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ABSTRACT

It has been suggested that the atmosphere’s climatic behaviour exhibits sensitivity to its high-

frequency variability, associated with sub-grid processes parameterised in global atmospheric

simulations. The parameterisations are a major source of model error, and uncertainties in their

formulation must be sampled to give representative spreads in ensemble forecasts. Some compo-

nent of variability / uncertainty in resolved-scale effects of parameterised processes derives from

sub-grid details of the atmosphere’s state, which are undefined in models. This has motivated

various stochastic parameterisation methods aiming to sample sub-grid uncertainties in ensemble

forecasts and give more realistic high-frequency variability in models.

This thesis explores the atmosphere’s sensitivity to high-frequency variability, by comparing

different stochastic methods from the literature in ensemble Single-Column Model simulations of

convection over the Tropical West Pacific. A comparison of a smaller sample of methods is then

made in an aqua-planet simulation, to investigate dynamical sensitivities.

The Single-Column Model’s ensemble variability is dominated by the triggering behaviour

of the convection scheme, giving different profiles of variability depending on details of its for-

mulation. All the stochastic schemes investigated scaled-up this internal convective variability,

giving an increased range of states, which caused increases in mean layer-cloud condensate and

lower-troposphere moisture fluxes. The ensemble-mean response was also strongly influenced by

changes in convective activity, which were highly dependent on the atmospheric state, modelling

framework, and type of stochastic scheme used. Physical mechanisms have been identified for

some of these changes, but others maybe model artefact. The aqua-planet’s large-scale circu-

lation was found to be insensitive to simple stochastic schemes. But the cloud responses gave

significant surface radiative forcings, so the coupled atmosphere-ocean system would be likely to

experience noise-induced drift. Investigation of a stochastic scheme designed to sample sub-grid

variations in convection suggested sub-grid uncertainties dominate parameterisation uncertainties

at grid-scales of 50km or less.
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Chapter 1: Introduction - Motivation and Theoretical Basis

CHAPTER 1:

INTRODUCTION - MOTIVATION AND

THEORETICAL BASIS

1.1 OVERVIEW

The ability of science to forecast the weather (an initial-value problem, or so-called “prediction

of the first kind”) is limited by the chaotic exponential growth of errors in the initial state. Anal-

ogously, our ability to simulate the climate and predict its future nature under changing radiative

forcings (a “prediction of the second kind”) is also limited by chaotically amplified manifestations

of errors, this time in the representation of the atmosphere’s governing equations in models. This

is described in section 1.2.

As described in section 1.3, the main source of these errors is thought to be in the parame-

terised representation of processes not resolvable in current discretised global model grids, and

various studies have linked biases in climate models to deficiencies in parameterisations.

Section 1.4 discusses one common deficiency; the unrealistic (often under-estimated) vari-

ability of many parameterisations at the smaller scales / faster frequencies which are resolvable.

This problem is expected from theoretical considerations; the deterministic bulk parameterisa-

tions employed in GCMs do not account for the uncertainties in the unresolved sub-grid vari-

ability of the atmosphere. Rather, they assume sub-grid fluctuations to be sufficiently small-scale

to be in a statistical equilibrium, such that their contributions to the resolved-scale average to

a well-defined form which is entirely predictable from the resolved state. Observations do not

support this assumption in the real world. Also, some studies have linked the failure of models

to correctly simulate some large-scale / slow modes of atmospheric variability to their inade-

quate high-frequency variability. This suggests that the correction of some atmospheric model
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Chapter 1: Introduction - Motivation and Theoretical Basis

biases may require improvements to the realism of the variability of sub-grid parameterisations,

which in turn may require the parameterisations to account for sub-grid uncertainties through

non-deterministic formulation.

This paradigm has motivated the development of a range of stochastic parameterisations,

described in section 1.5. Another, parallel motivation for such schemes has been in efforts to rep-

resent modelling uncertainties in ensemble prediction systems, which give over-confident fore-

casts when accounting for initial condition uncertainty alone. The deficient variability of pa-

rameterisations and the deficient spread of ensemble forecasts are thought to share some of the

same theoretical under-pinnings, in the failure of deterministic parameterisations to represent

sub-grid uncertainties. Modellers have attempted to tackle these problems using three broad ap-

proaches; generically sampling uncertainties in existing sub-grid parameterisations, developing

new sub-grid parameterisations which are inherently stochastic in formulation, and stochastically

re-introducing energy which is unphysically diffused from model fields.

Whilst methods have now been established to alter the high frequency variability in atmo-

spheric GCMs in a range of different ways (often yielding improvements in forecast skill), the

sensitivity of the atmosphere to the nature of its high-frequency variability is not well understood.

The sensitivity of a much simpler dynamical system to stochastic forcing (illustrated in section

1.6) can be understood more trivially, and indicates several categories of system sensitivity to

high-frequency variability which the atmosphere can also display.

This thesis addresses some of the unknowns regarding the sensitivity of the atmosphere to its

own high frequency variability: Does the atmosphere respond generically to any form of “noise”

at high frequencies, or to what extent does its response change depending on details of the noise or

the atmospheric state? How important is sub-grid state uncertainty relative to overall parameter-

isation error? And by what mechanisms does high-frequency variability influence well-resolved

climatic behaviour? These questions are discussed further in section 1.7. Shedding some light

on these issues should help to guide the choice of stochastic parameterisations for GCMs, and

indicate how sophisticated such schemes need to be. It would also be of general interest in under-

standing scale interactions in the atmosphere.

A general experimental methodology to address these questions is outlined in section 1.8.
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Sensitivity of the atmosphere to high-frequency variability will be investigated by comparing

several different stochastic parameterisations from the literature in a common host model, along

with some alternative deterministic modifications which also affect the high-frequency variability.

Complimentary experiments are performed in a Single-Column Model (SCM) and a 3D Aqua-

Planet framework, to disentangle aspects of the atmospheric response due to resolved dynamical

processes and sub-grid / non-dynamical processes.

In chapter 2, the stochastic and deterministic model configurations to be studied are described,

the SCM framework is described and validated, and its high-frequency variability is investigated.

In chapter 3 the SCM is then used to compare all the model configurations, and key sensitivities

of the parameterised sub-grid and non-dynamical processes to the differences in high frequency

variability are investigated. Chapter 4 shows results in the 3D aqua-planet framework, with a hor-

izontal resolution consistent with climate simulations, comparing two different stochastically per-

turbed configurations against a deterministic control simulation. Overall conclusions are drawn

in chapter 5.

Some of the Single-Column Model work presented in chapters 2 and 3 was presented in the

peer-reviewed literature in a paper co-written by myself and my supervisor Robert Plant (Ball

& Plant 2008; Ball is this author’s former surname pre-marriage). However, the work has been

vastly expanded since then, with many additional results and conclusions from the Single-Column

Model experiments presented in those chapters of the thesis.

1.2 CHAOS AND CLIMATE MODELLING

If a small perturbation is made to the state of the atmosphere at some specified initial time, its

state at later times will diverge exponentially from what it would have been had the perturbation

not occurred. Eventually the state initially perturbed only slightly will bare no recognisable sim-

ilarity to the unperturbed version of events. This phenomenon, famously discovered by Edward

Lorenz in 1961 and popularly known as the butterfly effect, is exhibited even in vastly simpli-

fied models of the atmosphere (as in Lorenz’ first paper on the subject, Lorenz 1963). However,

if the evolution of both the perturbed and unperturbed futures were somehow followed and ac-

curately measured over sufficiently many years, one would expect that the mean state and the
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statistics of the variability in each would be alike. In other words, we expect that the nature of

the atmosphere’s climate is determined purely by the basic parameters of the system (the Earth’s

radius, rotation-rate and the mass of the atmosphere), the external forcings at its boundaries (the

properties of the Earth’s surface and the distribution of solar and terrestrial radiation), and the

governing equations. Perturbing the initial conditions simply selects a different realisation with

the same statistical properties. On this basis we can make useful predictions of future climate

under changing external forcings many tens of years ahead, despite the fact that the atmosphere’s

chaotic nature limits our ability to predict its state at a specific time beyond a few days ahead. One

simply needs to create a model capable of correctly reproducing the climate as a function of the

Earth’s basic parameters and external forcings, and use it to investigate how the climate changes

as the external forcings are varied according to some future scenario.

