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Example
MCICA is radiation
scheme that attempts
to deal well with
cloud-radiation
interactions

A reasonable GCM
implementation has
random errors

Stochastic drift in mean
climate, similar to small
increase in solar con-
stant (Raisanen et al. 2005)
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Outline

Some general aspects of parameterization

Physical constraints on near-grid scale noise?

Some example schemes

Do the constraints matter? A few results

Closing remarks
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Some general aspects of
parameterization
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Relevant scales

At least 3 important scales to consider in parameterization:

1. intrinsic scale of the process to be parameterized
(turbulent eddy sizes, cloud dimensions or separations...)

2. a large-scale, sufficient to contain many instances of the
process
i.e., scale at which time average ≈ space average ≈
ensemble average

3. the model grid box size
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The cumulus ensemble
The Arakawa and Schubert (1974) picture

Convection characterised by ensemble of cumulus clouds

Scale separation in both space and time between
cloud-scale and the large-scale
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Relevant scales

1. intrinsic scales

2. large-scale

3. model grid box

Important note: Will assume that (2) exists in practice, and
is well-separated from (1)
i.e., the statistics of the parameterized process are a
function of large-scale state
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Relevant scales

1. intrinsic scales

2. large-scale

3. model grid box

Important note: Will focus on spatial scales from now on,
but very similar arguments apply to the time scales
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Parameterization strategy

Is a function of the grid scale
∆x

Spatial
scale

LargeIntrinsic

Determinstic parameterization

Fluctuations small on scale ∆x

Parameterized process is a function of current state of
grid box
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Parameterization strategy

Is a function of the grid scale
∆x

Spatial
scale

LargeIntrinsic

Stochastic parameterization

Parameterized process is a function of large-scale state

Grid-box state 6= large-scale state
space average over ∆x 6= ensemble average

Process as realized on grid-box scale is a sub-sampling of
the full ensemble so fluctuations important
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Parameterization strategy

Is a function of the grid scale
∆x

Spatial
scale

LargeIntrinsic

Process is resolved (partially!)

Difficult to model in a systematic way

But noise may be helpful in some ways
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Stochastic Backscatter
LES of dry, neutral
boundary layer

Close to surface, size
of dominant eddies
∼ ∆x

Improved shear near
boundaries with
stochastic backscatter
energy to grid

Plot for ∆x = 100m,
∆z = 10 to 50m
(Weinbrecht and Mason

2008)
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Relevant scales

1. intrinsic scales

2. large-scale

3. model grid box

Important note: Noneof these scales are necessarily
fixed in a simulation!
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Implications

The ideal parameterization would

Know what the three scales are

Adjust its strategy (become stochastic, switch-off)
appropriately

In particular:

If in stochastic mode, the sub-sampling depends on all
three scales

Stochastic aspect will depend on ∆x

Need large-scale state from suitable averaging over the
grid
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Physical constraints on near-grid
scale noise?

Physical constraints on noise – p.14/43



Impact of stochasticity

Stochastic aspect will introduce near-grid scale noise

The noise may have a complicated character, which is
dictated by our model (deliberate or otherwise!) of the
stochastic process
thresholds will often result in noise

May be important through stochastic drift, noise-induced
transitions etc

That’s not noise, that’s music

(Feynman)
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A practical view

Near-grid scale in model is not energetic enough

Adding near-grid scale noise can correct that

Some very simple noise generators are beneficial

Buizza et al. 1999, Hou et al. 2001, Bright and Mullen 2002...
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So...

Does it matter what tune we play, or should we just make a
suitably loud noise?
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In other words...

Is it useful to impose physical constraints on the added noise,
and if so then what constraints are useful?
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Which stochastic parameterization?

Evolution of model state X given by

∂tX = D(X)+P(p,X)

D =dynamics, P =parameterized physics, p =the
parameters

Various types of scheme imply various physical
constraints on the noise

Which works best for a given problem?

