 
ontain more powers of momentum. Nevertheless, they 
anhave important e�e
ts. For instan
e, the ��� 
oupling at the rho mass is redu
edby a fa
tor of 12(1 + Z2) as 
ompared to its value at zero{momentum; i.e., by � 34for a normal 
hoi
e of parameters. This means that the minimal model is unablesimultaneously to a

ount for the empiri
al � meson mass and width. To over
omethe problem, it would be ne
essary to add new intera
tions to the Lagrangian, su
has those proposed in Refs. [137, 145, 146℄. One possibility is the term�i �2g hD�UD�U yF ��L +D�U yD�UF ��R i; (C.8)whi
h would 
an
el the diagonalization{indu
ed part of the ��� vertex if � = 1.Extending the de�nition of the ve
tor �eld to in
lude an isos
alar 
omponent,representing the ! meson, there are then intera
tions in the anomalous se
tor [145,147℄. Sin
e the spin-1 �elds are identi�ed with external gauge �elds of the 
hiral group,the anomalous verti
es are given by Bardeen's form [148℄ of the anomaly7.Comment and �� S
atteringIn 
omparison with the simplest hidden{gauge Lagrangian, 
al
ulations with the min-imal massive Yang-Mills model are rather more involved. Not only does one have7to obtain an anomaly{free ve
tor 
urrent entails breaking global 
hiral symmetry in thisse
tor. C.3. Massive Yang-Mills Lagrangians
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tive Lagrangians 195to deal with the more 
omplex intera
tion verti
es produ
ed by diagonalization butthere may be additional 
ontributions to pro
esses from diagrams with intermediatea1 states. Note also that the higher{order 
ontributions to verti
es violate universal-ity above the lowest energies. This is 
ertainly no problem of prin
iple, but sin
e theuniversality hypothesis is an important aspe
t of the motivation for a gauge{style ofapproa
h, one might nevertheless be 
on
erned about su
h violations. It is thereforeeasy to see why several authors [9, 10, 149, 150℄ have found it attra
tive to workwith Lagrangians of the massive Yang-Mills form whi
h do not have an axial �eld,the sour
e of the unwanted 
ompli
ations. In su
h models great 
are should be takento maintain global 
hiral symmetry, the guiding prin
iple in the 
onstru
tion of anyplausible e�e
tive Lagrangian. It is not valid simply to dis
ard the a1, as in one of theLagrangians 
onsidered by Ref. [9℄, sin
e the resulting model would not then respe
t(for example) the low-energy theorem for �� s
attering [149℄. If the a1 is to be omittedthen 
ounterterms [138, 149℄ are required to restore su
h theorems.The authors of Refs. [149, 150℄ found suitable 
ounterterms su
h that the VMDextension of the resulting ��! Lagrangian, when integrated over the ve
tor{mesondegrees of freedom, reprodu
es the verti
es of the U(1)V -gauged non-linear sigmamodel. Although their Lagrangian is therefore 
onsistent with low-energy theoremsinvolving pions and photons only, it is not 
hirally symmetri
. This statement 
an beillustrated with �� s
attering. Fig. C.1 shows the 
ontributing diagrams in e�e
tiveLagrangians of �, �, ! and a1 mesons.The amplitude for s
attering a soft pion from an arbitrary hadron target shouldvanish in the 
hiral limit [17℄. Considering only that part of ea
h of the verti
es inFig. C.1 whi
h is of lowest order in the pion momentum, then the ��� vertex to beused in diagrams C.1a and C.1b is g��:� � ���. As the external pion momentumtends to zero the momentum of the intermediate pion state will tend towards that ofthe external � meson, whose transversality means that there is no 
ontribution fromthese diagrams in the soft pion limit. In both the hidden gauge (Appendix C.2) and
C.3. Massive Yang-Mills Lagrangians
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��������� �����������i �j�a �b(a) ������PPPPPPPPP�����������������i �j�a �b(b) �������������������i �j�a �b(
)

��������� ���������a1�i �j�a �b(d) ������PPPPPPPPP���������������a1�i �j�a �b(e)Figure C.1: Diagrams 
ontributing to �� s
attering in 
hiral e�e
tive Lagrangians of�, � and a1 mesons. Single lines denote pions, double lines spin-1 mesons. The suÆxeslabel isospin states. Anomalous terms in the e�e