However, the construction of such a model has turned out to be a very non-trivial task. This

can perhaps be illustrated by drawing a parallel to the popular “butterfly effect” allegory: Whilst

a single stroke of a butterfly’s wing will indeed alter the specific course of future weather, it will

make no difference to the weather’s general nature; the climate. However if one were somehow

to systematically alter, say, the rules by which all the Earth’s bees behave and interact, there could

potentially be knock-on effects on the pollination rates of numerous plant species, and hence on

vegetation cover and the wider ecology, and hence on transpiration and other factors that affect

the climate. However, due to the level of complexity and non-linearity involved, it might be

as hard to foresee the climatic impact of the change in the bees’ behaviour as it is to predict

the precise consequences of the butterfly’s wing-beat. So, whilst weather forecasters recognise

that a seemingly insignificant change in the initial state of the atmosphere can drastically alter

the weather in a few days time, climate modellers also have to consider the possibility that a

seemingly insignificant change in the rules governing the atmosphere could substantially alter its

general behaviour. (see figure 1.1). Or in dynamical terms, just as the future trajectory of the

atmosphere’s state in phase space is extremely sensitive to small changes in the initial conditions,

the shape of the attractor which the trajectory follows may be highly sensitive to small changes in

the governing equations.

This is a frustrating problem because the representations of the atmosphere’s governing equa-

tions used in models are not fixed to a precisely known set that represents the real world. Since

Page 5



Chapter 1: Introduction - Motivation and Theoretical Basis

Figure 1.1: Schematics showing (top) the sensitivity of the future state of a system to its initial condi-

tions, and (bottom) the sensitivity of a system’s climate to its governing equations.

any simulation of the atmosphere must employ approximations in order to represent a continuous

fluid with a finite set of variables in a computer program, all climate models contain some degree

of error which could potentially manifest in an amplified way in the model’s climatic behaviour.

Even if a simulation gives a proper conservative treatment of mass, heat, momentum and moisture

and can accurately predict the evolution of the weather over a few days, one cannot assume that

it will accurately reproduce the climate. Indeed, if it is run over a longer time, even small inac-

curacies in its representation of the governing equations may cause it to drift in to an unrealistic

state and produce a climate which differs substantially from that in the real world. Even current

state-of-the-art climate models do exhibit considerable biases in this way. For example, see the
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IPCC fourth assessment report (AR4), Working Group I, chapter 8, on “Climate Models and their

evaluation” (Randall et al. 2007).

Of course, deficiencies in the simulation of the atmosphere are by no means the only cause of

biases in climate models. Inaccuracies in the modelling of the ocean, land-surface, cryosphere,

biosphere, aerosols and chemistry all have roles to play, as does the way these components are

coupled to each-other and uncertainties in external climate forcings. Non-linear coupled inter-

actions between all these climate-system components can vastly amplify biases and raise the

challenge of climate modelling to a whole new level of difficulty and complexity, but even if a

state-of-the-art atmosphere-only model is run with all of the boundary conditions accurately spec-

ified, substantial climatic biases occur (this is discussed in the following section 1.3). It is these

issues, which are internal to the atmosphere and relate to our understanding of it, with which this

thesis is concerned.

In weather forecasts, it is now common practice to quantify the uncertainty caused by the

growth of errors in the measurement and analysis of the initial state of the atmosphere by run-

ning an ensemble of forecasts in which each member has a different small perturbation added

to its initial conditions, corresponding to the margin of error in the observed initial state. Since

the availability of computational resources limits the number of ensemble members in these En-

semble Prediction Systems (EPS), it is important to know which possible initial perturbations the

atmosphere’s future states will be most sensitive to, so that the divergent futures associated with

these possibilities are not missed. Fortunately there are now well established analytical methods

to determine the most sensitive modes of perturbation, such as Singular Vectors (see ch. 6 of

Kalnay 2003) or Ensemble Transform Kalman Filters (Wang & Bishop 2003). Similarly, climate

modellers want to know precisely which perturbations to a model’s formulation the model’s cli-

mate will be most sensitive to, so that efforts to improve model formulation can be well targeted.

Unfortunately, to the author’s knowledge there is no analytical shortcut to calculate this informa-

tion, so the only way forward for the climate modelling community has been to carry out a vast

number of integrations with a plethora of different experimental model configurations. This has

led to a wealth of literature identifying which atmospheric processes are poorly represented in

models, and the implications of these deficiencies for simulations of the climate.
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1.3 THE ROLE OF UNRESOLVED PROCESSES

As discussed in the previous section 1.2, the primary difference between the governing equations

in atmospheric simulations and those in the real world is the finite resolution of the former. Of

course the numerics of simulations are designed with the aim of quickly and smoothly converging

towards the true solution of the model equations with increasing resolution. However, the residual

inaccuracies will likely suffer large non-linear amplification, causing the simulated climate not to

converge, if the resolution is too coarse to resolve some feature of atmospheric flow which plays a

role in determining the climate. The atmosphere components of the current generation of climate

models typically have a horizontal resolution of the order 100 km and a time-step of the order

30 minutes. This is not sufficient to resolve a number of key atmospheric features, including

boundary layer turbulence, moist buoyancy-driven convection, the inhomogeneity of clouds and

their interaction with radiation, cloud microphysical processes, a significant part of the gravity

wave spectrum, and some forms of 2D turbulence in the large-scale flow (see figure 1.2). If these

sub-grid processes were not represented at all in a model, obvious large inaccuracies would result.

Fortunately, they can at least to some extent be predicted from larger-scale features of atmospheric

flow, so modellers have had considerable success representing their effects on the resolved state

of the atmosphere using parameterisations which are themselves functions of the resolved state

(as represented by the state at individual model grid-points, or vertical columns of grid-points).

These parameterisation schemes typically combine well-defined physics with assumptions

of dubious validity and empirical data in order to construct closed calculations of the “sub-grid

tendencies” in atmospheric variables such as temperature, humidity and wind velocity. Since

the above-grid scale component of the atmosphere’s dynamics that is resolved by a model is

comparatively well-defined by its representation of the governing equations, the errors associated

with a model’s formulation can largely be attributed to inaccuracies in the sub-grid tendencies,

and hence to the assumptions and approximations made in the model’s sub-grid parameterisations.

Parameterisations are therefore a major focus in efforts to improve the performance of climate

simulations, and state-of-the-art models host an increasingly sophisticated and varied array of

these schemes.

But even the most accurate parameterisation sets yet developed have substantial deficiencies,
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(a) Heat and moisture mix from the surface in turbulent

motions with scale a few m, visible in steam fog on

Whiteknights Lake, Reading, October 2005.

(b) Air rises out of the boundary layer in a buoyant

moist plume roughly 10 km across, near Cheltenham,

August 2009.

(c) A layer of altocumulus displaying inhomogeneity

on a range of scales, from a few km down to a few 10’s

of m, near Taunton, July 2010.

(d) Ice particles forming in altocumulus grow and fall

from the clouds but sublimate before reaching the sur-

face, over the Isles of Scilly, June 2008.

(e) Cloud forms on the crests of horizontally propagat-

ing gravity waves with wavelengths around 1 km and

100m over Reading, September 2009.

(f) A broad swirl pattern in stratocumulus visible from

an aircraft indicates an eddy with a horizontal scale of

several 10’s of km, over the N Atlantic, August 2009.

Figure 1.2: Six examples of common features of atmospheric flow which are not resolved at a typical

climate GCM resolution; (a) boundary layer turbulence, (b) moist convection, (c) cloud inhomogeneity,

(d) cloud microphysical processes, (e) gravity waves, and (f) 2D turbulence in the large-scale flow.

Photos courtesy of Helen Whitall.
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which manifest as substantial biases in climate models. Randall et al. (2007) give an overview of

biases that are common to many current climate models (those used in the IPCC’s 4th assessment

report). As they discuss, some of the most serious biases are associated with errors in the simu-

lation of the tropical circulation, such as the large errors in annual mean rainfall patterns over all

three tropical ocean basins.