Can (and how should?) various beneficial schemes be
combined?
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Additive noise

∂tX = D(X)+P(p,X)+ ε

Additive noise, possibly with no constraints
e.g. Done et al. 2008
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...can be good enough

Case from CSIP IOP18

Scattered convection
over S. England

4km simulation,
partially-resolved
convection

Model produces
scattered clouds, but
they might be scattered
in many different ways
Leoncini et al. 2009
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...can be good enough

Perturbations to boundary-layer θ, applied every 30min
Perturbation at 2000 UTC, 8 km
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Multiplicative noise

∂tX = D(X)+ εP(p,X)

Multiplicative noise: constraints imposed are dictated by the
determinstic parameterizations
e.g. Buizza et al. 1999

imposes a vertical structure

imposes correlations between variables

e.g., multiplicative noise for convection would express
uncertainty about its strength, but not its existence or its
character
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Parameter noise

∂tX = D(X)+P(pε,X)

Parameter uncertainty: constraints imposed are dictated by the
structure of the determinstic parameterizations
e.g. Arribas 2004

e.g., our model of the convective plume is sound, but
uncertain about entrainment
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Input-state noise

∂tX = D(X)+P(p,Xε)

Input-state uncertainty: constraints imposed by the range of
admissible atmospheric states
e.g. Tompkins and Berner 2007

Parameterized process acts only over part of the sub-grid
area, for which X is not a good representation

Hard to control and not easy to specify Xε

But this is effectively happening anyway in many
stochastic implementations!
(Consider sequential physics with a single scheme being stochastic)
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Truly-stochastic scheme

∂tX = D(X)+Pε(p,X)

Parameterization explicitly designed to be stochastic, following
the conceptual framework presented earlier
e.g. talks this week

Conceptually satisfactory, but much effort, which may not
be needed?
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Specific examples of schemes
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Multiplicative noise

Buizza et al. 1999, and used successfully at ECMWF

∂tX = D(X)+ εP(p,X)

Tendencies to T , q, u and v rescaled

Scaling at end of timestep, so applied to sum of all
parameterizations

ε uniformly distributed from 0.5 to 1.5

ε held fixed within 10◦ areas and for 6h
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Plant and Craig parameterization

A Pε scheme for deep convection

Number of cumulus clouds 〈N〉 in GCM grid box need not
be large

Uses mass-flux formalism with spectrum of plumes of
varying sizes
(In the Arakawa and Schubert tradition)

Selects a random sample of such plumes

Stochastic part of ∂tX ∼
√

〈N〉

cf. multiplicative noise in which it ∼ 〈N〉
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Plant and Craig parameterization

Enacts the conceptual framework presented earlier:

1. Average in the horizontal and over time to determine
large-scale state

2. Evaluate properties of large-scale equilibrium statistics

3. Sample randomly from the equilibrium pdf to get the
number and the properties of the plumes in the grid box

4. Compute convective tendencies from this set of cumulus
elements
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Some details

Ensemble-mean grid-box mass flux 〈M〉 from CAPE
closure

Distribution of mass flux across spectrum from Craig and
Cohen (2006) theory of non-interacting plumes

Each plume based on modified Kain-Fritsch
entraining/detraining plume model
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Do the constraints matter?
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Framework of tests
Single-column tests of GCSS, PCCS, case 5

Using MetUM version 6.1

No dynamics feedback
(tests underway for aqua-planet)

39-member ensembles used

small initial condition perturbations to boundary-layer
temperature

different random number seed for the stochastic method
in each run
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GCSS Case 5 Test
Case is for tropical west-pacific warm pool, 9th-28th
January, 2◦S, 156◦E

Forcing data derived from TOGA-COARE
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Test 1
Apply multiplicative noise to one scheme only

Active (left) and suppressed (right) phases
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Dotted: IC, Black: all, Red: radiation, Green: boundary layer,
Purple: convection, Blue: large-scale cloud
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Test 1

Perturbing radiation scheme produces large, unrealistic,
spread in stratosphere

Similar vertical profiles of spread
(convection scheme responds to any tropospheric
perturbation)

Spread from perturbing any one scheme ∼ 1/2 spread
from 4 schemes together
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Test 2
Decorrelate multiplicative noise to each scheme
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Test 3
Decorrelate multiplicative noise to ∂tT and ∂tq
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Test 3

Integrated ensemble spread in T . Black: IC, Blue: mult. noise,
Read: mult. noise decorrelated
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Test 3
Tq-increments: default, mult. noise, decorrelated mult.
noise
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Test 4
Spread in Plant-Craig as function of grid-box size
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Similar to mult. noise or random parameters for ∆x = 50km
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Test 5
Effect of noise on mean-state with Plant-Craig
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Conclusions

Parameterization methods depend on intrinsic scales and
on ∆x

For some purposes, a simple noise source is good
enough

When it isn’t, we should search for the physical constraints
that are necessary

This is actually practicable

L∆q = Cp∆T when a cloud condenses/evaporates seems
useful to know

Generic and sophisticated methods can produce similar
spread but the latter perhaps more likely to shift mean
state
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