tive Lagrangian introdu
e diagrams(f) and (g) similar to those of (d) and (e) respe
tively, but with an ! meson repla
ingthe a1.CCWZ formalisms (Appendix C.4) any intera
tions whi
h might produ
e a 
ontribu-tion from diagrams C.1
 to C.1e 
ontain powers of the external pion momentum. Forthe same reason, diagrams C.1f and C.1g vanish in the soft pion limit with all threeformalisms. Non-zero diagrams at threshold only appear in the massive Yang-Millss
heme, whi
h has momentum{independent ���� and ��a1 verti
es of 12g2Z�2(����)2and g2f�Z�2a�:���� respe
tively. These result in an amplitude from the ���� 
onta
tdiagram of i g2Z2 (2ÆabÆij � ÆaiÆbj � ÆajÆbi)� � ��; (C.9)and a pie
e 
oming from diagrams with an intermediate a1 ofi g4f 2�Z4(m2� �m2a1)(2ÆabÆij � ÆaiÆbj � ÆajÆbi)� � ��: (C.10)Using the predi
tion for the � � a1 mass splitting from the massive Yang-Mills La-grangian, these two 
ontributions 
an
el, as they should. The Lagrangians proposedin Refs. [149, 150℄, however, retain a momentum{independent ���� vertex (whi
h is12g2(� � ��)2) without there being an a1 �eld present. This gives rise to a non-zeroC.3. Massive Yang-Mills Lagrangians
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tive Lagrangians 197amplitude in the soft pion limit, violating the 
hiral low-energy theorem. The modelof Refs. [149, 150℄ is therefore in
onsistent with 
hiral symmetry.C.4 CCWZ LagrangiansIn the CCWZ formalism the spin-1 �elds transform homogeneously under a non-linearrealization of 
hiral symmetry. The following Lagrangian is written in that formalism,using the notation8 of Ref. [138℄. It gives all of the intera
tion terms relevant for�! 4� in the models 
onsidered.LCCWZ = f 2�4 hu�u�i+m2�hV�V �i+m2a1hA�A�i � 12hV��V ��i � 12hA��A��i� i2g1hV��[u�; u�℄i+ i2g2hV��[V �; V �℄i+ i2g3hV��([u�; A�℄� [u�; A�℄)i+ i2g4hA��([u�; V �℄� [u�; V �℄)i+ 18
1h[u�; u�℄2i � 14
2h[u�; u�℄[V �; V �℄i+18
3h([u�; V�℄� [u�; V�℄)2i � 14
4h[u�; u�℄([u�; A�℄� [u�; A�℄)i: (C.11)Unlike the hidden{gauge and massive Yang-Mills formalisms, there is no natural
on
ept of a minimal Lagrangian in this framework. Ea
h of the above intera
tionsis 
hirally symmetri
 and hen
e the 
oeÆ
ients of Eq. C.11 
an be set individuallya

ording to the assumptions made about the dynami
s. It should be pointed out,however, that there are some restri
tions on the 
oeÆ
ients whi
h 
an be dedu
ed bydemanding that the 
orresponding Hamiltonian has a lower bound [151℄. Su
h 
on-straints 
an be strengthened into equalities if assumptions about resonan
e saturationare imposed.The simplest Lagrangian of the hidden{gauge approa
h 
orresponds to the fol-lowing 
hoi
es of the 
oeÆ
ients9:g1 = 12eg ; g2 = 2eg; 
1 = g21; 
2 = 1; (C.12)8apart from the labelling of the 
oeÆ
ients.9Note that the 
oeÆ
ients in Eqs. C.12, C.13 and C.14 do not provide a 
omplete spe
i�
a-tion of the respe
tive models. To do so would require other terms in the CCWZ Lagrangian.C.4. CCWZ Lagrangians
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tive Lagrangians 198all other 
oeÆ
ients in Eq. C.11 being zero. The 
hoi
es appropriate to to the simplestmassive Yang-Mills model are10:g1 = 12g (1� Z4); g2 = 2g; g3 = g4 = Z2;
1 = g21; 
2 = 1� Z4; 
3 = Z4; 
4 = g1g3: (C.13)If one in
ludes the non-minimal term of Eq. C.8 then the above 
oeÆ
ients be
ome:g1 = 12g (1 + (� � 1)Z4); g2 = 2g; g3 = Z2(1� �); g4 = Z2;
1 = 14g2 (1� Z4)(1 + (2� � 1)Z4); 
2 = 1 + (� � 1)Z4; 
3 = Z4;
4 = 12gZ2(1� Z4)(1� �): (C.14)The strength at the ��� vertex in the CCWZ Lagrangian of Eq. C.11 is 
ontrolledby the value of g1. Taking � = 1 
an
els the pie
e of this vertex whi
h involves thediagonalization parameter, Z, and (at the KSRF value of Z2 = 12) enfor
es the identitybetween the gauge 
oupling parameter and the on-shell 
oupling g���.C.5 �! 4�, Motivation and Ba
kgroundThe testing of 
hiral e�e
tive theories of pions and � mesons requires that a varietyof observables be 
al
ulated with the 
andidate Lagrangians. Two su
h quantities arethe partial widths for the rare �0 de