Some of these biases are reduced or removed when Sea Surface Temperature (SST) patterns

are constrained to near those observed. For example, Dai (2006) shows that the spurious double

ITCZ pattern common to most coupled simulations does not occur in those models which employ

surface flux-corrections to maintain realistic SSTs. Errors in the ocean model-component and its

coupling to the atmosphere presumably play a role in these particular problems.

However, many other serious biases in tropical rainfall are purely atmospheric in origin. For

example, Slingo et al. (2003) show that a climate model’s dry-bias over the Maritime Continent

associated with an under-estimation of the strength of the ascending branch of the Walker cir-

culation in that region occurs even when SSTs are prescribed according to observations. They

attribute the bias to the model’s failure to represent interactions between sea-breeze circulations

and deep moist convection. Also, Neale and Slingo (2003) show that these biases are not reduced

even under a three-fold increase in a model’s horizontal resolution. If the biases were caused by

the coarse-grained representation of the pattern of land, sea and orography or some element of

large-scale atmospheric dynamics, one would expect this increase in resolution to reduce them.

But processes that are parameterised in climate models are still not resolved at the enhanced res-

olution. This supports the notion that such biases are caused by deficiencies in the parameterised

representation of sub-grid processes.

Aside from biases in the pattern of mean rainfall, a number of important aspects of atmo-

spheric variability in the tropical circulation are poorly simulated in most models. One of the key

deficiencies is in the diurnal cycle of convective cloud and rainfall over both land and oceans.

As shown in Yang and Slingo (2001), models tend to phase the diurnal cycle of deep convection

several hours earlier than in the real world. Another common failing in the simulation of tropical

rainfall variability is the tendency for models to over-estimate the frequency of rainfall in gen-

eral, but to produce too much light rain whilst under-estimating the frequency of heavy rainfall

events. A number of current state-of-the-art climate models are shown to have this problem in Dai
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(2006). Both of these common model-errors are clearly linked directly to the parameterisations

which generate convection, clouds and rain in the models.

There has also been a persistent failure by models to realistically simulate the Madden-Julian

Oscillation (MJO). In models, this convectively coupled equatorial wave usually does not propa-

gate coherently as it does in the real world, or it propagates at the wrong speed. Also, its amplitude

is typically under-estimated so that it fails to stand out as a leading mode of tropical rainfall vari-

ability as observed. These and other errors in the simulation of the MJO are examined in IPCC

AR4 climate models by Lin et al. (2006). They note that the ability of models to simulate the

characteristics of the MJO has no systematic dependence on a model’s horizontal resolution, but

does exhibit dependence on the type of convection parameterisation used. Similarly, Rajendran et

al. (2008) find that even increasing the horizontal resolution to a 20km grid-size does not improve

the simulation of the MJO, and attribute its unrealistic weak amplitude and lack of coherent prop-

agation in their simulations to “the basic deficiency of the parameterised convection”. Inness et al.

(2001) do find an improvement in the simulation of the MJO when a model’s vertical resolution

is increased. They attribute this to the resulting better representation of the stable layer around

the melting level, which promotes the formation of cumulus congestus-type convection which

terminates at this level and produces little rain, resulting in a moistening of the mid-troposphere

during suppressed phases of the MJO. This observed mode of convection, which they suggest is

important in reinforcing the MJO phase cycle, did not occur in the model with the lower vertical

resolution. However, as they suggest in their conclusions, this merits a redesign of convection

parameterisations so as to properly represent the congestus convection mode.

In summary, there are a number of key failings in climate models identified in the literature

which are thought to be associated with erroneous or inadequate representation of unresolved

processes in the atmosphere. It is perhaps unsurprising that the tropics are the region of the world

where the circulation is most sensitive to errors in atmospheric parameterised processes; the trop-

ical circulation is largely determined by the influence of the SST pattern (this is demonstrated

in an aqua-planet framework by Neale & Hoskins 2001b), which is mediated through boundary

layer mixing, the formation of boundary layer cloud, and deep convection, which are all param-

eterised in climate models. In order to improve the ability of models to reproduce the Earth’s

observed climate (and predict future climate), the key deficiencies in the sub-grid parameterisa-
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tions for such processes must be addressed. This thesis is concerned with a particular deficiency

that is common to the behaviour of many important sub-grid schemes used in climate models; the

unrealistic nature of their variability near the scale of a model’s grid-size and time-step length.

This is discussed in the following section 1.4.

1.4 THE ROLE OF HIGH-FREQUENCY / SMALL-SCALE VARIABIL-

ITY

Despite the increasing success of parameterisations in producing realistic average sub-grid ten-

dencies and climate mean-fields, many have been reported to produce deficient or unrealistic

variability, especially on short timescales (that is, the shorter timescales resolvable by climate

GCMs; of the order a few hours). In this regard, the main parameterised process discussed in the

literature, and the most important one for generating high-frequency variability in the atmosphere

(on the aforementioned timescales), is cumulus convection. As described in the previous section,

convection parameterisations commonly fail to produce a realistic diurnal cycle of rainfall, and

often yield unrealistic frequency distributions for the intensity of rainfall.

Shutts & Palmer (2007) found that the diabatic heating rates from a Cloud Resolving Model

(CRM) simulation, if coarse-grained to a typical GCM resolution, still had much broader PDFs

than the tendencies from a GCM convection parameterisation. Since the CRM explicitly resolves

deep moist convection, it is assumed to give a reasonable representation of the variability of con-

vective heating and rainfall, which the parameterisation severely underestimated in comparison.

Ricciardulli & Garcia (2000) suggest that momentum transported vertically by the smaller-

scale gravity wave modes (which are excited by high-frequency variability in convective heating

in the tropics) is important in generating observed low-frequency modes of variability in the

middle-atmosphere, such as the Quasi-Biennial Oscillation (QBO).

It should be emphasised that the spectrum of convective heating in the troposphere is by no

means the single primary factor influencing the QBO. Processes known to be of great importance

include the excitation of a broad spectrum of wave modes (convective heating is one source, but

there are others such as flow over orography), the vertical propagation of these waves, wave-
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breaking in the stratosphere, and the stratosphere’s response and internal dynamics. Studies such

as Ricciardulli & Garcia (2000) point out that models must have sufficient vertical resolution in the

stratosphere, with sufficiently little diffusion, in order to represent these processes. Employing a

non-hydrostatic dynamical formulation is also vital for simulating the resolved-scale wave-modes,

and good parameterisations for sub-grid gravity waves are important.

However, Ricciardulli & Garcia (2000) do suggest that the deficient variability of convec-

tive parameterisations, and the resulting under-estimation of high-frequency gravity-wave activ-

ity, may explain why many GCMs poorly reproduce the QBO even when the stratosphere is

well-resolved. They also hypothesise in their conclusions that convective variability may play an

important role in exciting tropospheric modes such as the MJO through similar mechanisms.

Horinouchi et al. (2003) dispute the notion that most convective parameterisations underesti-

mate high-frequency variability, showing that the range of models in their study are actually scat-

tered around the best observational estimate of the frequency power spectrum of tropical precipi-

tation. However, in their results it appears that those models which employ penetrative mass-flux

convection schemes, and which produce the most realistic mean tropical precipitation patterns,

are the ones that tend to under-estimate the convective variability. This view was supported by

Amodei et al. (2001), who note in their conclusions that GCMs which use simple Moist Con-

vective Adjustment schemes are able to generate a full spectrum of tropical wave activity close to

that observed, whilst those which employ more sophisticated convective parameterisations tend

not to.

Some models do indeed exhibit more realistic amounts of high-frequency variability associ-

ated with sub-grid processes, especially convection, but this is often unrealistic and can be gen-

erated by numerical artefact rather than successfully representing the high frequency variability

of the relevant physical processes. A common example of this is the unrealistic discrete “on-off”

behaviour of many mass-flux convection parameterisations. This is noted by Stiller (2009), who

identified this spurious numerical noise behaviour as a major difficulty when developing a lin-

earised version of the Met Office Unified Model’s convection scheme for use in a Tangent Linear

Model (TLM)1. The mechanisms behind such behaviour are studied in detail in the Unified Model

1A linearised version of a forecast model which is a vital component in 4D-Var data assimilation, and must behave

smoothly to perform well
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by Willett & Milton (2006) in their section 5.2 on the time-step by time-step behaviour of the con-

vection scheme. Each time the parameterisation produces deep convection, it warms the column

above the initiating layer through compensating subsidence, but cools the levels beneath it via

downdrafts and evaporation of precipitation. This creates a stable convective inhibition layer at

the source layer which must then be eroded by boundary layer mixing or shallow convection over

the following time-step(s) before deep convection can trigger again.

Scinocca & McFarlane (2004) suggest that in models with penetrative mass-flux convection

schemes, much of the variability in tropical rainfall and latent heating is actually driven by the

large-scale precipitation scheme (the parameterisation that simulates rainfall associated with the

resolved circulation, rather than unresolved features), whilst the convection parameterisation ex-

hibits very deficient variability indeed. However, they show that the amount of high-frequency

variability generated by the convection scheme can be greatly increased by altering the details of

the scheme. In particular they find that if a prognostic closure for the convective mass-flux is used,

the scheme generates realistic amounts of high-frequency variability. In the standard convection

scheme in the model used in their study, the closure relates the convective mass-flux directly

to Convective Available Potential Energy (CAPE), as in most so-called CAPE-closure schemes.

However, they modified it by relating the rate of change of the mass-flux to CAPE instead, result-

ing in a large increase in the variability of the scheme, without worsening the modelled pattern of

mean precipitation.

Approaches such as the Scinocca & McFarlane (2004) prognostic CAPE closure scheme es-

sentially force the convection to respond to the generation of convective instability on longer

time-scales (of order a few hours as opposed to one time-step), suppressing the near-instantaneous

removal of instability and time-step to time-step “on-off” noise that occurs in many CAPE-closure

mass-flux convection schemes. This should allow any instability that arises to persist over longer

timescales before it is removed, which should lead to a stronger, more coherent atmospheric re-

sponse to the convective instability. It is therefore perhaps unsurprising that such an approach

amplifies the high-frequency variability overall, despite suppressing the unphysical variability at

the very fastest timescales. However, the physical justification for forcing parameterised con-

vection to respond on longer timescales is unclear, given that timescales of less than an hour are

consistent with typical cumulus plume life-times in observations and Cloud-Resolving Models.
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One could interpret such efforts as an ad hoc means of tuning an existing numerical source of vari-

ability (the on-off noise of the convection parameterisation) to behave more like the unrepresented

physical sources. Also, some models may be more prone to numerical instability associated with

“grid-point storms” if convective instability is allowed to build up over longer timescales.

Variability in convection and tropical rainfall are not the only issues concerned with high-

frequency variability. Many models display unrealistically low mesoscale eddy activity in the

mid-latitude storm-tracks, due to effects of the grid-scale truncation on the energy spectrum, the

numerical diffusion associated with the dynamical scheme, or artificial diffusion which is added to

aid numerical stability. This is evident in the unrealistically rapid drop-off in the energy-spectra

of model winds at small scales (e.g. Shutts 2005), relative to observed spectra which actually

become less steep at small scales (Gage & Nastrom 1986). This deficiency is seen even at synoptic

scales much larger than the grid-resolution and worsens as the grid-scale is approached. It has

been suggested that this could play an important role in the common failure of GCMs to predict

the frequency of mid-latitude atmospheric blocking events (a phenomenon characterised by the

occurrence of a strong, persistent anticyclone in the mid-latitude storm track and the interruption

or reversal of the prevailing Westerly winds).

D’Andrea et al. (1998) found a systematic tendency for atmospheric models to underesti-

mate the occurrence of blocking in a study of 15 different GCMs as part of the Atmospheric

Model Intercomparison Project (AMIP). Interestingly, their study did not suggest any tendency

for the models with higher resolutions to give better simulation of blocking frequency. Although

model skill in forecasting blocking has in fact improved over subsequent model upgrades, under-

prediction of blocking has remained a key deficiency in medium-range forecasts despite increases

in model resolution. For example, Pelly & Hoskins (2003) found that the ECMWF ensemble

prediction system gives a modest systematic under-prediction of Northern hemisphere blocking

frequency, which worsens with increasing forecast lead-time, suggesting that the ensemble drifts

towards a climatological blocking frequency significantly lower than that observed.

Meanwhile, a number of studies have shown that momentum transports by synoptic and

smaller scale eddies in the mid-latitudes play a key role in the formation and maintenance of

atmospheric blocks (e.g. Luo et al. 2001), and that the amount of high-frequency variability in

general could be crucial in determining the ability of the mid-latitude circulation to transition in

Page 15



Chapter 1: Introduction - Motivation and Theoretical Basis

to a blocked state with the observed frequency (Molteni & Tibaldi 1990). It has therefore been

suggested that up-scale backscatter of variability at unresolved scales on to resolved scales may be

vital in reproducing the observed energy spectra for atmospheric flow, and in turn the frequency

and nature of mid-latitude blocking events (e.g. Jung et al. 2005). This has motivated the de-

velopment of schemes to reinject the kinetic energy dissipated by unphysical diffusion in models

back in to the resolved flow; these are discussed in section 1.5. One could think of the unphysical

diffusion present in a GCM as a crude parameterisation for mixing by the unresolved eddies. And

just as with the convective parameterisation, there is then a strong argument for improving it in

order to better represent the high-frequency, small-scale variability associated with the sub-grid

features.

There are sound theoretical reasons to expect that parameterisations will underestimate the

variability associated with unresolved processes. Lin & Neelin (2002) state in their introduction

that “In the atmosphere it is reasonable to hypothesise that for a given large-scale temperature and

moisture field, there is a contribution to the variability of convection that arises inherently from

small-scale motions, but which are not well represented by large ensemble means.” The “ensem-

ble” referred to here is the ensemble of sub-grid features (e.g. convective plumes) that would be

present in the real atmosphere within an area equivalent to a model grid-box. Parameterisations

that represent the effect of sub-grid features on the resolved state purely in terms of the resolved

variables must consider the features they represent in an ensemble mean sense, since they know

nothing about the sub-grid state or the associated variability in the ensemble of features. As dis-

cussed by Williams (2005), this is a valid treatment of the unresolved features provided that the

grid-box area would contain a sufficiently large ensemble of them to yield a stable ensemble-

mean statistic. Such a case, in which a sample is large enough that its statistics are stable and

reliably match those of a hypothetical infinite background population, is known as a statistical

equilibrium.

However observations indicate that, whatever model resolution is chosen, the real atmosphere

does not exhibit any clear “scale-break” between atmospheric features which are resolvable and

those that are small enough to parameterise according to a statistical equilibrium assumption. For

example, Gage & Nastrom (1986) presented wavelength power-spectra for winds in the upper

troposphere which show a continuous spectrum of atmospheric variability, with spectral power
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decreasing according to a split power-law from the planetary scale down to a few kilometres.

Therefore as Williams (2005) points out, whatever resolution a model employs, the most energetic

unresolved features will likely be those with spatial scales just below the smallest resolvable scale

(in the case of climate GCMs, the most energetic unresolved features are organised convective

systems). Thus only a small number of these features can be contained in a grid-box area, and

large deviations from statistical equilibrium will be inevitable. This has the consequence that the

effect of unresolved processes on the resolved state cannot be expressed purely as a function of

the resolved state, but will inevitably have some variability dependent on fluctuations in the state

of the ensemble of sub-grid features. The sub-grid state is of course undefined in models, so the

component of grid-scale variability associated with it is not represented by the parameterisations

and is absent in atmospheric simulations.