ay modes to 2�+2�� and to 2�0�+��. Thesede
ays provide a potentially useful probe of aspe
ts of the e�e
tive Lagrangians. Forexample, the amplitude for the 2�0�+�� mode has a 
ontribution involving the ���vertex that appears in models with gauge{type 
ouplings of the �. The partial width
al
ulation might therefore enable the strength at that vertex to be tested.10Note that letting Z ! 0 in Eq. C.13 would give the same 
oeÆ
ients as in Eq. C.12.Although Z ! 0 
orresponds to the unrealisti
 situation of m� ! gf� and ma1 ! 1 thislimit does provide a basis for useful 
ross 
he
ks (both analyti
 and numeri
) between thehidden{gauge and minimal massive Yang-Mills 
al
ulations.
C.5. �! 4�, Motivation and Ba
kground
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ent attention has been given to these rare de
ays [9, 10℄, stimulated bythe prospe
t that they might soon be dete
ted in experiments at high luminosity e+e�ma
hines, su
h as VEPP-2M [152℄ or DA�NE [153℄. The present experimental limitson the partial widths are 30 keV for the 2�+2�� mode [154℄ and 6 keV for the 2�0�+��mode [155℄. These are already stringent enough to rule out some early estimates, su
has that by Prashar [11℄11 whi
h was dominated by �a1 and �a2 intermediate states.In the more re
ent attempts of Refs. [9, 10℄ rather smaller predi
tions were made,all bar one of the models being 
onsistent with the existing limits but quite 
loseto them. Those results o�ered grounds for optimism sin
e even a modest redu
tionin the present limits 
ould have signi�
ant impli
ations. Note, however, that all ofthese 
al
ulations of the de
ays did not 
orre
tly in
orporate 
hiral symmetry. Asis demonstrated in Appendix C.6, the symmetry 
onstraints have a very importante�e
t, the partial widths obtained in 
hiral models being substantially narrower.In the work of Bramon, Grau and Pan
heri [9℄, the 2�+2�� de
ay mode wastreated within two of the 
ommon formalisms for in
luding the � meson in 
hirale�e
tive Lagrangians. Using the simplest hidden{gauge Lagrangian (Appendix C.2)the authors 
al
ulated a partial width12 of 7:5�0:8 keV. In 
ontrast, with a simpli�edLagrangian of the massive Yang-Mills type they found 60� 7 keV, indi
ating that thepro
ess 
ould distinguish between the models and indeed that the massive Yang-Millsone was in
onsistent with experiment. The Yang-Mills Lagrangian used in Ref. [9℄
oupled the � meson to the sigma model as a gauge boson of SU(2)V , being identi
alto that in Ref. [147℄ but without an axial �eld. As was �rst pointed out in Ref. [10℄(see also Appendix C.3) by Eidelman, Silagadze and Kuraev su
h a simpli�ed modeldoes not respe
t 
hiral symmetry. Although the hidden{gauge Lagrangian used byBramon et al. is a perfe
tly legitimate 
hiral model, there was unfortunately anerror made in the evaluation of the 
orresponding de
ay amplitude. As explainedin Appendix C.6, the impa
t of this mistake is dramati
, the partial width being11where a partial width of 172 keV was quoted for the 2�+2�� mode.12the error 
omes from the range of values 
onsidered for the gauge 
oupling parameter.C.5. �! 4�, Motivation and Ba
kground
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antly overestimated.Having noted that the massive Yang-Mills Lagrangian of Ref. [9℄ is not 
hirallysymmetri
, Eidelman et al. [10℄ were motivated to revisit the 
al
ulation. They did notattempt to work with the full minimal massive Yang-Mills Lagrangian involving thea1 meson (Appendix C.3), but rather they followed the proposal of Brihaye, Pak andRossi [149℄ to introdu
e 
ounterterms to the naive �; � Lagrangian of Ref. [9℄. With
orre
tion terms that modi�ed the 4�, �4� and !3� verti
es, the authors of Ref. [10℄obtained a partial width of 16 � 1 keV for the 2�+2�� mode and of 0:6 � 0:2 keVfor the 2�0�+�� mode. However, their Lagrangian is still not 
hirally symmetri
 (seeAppendix C.3). As is des
ribed in Ref. [138℄, one 
ould 
onstru
t a 
hiral Lagrangianby adding further 
ounterterms to the model. It is, however, pra
ti
able to 
al