In summary, a range of modelling and observational studies suggest that atmospheric GCMs

have difficulty in reproducing the variability observed in the real atmosphere at the smaller space-

and time- scales they can resolve. This model deficiency has commonly been found to be highly

sensitive to the details of the sub-grid parameterisations employed, suggesting it is indeed asso-

ciated with common failings of sub-grid parameterisations. Theoretical considerations regarding

the formulation of sub-grid parameterisations, which contain no information about the uncer-

tainty of the sub-grid state in each grid-box, could explain the ubiquity of this problem. Some

studies have also suggested that the deficiency of high-frequency variability can cause larger,

slower modes of atmospheric variability, such as the QBO, the MJO and mid-latitude blocking,

to be poorly represented in models as well. Thus this issue not only relates to the realism of the

statistics of rainfall and other atmospheric variables on short time-scales, but has implications

for the fidelity of climate simulations overall. This has motivated numerous efforts to improve

the variability of the parameterisations used in GCMs on small space- and time- scales in recent

years, by introducing random elements to them to account for the inherent uncertainty in the sub-

grid processes they represent. These so-called stochastic parameterisations are discussed in the

following section 1.5.
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1.5 STOCHASTIC PARAMETERISATIONS

The stochastic parameterisations so-far developed broadly tend to fall into three categories, in

terms of their basis and motivation: those designed to account for modelling uncertainties in

Ensemble Prediction Systems, those which aim to represent physical sources of variability asso-

ciated with likely variations in the unknown sub-grid state, and those which attempt to counter

the unphysical effects of the grid-scale truncation in models through ”backscatter” of unphysi-

cally diffused kinetic energy back on to the resolved scale. Each of these is described below, with

examples from the literature given. As we will see, there turns out to be a certain amount of over-

lap between these three motivations. For example, sub-grid variability is itself a source of forecast

uncertainty, so stochastic schemes designed to address the former are routinely implemented in

ensemble weather forecasts to account for the latter.

1.5.1 MODEL UNCERTAINTY SCHEMES

1.5.1.1 PRAGMATIC BASIS

As noted in section 1.2, in ensemble prediction systems it is desirable to sample the range of

possible future realisations as fully as possible, with a spread of ensemble members consistent

with the true uncertainty of the forecast. If this is achieved, the spread of ensemble members

at some lead-time (as measured by their standard deviation from the ensemble mean) should be

equal to the root-mean-square error of the ensemble mean forecast (relative to the actual observed

state of the atmosphere at that future time). Traditionally, the uncertainty in the forecast was

quantified entirely by the margin of error in the analysis state used to initialise the forecast, and

the growth of this error with time.

However, in practice even the most rigorous treatment of initial condition uncertainty (ac-

counting for observational error, the sparsity or lack of representivity of observations, and error

in the data assimilation system used to generate the analysis) tends to yield ensemble predictions

in which the error of the ensemble mean is on average somewhat larger than the ensemble spread.

This means the future observed state falls outside the range predicted by the ensemble more often

than it statistically should if the ensemble were an unbiased sample of possible future realisations.
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This has two possible interpretations; either some genuine source of uncertainty has not been ac-

counted for in the spread of ensemble members, or the ensemble members are systematically

biased away from the atmosphere’s true evolution due to systematic biases in the model. In fact,

both are almost certainly the case. As discussed earlier, there is an unaccounted-for source of

uncertainty in that the resolved-scale effects of unresolved processes at-least partly depend on the

unknown sub-grid state. And of course atmospheric GCMs do indeed exhibit systematic biases.

As also aforementioned, these biases can largely be associated with deficiencies in sub-grid

parameterisations. Arguably, any sub-grid parameterisation must make assumptions not based

on physical laws in order to obtain closure, and it is unclear what the most appropriate choice

of assumptions for a given parameterised process should be. A pragmatic approach is to treat

the model error associated with sub-grid parameterisations as an additional source of forecast

uncertainty; that associated with the uncertain formulation of the optimal parameterisation set

possible, given the limits of current scientific understanding and computational resources. If a

single, fixed, deterministic set of parameterisations is chosen for all members of an ensemble

forecast, this ”parameterisation uncertainty” has not been sampled adequately, and one would

expect the ensemble to have deficient spread.

These considerations have led to the development of stochastic schemes aiming to sample the

structural uncertainty of model parameterisations within ensemble forecasts. They are designed

simply to pragmatically account for this source of uncertainty, analogously to the initial condi-

tion perturbations used to account for initial condition uncertainty. As such there is no direct

requirement for them to behave like known physical sources of variability, provided that they

don’t induce unfavourable model biases. Indeed, it is important that such a scheme samples the

plausible range of tendencies that could be produced by sub-grid processes at each time-step as

fully as possible. Thus fairly broad, generic methods are often considered appropriate for this

type of stochastic parameterisation.

The un-accounted-for forecast uncertainty associated with the unknown sub-grid state doesn’t

immediately appear to be represented by such a scheme. However, this uncertainty is likely to

manifest in the deficient variability of sub-grid parameterisations, which, as discussed in the pre-

vious section, is thought to contribute to other systematic model biases. And many stochastic

methods aimed at addressing parameterisation uncertainty do so by boosting the variability of the
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parameterisations. So in practice, the theoretically-based concept of sub-grid state uncertainty

and the more pragmatically-based concept of parameterisation uncertainty have a high degree of

overlap. As such, many stochastic schemes designed to represent specific physical sources of

variability, or backscatter unphysically diffused energy on to the resolved flow (described in later

subsections) are often applied in ensemble forecasting contexts to account for associated uncer-

tainties. Here however, we discuss methods aimed specifically at sampling model uncertainty.

1.5.1.2 PERTURBED PHYSICS AND MULTI-MODEL APPROACHES

Before discussing stochastic methods, it should be mentioned that many studies have aimed to

represent modelling uncertainty in ensemble forecasts without introducing any stochastic element.

Instead, they sample a range of different deterministic model configurations within an ensemble.

Such systems are often referred to as “perturbed physics” ensembles. Some examples from the

literature are discussed below.

Houtekamer et al. (1996) created an ensemble forecast system in which different versions

of a model’s convection, radiation, and gravity-wave drag schemes were applied in each ensem-

ble member. Whilst this “multi-parameterisation” approach yielded some increase in ensemble

spread, they found the ensemble was still under-spread relative to observations, and concluded

there were further sources of uncertainty not captured by it.

Mylne et al. (2001) showed that an ensemble combining forecasts from the Met Office Uni-

fied Model and the ECMWF Integrated Forecast System out-performed both of the two centre’s

individual forecast systems, giving weight to the idea of representing model uncertainty through

the use of a multi-model ensemble.

Perhaps the most-used perturbed physics ensemble method is to sample the range of plausible

values for free parameters within a given parameterisation set. The assumptions made to ob-

tain closure in sub-grid parameterisations usually involve the introduction of parameters, which

control the rate or relative importance of some aspects of the sub-grid process being modelled.

For example, convection parameterisations often contain a prescribed timescale over-which con-

vective instability is removed, whilst cloud schemes often contain a parameter controlling the

degree of sub-saturation at which cloud may begin to form due to sub-grid inhomogeneity in the
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moisture-field. The values of such parameters cannot be defined exactly from theory and must

be estimated, based on observations, high-resolution modelling studies, or by tuning them so as

to optimise model performance. Such considerations may place some constraints on parameter

values, but in most cases a broad range of values can still be considered appropriate. By assigning

different parameter values sampled from within this range to each member of an ensemble, one

can account for the associated uncertainties in a forecast.

Of course, this paradigm has weaknesses. Many aspects of structural uncertainty in param-

eterisations cannot be accounted for through parameter uncertainty (for example, we would not

expect that adjusting the parameters of a convection scheme closed on CAPE could encompass

the behaviour of an alternative formulation closed on moisture convergence). Also, the appro-

priate range of values to sample for a given parameter may be no better defined than the value

itself. However, modellers have had considerable success in accounting for at least a substantial

component of model uncertainty by sampling parameter uncertainty.

Yang & Arrit (2002) tested an ensemble seasonal forecast of rainfall over North America, in

which each ensemble member had a different fixed combination of values for the parameters in

its convection scheme. They found that the mean of this “perturbed parameter” ensemble out-

performed the forecast with default parameter values.

Murphy et al. (2004) also employed a perturbed parameter ensemble approach, to simulate

the climate-response to a doubling of atmospheric CO2. Their ensemble included perturbed pa-

rameters in the parameterisation schemes for all the sub-grid processes in the atmosphere climate

model HadAM3, coupled to a mixed-layer ocean model. Using this approach, they demonstrated

that the uncertainty in the climate response to a doubling of CO2 at the regional scale was consid-

erably larger than estimates based on scaling the response from an individual model configuration.

In Murphy et al. (2004), each ensemble member had only one of the model parameters

perturbed from its default value; their distributions for climate sensitivity were based on the as-

sumption that the effects of perturbations to different parameters would combine linearly and

independently. Stainforth et al. (2005) and Piani et al. (2005) expanded the approach by running

multi-thousand member perturbed physics ensembles, using the idle time on PCs belonging to

thousands of volunteers around the world, in the climateprediction.net project. With the much
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larger ensemble size, a more comprehensive sampling of the possible combinations of values for

different model parameters was possible, and non-linear interactions between perturbations to

different parameters could be accounted for.

Whilst ensembles which sample multiple models, configurations or parameter settings deter-

ministically as described above are useful for elucidating the sensitivity of predictions to model

uncertainty, they do not allow each ensemble member to explore the full range of model uncer-

tainty being sampled. Rather, each member (and correspondingly each version of the initial state)

accesses only one of the possible model configurations. In climate predictions, where the forecast

has little sensitivity to the initial state, this is of little consequence. But in an ensemble weather

forecast, it would be desirable to sample the full range of model uncertainty for each initial state,

and vice versa. In principal this could be achieved by running a perturbed-physics ensemble of

deterministic initial-condition ensembles, but the total number of ensemble members required to

adequately sample both initial conditions and physics in this way may be impractically large.

Another potential problem often pointed out in the literature with the multi-model or perturbed

physics approach is that each ensemble member in such a system has a different, unique attractor

and different biases. This is beneficial if one is aiming to sample the model-uncertainties in the

attractor (i.e. in climate predictions). But it yields an ensemble who’s members are not equally

skilful, due to their differing biases, making it difficult to obtain unbiased probabilistic forecast

information.

1.5.1.3 STOCHASTIC PHYSICS SCHEMES

An alternative, natural extension of the perturbed physics approach is to sample model uncer-

tainty in a random, time-varying manner within each member of an initial-condition ensemble.

Thus the ensemble members are qualitatively alike and share the same attractor. This has led to

the development of stochastic parameterisations in ensemble forecasts, as described earlier. In

such schemes, model uncertainty is no longer sampled in a time-mean sense, but its effects on

the time-wise evolution of weather systems are better sampled. As such, we expect a “stochas-

tic physics” ensemble to have a less-spread climatology than a perturbed physics ensemble, but

diverge towards its climatological spread more rapidly. In a weather forecasting context this is
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beneficial. It should avoid the tendency for some perturbed physics ensemble members to drift

towards divergent, unrealistic climatologies (this had to be accounted for in perturbed physics

climate studies such as Stainforth et al. 2005), and it should give larger, more representative

ensemble spreads at weather-forecast lead-times.

Such a method was pioneered by Buizza et al. (1999), who describe a “Multiplicative Noise”

stochastic physics scheme which was implemented operationally in the ECMWF’s medium-range

ensemble forecasting system. In their scheme, the net effect of all the model’s parameterisations

is considered to carry uncertainty proportional to its magnitude. To account for this, the net

tendencies (in temperature, moisture and winds) produced by all parameterised processes are

multiplicatively scaled by a random factor which varies in time, space, and between ensemble

members.

Sub-grid processes, such as deep convection, often exhibit coherent organisation on scales

greater than the grid-size / time-step, and Buizza et al. (1999) felt that the perturbation scalings

applied in their stochastic scheme should reflect this. They therefore applied autocorrelation

by holding the perturbation scalings constant over “tiles” of multiple neighbouring grid-points

/ consecutive time-steps. The scheme then has three tuneable parameters; the amplitude of the

perturbation scaling’s departures from unity, its autocorrelation timescale, and its autocorrelation

spatial scale. They chose values for these so-as to optimise the probabilistic skill of the ensemble.

They found the stochastic scheme increased the ensemble spread at all lead-times between 0 and

10 days, especially in the tropics, and gave significant improvements in the skill of the ensemble

forecast.

A similar stochastic multiplicative perturbation method is now also used in the ensemble

forecast system run by the Meteorological Service of Canada, as described by Charron et al.

2010. But unlike the Buizza et al. (1999) scheme, they perturb the parameterised tendencies

using a random pattern generated using spherical harmonics. Using this scheme, combined with

a stochastic backscatter scheme, the ensemble produced much more representative spreads than

its predecessor (which represented model uncertainty using a multi-parameterisation approach),

such that a previous artificial inflation of the initial condition perturbations is no longer needed.

The ECMWF ensemble has also recently been updated to generate perturbations using spheri-

cal harmonics (rather than the “tiling” method described in Buizza et al. 1999) and employ a
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stochastic backscatter scheme alongside the Multiplicative Noise scheme (Palmer et al. 2009).

Another simple stochastic physics method for sampling model uncertainty in an ensemble

forecast is the time-varying form of the perturbed parameter ensemble approach described earlier.

Arribas (2004) describes such a “Random Parameters” stochastic scheme, which has been imple-

mented operationally in the Met Office Global and Regional Ensemble Prediction System (MO-

GREPS, a short-range ensemble forecast system, described by Mylne et al. 2005). MOGREPS,

and the stochastic schemes it uses, have also been described more recently in the peer-reviewed

literature (Bowler et al. 2008,2009).

To sample parameterisation uncertainty, various model parameters are varied randomly in

time and between ensemble members, with the values drawn from within plausible ranges speci-

fied according to advice from experts on each of the relevant parameterised processes. As in the

“Multiplicative Noise” stochastic scheme of Buizza et al. (1999), it was felt that there should be

some autocorrelation between perturbations from one time-step to the next. In this case, autocor-

relation is specified by having the model parameters vary according to a first-order auto-regression

model. Unlike the Buizza et al. (1999) scheme, there is no spatial component to the variability

of the stochastic perturbations; complete spatial autocorrelation is forced by applying the same

parameter values at all grid-points each time-step. As with the Buizza et al. (1999) scheme, the

Random Parameters scheme was found to have a positive effect when introduced to an initial-

condition ensemble, giving a significant increase in ensemble spread.

The Multiplicative Noise and Random Parameters schemes described above consider model

uncertainty in a generic manner, applying stochastic perturbations consistently across all parame-

terised processes. Some other methods have treated model uncertainty in different parameterised

processes using different methods, often with a focus on the convection parameterisation.

For example, Bright & Mullen (2002) - added a stochastic term to the vertical velocity input

to a convection scheme’s trigger function, to account for uncertainty in where and when deep

convection should occur. They also stochastically perturbed the critical Richardson number in

the boundary layer scheme, to account for uncertainty in transitions between different turbulence

regimes. These stochastic schemes were applied in ensemble forecasts of the North American SW

monsoon, and found to give some increase in the spread and probabilistic skill of the ensemble.
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Similarly, Li et al. (2008) demonstrated a regional ensemble prediction system, perturbing

the convection scheme as in Bright & Mullen (2002), and also the threshold relative humidity for

cloud-formation due to sub-grid moisture inhomogeneity. They perturbed these using a stochas-

tic forcing field based on spherical harmonics, so that autocorrelations in space and time could

be specified in a qualitatively realistic way. When testing the impact of various upgrades to the

ensemble system, they found that the stochastic physics schemes produced the greatest improve-

ments in ensemble skill for dynamical variables.

Teixeira & Reynolds (2008) tested a stochastic scheme which uses multiplicative perturba-

tions similar to those in the Buizza et al. (1999) scheme, but only applies them to the tendencies

produced by a model’s convection parameterisation. They found that the scheme initially pro-

duced the highest levels of ensemble spread in the tropics, but that the perturbations in the tropics

spread to the mid-latitudes and migrated up-scale as the forecast progressed. Again, when the

scheme was introduced to an initial-condition ensemble, it was found to increase the spread of the

ensemble beneficially, reducing the frequency with which subsequent observations lie outside the

range predicted by the ensemble forecast.

1.5.2 PHYSICAL VARIABILITY SCHEMES

As discussed in section 1.4, deficient variability in parameterised processes can cause models to

give inaccurate statistics for the variability of observables such as rainfall, and may contribute to

systematic model biases. And without any information about the sub-grid state in each grid-box

and its likely variations, one would expect some physical sources of variability to be absent from

deterministic parameterisations.