ulatethe rare �0 de
ays while adopting a manifestly 
hiral approa
h from the start.C.6 De
ay AmplitudeWorking at tree level, the relevant diagrams for � ! 4� are shown in Fig. C.2. Theamount of available phase spa
e in the de
ays is greatly redu
ed by the masses ofthe de
ay produ
ts. A realisti
 
al
ulation therefore requires a term in the e�e
tiveLagrangians whi
h a

ounts for the non-zero pion mass. In ChPT, expli
it symmetry{breaking terms 
an be introdu
ed as though there were an external s
alar �eld pro-portional to the mass matrix, diag (mu; md). Conserving isospin, the term requiredis f 2�4 m2�hU + U yi: (C.15)The above term is 
learly independent of the formalism used to des
ribe the spin-1�elds. It has the additional e�e
t of modifying the 4� vertex whi
h appears in dia-gram C.2b. The e�e
t is quantitatively signi�
ant in the results, sin
e they are mu
hsmaller than those found previously [9, 10, 11℄, but it does not 
hange their qualitativefeatures.
C.6. De
ay Amplitude
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���������HHH(a) ���������HHH(b)������ �������(
) ��������� �������(d)
���������������HHH���HHH��(e) ������������������(f) a1 �������������HHH(g) a1

Figure C.2: Diagrams 
ontributing to the �0 ! 4� de
ays in 
hiral e�e
tive La-grangians of �, � and a1 mesons. Single lines denote pions, double lines spin-1 mesons.Anomalous terms in the e�e
tive Lagrangians introdu
e diagrams (h) and (i) similarto those of (f) and (g) respe
tively, but with an ! meson repla
ing the a1.Consider �rst the simplest Lagrangian in the hidden{gauge formalism. It in
ludesfour gauge{
ovariant terms in the anomalous se
tor with undetermined 
oeÆ
ients.Three of these are relevant to the o�-shell ! de
ay o

urring in diagrams C.2h andC.2i. The suggestion of Ref. [141℄ regarding those 
oeÆ
ients is adopted here, sothat one in
ludes an !�� vertex but no !3� 
onta
t term. Consisten
y with variousphenomenologi
al notions (see Appendix C.2) requires that the parameter a of themodel be set to 2. In the numeri
al work this 
hoi
e is indeed made, whilst the gauge
C.6. De
ay Amplitude
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oupling is �xed so as to reprodu
e the empiri
al � meson mass13 through Eq. C.4.The parameters used are then:f� = 92:4MeV; m� = 139:6MeV; m� = m! = 770MeV;a = 2; eg = 5:89: (C.16)The amplitudes derived for the �0 ! 4� de
ays by the authors of Ref. [10℄ werestated in that paper. Although the model used in that 
ase did not in
lude the a1meson, all of the other graphs shown in Fig. C.2 were 
al
ulated. With the simplesthidden{gauge Lagrangian the a1 is also absent, as indeed is the ���� vertex whi
h 
anenter through diagram C.2
. However, for those verti
es relevant to �0 ! 4� whi
h arepresent in the simplest hidden{gauge model, the di�eren
es from the 
orrespondingverti
es in the Lagrangian of Ref. [10℄ lie not in their stru
tures but only in their overallstrengths. Making appropriate 
hanges to 
oeÆ
ients, the present 
al
ulation of thede
ay amplitudes agrees with that of Ref. [10℄. For the de
ay mode �0 ! 2�+2��,expli
it expressions for the amplitude were also given by Bramon et al. [9℄. A 
areful
omparison of these two referen
es indi
ates a dis
repan
y in the momentum stru
tureof the graph C.2b 
ontribution. Although the present 
al
ulation supports the versionof Eidelman et al., numeri
ally one �nds that the error in Ref. [9℄ has only a smalle�e
t in pra
ti
e. Certainly, it is not suÆ
ient to invalidate the numeri
al resultsquoted by Bramon et al..Having 
al
ulated the amplitudes, a �ve{dimensional integral over phase spa
emust be performed to obtain the 
orresponding partial widths. The integrals areexpressed in terms of the Mandelstam-like variables of Kumar [156℄ and evaluatednumeri
ally using the NAG routine D01FDF, whi
h maps the region of integrationonto the n-dimensional sphere and uses the method of Sag and Szekeres [81℄ to performthe integration. The a

ura
y of the integration routine 
an be estimated by varyingthe two parameters whi
h spe
ify the mapping onto the n-sphere. In all 