Although the sub-grid state is by definition unknown to the modeller, constraints on the statis-

tics of its variability can often be provided by theory, observations and high-resolution modelling

studies. New sub-grid parameterisations can then be designed which treat the sub-grid state sta-

tistically and account for its likely variability in their closure assumptions. In doing so they aim

to introduce stochastic variability on the resolved scale which is physically consistent with an

un-biased random sampling of the plausible sub-grid states. This approach should produce real-

istic parameterised variability on the resolved scale, provided the statistics of the sub-grid state’s
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variability are accurately specified. Those statistics clearly include the amplitude of the sub-grid

variability, but also other factors such as its dependence on the resolved-scale and on the sub-grid

state at previous times and neighbouring locations.

Although such schemes are sometimes complex in nature, there has been increasing interest

in developing them to address deficient variability and associated model biases in climate simula-

tions. Several such schemes have already been implemented in ensemble prediction systems, so

as to accurately account for sub-grid uncertainty in the spread of ensemble members, by selecting

a different random sample of sub-grid states in each ensemble member.

Lorenz (1975) foresaw, from a theoretical point of view, a need for the development of

stochastic parameterisations to represent variability at unresolved scales, in order to accurately

simulate the climate. More recently, Palmer (2001) again showed theoretically that neglecting

variability at unresolved scales can lead to large errors in the climatology at well-resolved scales

in models. As was confirmed by various studies mentioned in section 1.4, he suggested that some

biases exhibited by GCMs could be caused by this neglect. He proposed that addressing this prob-

lem required the development of non-local dynamically-based stochastic schemes to represent the

effects of sub-grid variability on the resolved scales.

As explained in section 1.4, the most energetic scales of unresolved variability (and which

have the greatest impact on resolved flow) will be those just below the smallest resolvable scale.

And for weather and climate GCMs, these are dominated by mesoscale variability in convection.

As such, most stochastic schemes aimed at representing specific sources of unresolved variability

have focused on this.

Among the earlier attempts was the simple stochastic scheme of Lin & Neelin (2000), who

added a stochastic term to the CAPE input to the convection parameterisation in an intermediate-

complexity tropical atmosphere simulation. This input influenced both the triggering and mag-

nitude of convective events in the model, and the stochastic term followed a first-order auto-

regression model. This stochastic scheme is qualitatively similar to some of those developed to

represent model uncertainty in ensemble forecasts (described in the previous subsection), but was

implemented explicitly to “examine the impacts of convective variance arising intrinsically at the

unresolved scales”, rather than to boost ensemble spread to levels more representative of fore-
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cast error. They found the scheme had a systematic effect on the model, and could dramatically

increase the amplitude of slow modes of variability in tropical rainfall and dynamical fields. How-

ever, this response was highly sensitive to the autocorrelation timescale of the stochastic term.

The UK Met Office developed a stochastic scheme specifically to represent the effects of or-

ganised convective systems on the resolved-scale vorticity field, (Gray & Shutts 2002). This was

implemented in the Met Office Global and Regional Ensemble Prediction System (MOGREPS,

later described in the peer-reviewed literature by Bowler et al. 2008). The Stochastic Convective

Vorticity (SCV) scheme adds a vorticity dipole, with an upper-level anticyclone associated with

the anvil outflow and a mid-level cyclone, to the model winds during convective events. The mag-

nitude of the added dipole is related to the CAPE and the precipitation output by the convection

parameterisation, and scaled by a random number. It was found to have a neutral effect on the

model climatology, but was able to perturb the position and intensity of tropical cyclones and

affect the Southern-hemisphere storm-track via sub-tropical convective disturbances that feed in

to it.

Plant & Craig (2008) designed a stochastic convection scheme which accounts for the fact

that, within a finite grid-size, the ensemble of possible convective plumes maybe poorly sampled.

The true sample of plumes present maybe small and thus likely to deviate far from statistical equi-

librium and vary considerably (even under constant large-scale forcings). The result is a source

of variability which cannot be captured by grid-scale variables alone and so must be represented

stochastically.

Most global weather and climate models in use today employ penetrative mass-flux convec-

tion schemes which parameterise the ensemble of possible convective plumes within each grid-

cell using a “bulk plume” calculation with a single entrainment rate (or two parallel schemes with

distinct entrainment rates for “shallow” and “deep” convection). It is generally accepted that the

rate of entrainment of air from a convective plume’s environment (per unit mass-flux) is crucially

dependent on the size of the plume; small cumulus clouds have much higher entrainment rates

than broad cumulonimbus updrafts. In reality, a whole spectrum of plume-sizes may occur, and

the overall updraft mass-flux in a given area will be spread over a corresponding spectrum of

entrainment rates. If that area is sufficiently large for the ensemble of convective plumes to be

considered to be in a statistical equilibrium, the spectrum of entrainment rates on which the mass-
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flux occurs should follow some equilibrium distribution. But if the area considered is smaller,

then at any given time the finite number of plumes present will represent only a limited sampling

of that distribution, and the total mass-flux and entrainment rate spectrum will vary depending on

that sampling.

So, the conventional “bulk plume” parameterisation approach doesn’t account for the likely

spectrum of entrainment rates, or the likely fluctuations in that spectrum or in the total mass-

flux. To overcome these shortcomings, the Plant & Craig (2008) stochastic convection scheme

explicitly simulates individual convective elements, modelling within each grid-cell an ensemble

of plumes of varying sizes (and corresponding entrainment rates) which interact only via their ef-

fects on the resolved-scale variables, as proposed by Arakawa & Schubert (1974). Craig & Cohen

(2006) used theoretical considerations and cloud-resolving model data (Cohen & Craig 2006) to

find the expected form of the equilibrium distribution of convective plume sizes, and the Plant &

Craig (2008) scheme generates a realistic ensemble of plumes by sampling this distribution. The

distribution is normalised by the area of the grid-cell, such that more plumes are generated for

larger grid-sizes, and the sampling of the distribution becomes more complete with decreasing

model resolution. So for very coarse grid-sizes, the scheme tends towards a statistical equilib-

rium, giving a deterministic spectral convection scheme as in Arakawa & Schubert (1974). But at

smaller grid-sizes there may only be a few plumes present in each grid-cell, and large fluctuations

in convective tendencies may occur depending on the chance sampling at a given time.

The Plant & Craig (2008) scheme’s response to instability in the environment profile is param-

eterised by scaling the sampled distribution linearly with Convective Available Potential Energy.

Thus the scheme is closed on CAPE as in most mass-flux convection schemes. One problem

with the conventional point-wise CAPE-based closures employed by such schemes is that in real-

ity the scales influencing convective plumes may extend beyond the arbitrary bounds of a model

grid-cell / time-step. For example, real clouds can affect each-other’s development over distance

via gravity-wave propagation, and may persist for longer than a model’s time-step. There is no

physical justification for pinning the scale within-which convective plumes can be thought of as

having a shared environment to that of the model’s grid-size and time-step. The Plant & Craig

(2008) scheme allows this scale to be specified in the CAPE closure, by calculating the CAPE

using an environment profile which is averaged over nearby grid-points and recent time-steps
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within a specified horizontal distance and time-lag. Thus the scheme can simulate fluctuations of

the convection about an equilibrium which exists over a wider scale than the model’s resolution.

Plant & Craig (2008) tested the stochastic convection scheme in a Single-Column Model with

constant large-scale forcings, comparing its equilibrium behaviour to that of a companion Cloud

Resolving Model simulation. The scheme produced stochastic fluctuations in total convective

mass-flux as designed, and over time yielded probability distributions of mass-flux consistent

with those obtained by spatially-averaging the Cloud Resolving Model simulations.

Keane & Plant (2012) implemented the scheme in a 3-dimensional modelling framework, us-

ing a bicyclic 512 km square domain, a range of horizontal resolutions between 16 and 51 km, and

constant large-scale forcings as in the SCM in Plant & Craig (2008). In the 3D framework, they

found that the scheme only produced stable, realistic distributions of convective mass-flux when

the CAPE used in the closure calculation was averaged over a sufficient area and time-period to

cover (approximately) a statistical equilibrium. If not enough averaging was employed, the clo-

sure calculation was affected directly by the point-wise fluctuations produced by the convection

scheme, rather than being based on a wider equilibrium state as the scheme assumes. As a result,

the convective mass-flux statistics would be affected by numerical “on-off” triggering behaviour.