ases it is13This pro
edure results in a 2� de
ay width of 143:4 MeV, a fra
tion narrower than theobserved 151:1 MeV. C.6. De
ay Amplitude
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tive Lagrangians 203found that 50,000 integration points are suÆ
ient to give the integrals to within onepart in a thousand.The results obtained with simplest hidden{gauge model are shown in the �rst lineof Table C.1, labelled HG. They are around an order of magnitude smaller than anyof the results of the other re
ent 
al
ulations [9, 10℄ of the de
ays.Model �0 ! 2�+2�� �0 ! 2�0�+��HG 0:89 0:44HGNA 0:89 0:24HGCS 0:59 0:37MMYM 0:68 0:37MYM+1 0:63 0:34MYM+2 1:03 0:39Table C.1: De
ay widths for �0 ! 4� using various 
hiral e�e
tive Lagrangians. Thewidths are quoted in keV with the spe
i�
 models being de�ned in the text.It was stated in Appendix C.5 that when Bramon et al. 
al
ulated the �0 !2�+2�� width using the same hidden{gauge model as above they arrived at 7:5� 0:8keV, in sharp 
ontrast with the result given in Table C.1. The 
ru
ial di�eren
ebetween the 
al
ulations lies in the strength of the dire
t �4� 
oupling. Bramon et al.assumed that the expression for this vertex is identi
al to that in a massive Yang-Millsmodel, being generated by the following term in the Lagrangian:�ig f 2�2 h��(U y��U + U��U y)i = g  1� 13f 2� �2 + � � �! ��:� � ���: (C.17)In fa
t, the appropriate term in the hidden{gauge model should be written, in theunitary gauge, as�2iaegf 2�h��(uy��u+ u��uy)i = a2 eg  1� 112f 2� �2 + � � �! ��:� � ���; (C.18)where u is the square root of U . Although these terms both yield the same ���
oupling, the �4� terms di�er by a fa
tor of four. Hen
e one 
annot take the latter
oupling to be the same as in a massive Yang-Mills model. Redu
ing the 
ontributionC.6. De
ay Amplitude
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tive Lagrangians 204of diagram C.2a by a fa
tor of four has a large e�e
t on the total amplitude, explainingthe di�eren
e between the present result and that of Ref. [9℄.In order to examine the relative importan
e of the anomalous and non-anomalouspro
esses in the amplitude, the partial widths 
an be evaluated with only the non-anomalous 
ontributions. Doing so leads to the result for �0 ! 2�0�+�� whi
h islabelled HGNA in Table C.1. It 
an be 
ompared with a value of 0:24 keV whi
his obtained for the partial width of this de
ay mode if one integrates over just theanomalous part of the amplitude. The two types of 
ontribution are therefore ofsimilar importan
e with the interferen
e between them being small and destru
tive in
hara
ter. It is also of interest to look at the e�e
t of omitting the symmetry{breaking4� intera
tion of Eq. C.15 (but retaining the physi
al pion mass in the propagatoret
.). The results in this 
ase, labelled HGCS, indi
ate that this intera
tion doesindeed provide a signi�
ant 
ontribution.As a simple estimate of 
ontributions beyond tree level, one 
an allow for the�nite width of the � meson in its propagator (as in Ref. [10℄). The method is a rather
rude probe of the possible size of su
h e�e
ts, being sensitive to the representation
hosen for the model. For instan
e, whilst the amplitudes 
al
ulated for any pro
essshould be the same using either the minimal hidden{gauge Lagrangian or its CCWZequivalent, the two representations may attribute di�erent weights to the 
ontributionsinvolving an intermediate � meson. Notwithstanding this dis
laimer, it is neverthelesssomewhat reassuring to note that the modi�
ation to the � propagator produ
es onlya modest shift in the results.For the above 
al
ulations to be seen as reliable, an important point to 
he
k isthat the results are fairly robust under 
hanges to the model parameters. Instead ofthe 
hoi
es in Eq. C.16, one might reasonably de
ide to take a = 2:108 and eg = 5:74 soas to simultaneously reprodu
e the empiri
al � meson mass and width14. With theseparameters the partial widths remain 
lose to those in Table C.1, being 0:93 keV for14The observed width implies that g��� = 6:05.
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tive Lagrangians 205the 2�+2�� mode and 0:42 keV for the 2�0�+�� mode.Consider now the de
ay amplitude in the massive Yang-Mills type of theory, be-ginning with the simplest Lagrangian of that formalism (see Appendix C.3). As isillustrated by �� s
attering, in this approa
h 
hiral symmetry may require strong 
an-
ellations among the various 
ontributions to an amplitude. In deriving the amplitudesthe Lagrangian is �rst rewritten in terms of the �elds de�ned by the minimal diag-onalization pro
edure. The additional three{ and four{point intera
tions whi
h arethereby generated produ
e 
ontributions to the �! 4� amplitudes whi
h are di�erentin stru
ture from any of the expressions quoted in Refs. [9, 10℄. Graphs C.2f and C.2g,featuring intermediate a1 states, also make 
ontributions of a form not 
onsidered inthe earlier referen
es. Note, however, that powerful 
he
ks 
an be made by repeatingthe present 
al
ulations in the equivalent CCWZ representation of the model, as willbe dis
ussed shortly.The parameters of the minimal Yang-Mills model are set analogously to those inthe simplest hidden{gauge model: that is, they are 
hosen to satisfy the KSRF relation(Z2 = 12) and to reprodu
e the empiri
al � meson mass (implying that g = 5:89). Asdes
ribed in Appendix C.3, there is a diagonalization{indu
ed ��� intera
tion in theminimal Yang-Mills model whi
h redu
es the �meson width to 107:6 MeV. Perseveringwith the model despite this drawba
k, then the resulting partial widths for �0 ! 4�are as shown in Table C.1, labelled MMYM. They are similar in magnitude to thoseof the hidden{gauge model. As already emphasized, the 
al
ulations of Refs. [9, 10℄used Yang-Mills models that do not respe
t 
hiral symmetry. Without the ensuing
an
ellations, they lead to partial widths that are too large by an order of magnitude.Just as with the hidden{gauge model dis
ussed earlier, the partial widths obtainedwith the minimal massive Yang-Mills Lagrangian are found to depend only mildly onthe value taken for the gauge 
oupling. The non-anomalous and anomalous parts ofthe de
ay amplitude to 2�0�+�� are again of almost equal importan
e15 and interfere15Taking just the non-anomalous part gives a partial width of 0:18 keV whereas the anoma-lous pie
e alone gives 0:21 keV. C.6. De
ay Amplitude
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tive Lagrangians 206destru
tively, albeit to a very small extent.The simple hidden{gauge and massive Yang-Mills models used above 
an be 
on-verted by a 
hange of variables into equivalent CCWZ Lagrangians [136, 138℄, whi
hshould yield the same predi
tions for any observable as the original representations.Repeating the �0 ! 4� 
al
ulations with these models in their CCWZ forms thereforeprovides a stringent and useful 
he
k on the previous results. Furthermore, the CCWZformalism is a 
onvenient framework in whi
h to examine the sensitivity of these resultsto assumptions about the a1 meson. In 
ontrast to the massive Yang-Mills approa
h,the parameters des
ribing the a1 mass and 
ouplings may be 
hanged independently,without the need to introdu
e 
ompensating terms into the Lagrangian.The relevant non-anomalous intera
tions in the CCWZ versions of the hidden{gauge and massive Yang-Mills models used above were given in Appendix C.4. Theanomalous se
tors 
an be similarly 
onverted into CCWZ form. Having done so, thesum of amplitudes for the anomalous diagrams (C.2h and C.2i) must remain unalteredby the 
hange of variables. For example, this is easily 
he
ked for the !�� vertex of thehidden{gauge Lagrangian whi
h yields !�� and !3� terms in the CCWZ language.The 
onversion of the anomalous se
tor is rather involved in the massive Yang-Mills
ase, however, and so for simpli
ity the anomalous pie
e of the de
ay amplitude is takendire
tly from the original version of the minimal Yang-Mills model. Working with thesame parameter sets as above, the results presented earlier have been su

essfullyveri�ed.Starting from the CCWZ Lagrangians whi
h are the equivalents of the modelsused above, it is then straightforward to investigate the e�e
ts of relaxing some ofthe assumptions imposed in those models. For instan
e, one 
ould 
onsider whetherthere might be any signi�
an
e in adjusting the masses of the ! and a1 mesons totheir empiri
al values [12℄, m! = 783 MeV and ma1 = 1230 MeV. Doing so, and usingthe 
ouplings of the minimal massive Yang-Mills model (Eq. C.13), gives the results
C.6. De
ay Amplitude



Appendix C. �! 4� in E�e
tive Lagrangians 207labelled as MYM+1 in Table C.1. This Lagrangian 
orresponds to a massive Yang-Mills Lagrangian with non-minimal terms, su
h as those suggested in Refs. [137, 145,146℄. The results are quite similar to those labelled MYM. This is in stark 
ontrastto the e�e
t of setting these meson masses to their empiri
al values in the massiveYang-Mills representation of the Lagrangian. In that 
ase the partial widths would be12:1 keV and 3:18 keV for the 2�+2�� and 2�0�+�� �nal states respe
tively. Theseare mu
h larger than any of the widths 
al
ulated with Lagrangians that respe
t 
hiralsymmetry and provide a 
lear demonstration of the need to work 
onsistently whenusing the massive Yang-Mills formalism.The parameter 
hoi
e of simplest massive Yang-Mills Lagrangian su�ers from thefa
t that it gives too small a width for � ! 2�. It is a simple matter to 
hange theCCWZ 
oeÆ
ients to remove this de�
ien
y. One method is equivalent to adding thenon-minimal term of Eq. C.8 to the massive Yang-Mills Lagrangian [137, 145℄. In orderto 
an
el the diagonalization{indu
ed O(p3) ��� 
oupling in the original framework,one takes � = 1. In
lusion of this term gives the CCWZ 
oeÆ
ients listed in Eq. C.14.Using those 
ouplings and the empiri
al meson masses produ
es the results for �! 4�whi
h are labelled as MYM+2 in Table C.1. The partial widths are a little larger thanthose from other Lagrangians 
onsidered, but are of the same order of magnitude.In the hidden{gauge and Yang-Mills Lagrangians des
ribed above the 3� 
ouplingis equal to the O(p) ��� one be
ause of the assumed universal 
oupling of the �. Usingthe CCWZ equivalents of these models, this assumption 
an be tested by varying the3� 
oupling strength, g2. The results are not fortunate. In all 
ases, shifts of �30% inthe 
oupling only alter the de
ay rate for �0 ! 2�0�+�� by about �1%. Sin
e su
hshifts 
an easily be a

ommodated through moderate 
hanges in the other parameters,a measurement of this de
ay 
annot therefore be used as an experimental probe of the3� vertex.Sin
e the partial widths in all of the 
hirally symmetri
 
ases have been found tobe small, it is interesting to 
onsider whether small symmetry{breaking 
ontributions
C.6. De
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tive Lagrangians 208to the � meson mass 
ould prove to be signi�
ant. If isospin symmetry is assumed tohold then there are two suitable symmetry{breaking terms in the CCWZ Lagrangian,�hV�V �(U + U y)i; �14�hV��V ��(U + U y)i: (C.19)The se
ond term, involving the �eld strength, alters the � mass be
ause one wouldneed to res
ale the �eld to re
over the 
anoni
al normalization of the kineti
 term.Allowing su
h terms to 
ontribute up to 10 MeV of the empiri
al mass, one �nds thatthe � term 
hanges the partial widths by just �1% whereas the � term 
an have e�e
tsat the � 10% level.The results of this appendix have shown that the partial widths for �0 ! 4� aresensitive to the 
hoi
e of Lagrangian, re
eiving signi�
ant 
ontributions from anoma-lous pro
esses and symmetry{breaking intera
tions. However, for all of the 
hirallysymmetri
 models 
onsidered, the widths are of the order of 1 keV, 
orresponding to
ross se
tions of the order of 5 pb. Although the pro
esses may be hard to observe infuture experiments, they should not be beyond the rea
h of DA�NE, whi
h is designedto have a luminosity of 5� 108 b�1s�1 [153℄.
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