They found that the closure-averaging needed to cover at least around 33 individual plumes to

yield stable convective statistics; the averaging length and time scales required to achieve this

vary depending on the degree of convective instability, but amounted to multiple grid-lengths /

time-steps in their simulations. If this condition was met, they found that the scheme produced

realistic variability and mean-states at a range of different heights and model-resolutions, and

gave much more realistic rainfall statistics than conventional deterministic bulk-plume convec-

tion schemes.

1.5.3 BACKSCATTER SCHEMES

In fluid-dynamics generally, there is a tendency for kinetic energy to ”cascade” to progressively

smaller scales, as motions on any given scale are dissipated by the growth of eddies on a smaller

scale. Kinetic energy in a turbulent fluid will eventually cascade down to the very small scale at

which molecular viscosity dominates, and be dissipated by diffusion. In models, kinetic energy
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must be removed much sooner in its down-scale cascade, at the scale of the grid-resolution. In

fact, models exhibit numerical diffusion, or have diffusion artificially added to suppress numerical

non-linear instability associated with the build-up of energy at the grid-scale truncation. This acts

to remove kinetic energy at scales somewhat larger than the grid-size.

This would be of no consequence to the ability of a model to simulate the well-resolved scales

at which no such diffusion applies, provided kinetic energy always and only cascades down-scale.

In practice, although the down-scale cascade is usually dominant, there is some up-scale cascade

as well. Or, as put by Frederiksen & Davis (1997), “the larger scales are also randomly forced by

their nonlinear interaction with the subgridscale eddies.” So some of the kinetic energy on scales

near or below a model’s grid-size would in reality ”backscatter” upscale, creating or amplifying

motions at well-resolved scales. But in a model this energy is dissipated before the backscatter

can take place. As a result, atmosphere models generally under-estimate the amount of kinetic

energy in a broad part of their resolvable spectrum, to a worsening degree as the grid-scale is

approached (eg Shutts 2005). The implications of this problem for the fidelity of atmospheric

GCMs were discussed in section 1.4.

Considerable efforts have therefore been made to design schemes to estimate how much en-

ergy has been unphysically diffused from model winds at poorly-resolved scales and re-inject it,

so that backscatter of energy from these scales on to the well-resolved scales may occur as in

reality. The pattern of winds re-injected in this way should itself be dependent on backscatter

from the sub-grid scale. Since the form of this is unknown in the model, backscatter schemes

stochastically generate a plausible pattern of winds to re-inject.

One could perhaps think of such schemes as physically-motivated stochastic turbulence clo-

sures. Like other stochastic schemes designed to physically represent sub-grid sources of vari-

ability, such as those described in subsection 1.5.2, they are being developed both to address

systematic model biases and to represent associated uncertainties in Ensemble Prediction Sys-

tems.

Frederiksen & Davis (1997) first suggested the use of stochastic kinetic energy backscatter in

General Circulation Models (it had already been developed in Large Eddy Simulations; Mason &

Thomson 1992), and demonstrated it in an idealised 2D model of global atmospheric flow.

Page 30



Chapter 1: Introduction - Motivation and Theoretical Basis

Shutts (2005) then developed a backscatter scheme for use in GCMs, which was tested in

the ECMWF ensemble forecast system. In this scheme, energy backscatter is controlled by an

estimate of the total energy dissipation, from numerical diffusion, convection, and mountain drag.

This flow-dependent dissipation field provides the amplitude for a randomly-generated stream-

function forcing field which is added to the model winds. The time-evolving pattern for this

forcing is generated using a cellular automaton (that is, an algorithm in which the value at a

given grid-cell is a simple function of the values at neighbouring grid-cells and at the previous

time-step). The scheme was found to improve the realism of the energy spectrum of winds in

the ECMWF model, and improve the probabilistic skill of the forecast by increasing ensemble

spread.

Berner et al. (2008) then applied the Shutts (2005) Cellular Automaton Stochastic Backscatter

(CASB) scheme in seasonal forecasts using the ECMWF model. They found that it significantly

improved the skill of the forecast, not only by producing more representative ensemble spread,

but by reducing model biases. It lessened the model’s tendency to under-estimate the frequency

of mid-latitude blocked flow regimes, and reduced some tropical rainfall biases.

Berner et al. (2009) improved on the Shutts (2005) scheme by generating the forcing pattern

using a specified spectrum of spherical harmonics, time-evolved according to a first-order auto-

regression model, making the spectrum of the forcing fully tuneable. Tuning can be done by

comparison with coarse-grained output from high-resolution models. It was felt that the Cellular

Automaton introduced ad-hoc dependence on the model resolution and was harder to tune to a

desired forcing spectrum. As with the CASB scheme, the new scheme was found to improve

the ensemble skill by giving more realistic rates of growth of ensemble spread and reducing

biases. It was also found that replacing the flow-dependent calculation of energy dissipation with

a constant mean dissipation-rate somewhat reduced the improvements in forecast skill produced

by the scheme. This supports the theoretical arguments of Palmer (2001) that flow-dependent

non-local stochastic schemes are required to properly represent the effects of sub-grid variability.

Meanwhile, Bowler et al. (2009) developed a similar Stochastic Kinetic Energy Backscatter

scheme (SKEB) for the UK Met Office’s MOGREPS ensemble forecasting system. The ran-

dom stream-function forcing pattern was generated using a different method, using a 3D pattern

generator, with autocorrelation scales which were tuned to match those in data from a Cloud-
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Resolving Model. Initially, the unphysical energy dissipation was estimated offline and only from

the diffusion and advection terms, and the constant mean dissipation pattern applied as a tune-

able parameter in the scheme. As with the Shutts (2005) CASB scheme, the SKEB scheme was

found to bring the slope of the energy spectrum of model winds significantly closer to that in

observations, and increase the ensemble spread.

Tennant et al. (2011) describe an improved version of SKEB which uses a flow-dependent

dissipation rate similar to that in the Shutts (2005) scheme. Testing the scheme in the MO-

GREPS forecast system, they find further improvements in the growth-rate of ensemble spread

and the forecast frequency of blocking. They also tested the scheme for a case where the en-

semble forecast had suffered “jumpiness”, i.e. the forecast distribution of future weather jumped

back-and-forth between different weather regimes with successive forecast cycles. The revised

SKEB scheme was found to slightly reduce this tendency.

1.6 EFFECTS OF STOCHASTIC FORCING ON DYNAMICAL SYS-

TEMS

As described in section 1.5 a number of stochastic parameterisations have been designed and

implemented in GCMs, motivated by subtly different theoretical or practical considerations which

turn out to be somewhat synonymous in practice. Whilst such schemes have often been reported

to affect the behaviour of a host model, often little attention has been paid to the underlying

mechanisms involved.

From a theoretical perspective, a stochastic forcing may influence the behaviour of a dynam-

ical system in several qualitatively different ways. This can be illustrated using a very simple

dynamical system. Figure 1.3 shows four different 1-D potential well shapes, along with the

probability densities for the location in these wells of a particle set to roll freely with some fixed

total energy, and for a particle which has some stochastic variation in its total energy.

This system has 2 dimensions; the particle’s position and velocity, which experience an accel-

eration equal to the gradient of the potential field. It is not a chaotic system, but crucially it does

exhibit an internal mode of variability with which a stochastic forcing may interact; the periodic
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Figure 1.3: On the left; four potential well shapes; (a) Quadratic, (b) Gravitational, (c) Asymmetric

gravitational, and (d) Double gravitational. On the right; the corresponding probability density functions

for the position of a particle rolling freely in each well; (solid curves) the PDFs, and (dotted vertical lines)

the means of the PDFs; for (green) the deterministic trajectory followed under the potential gradient force

only, and (magenta) the trajectory when a stochastic forcing is also added. In the potential well plots on

the left, the dotted green horizontal line shows the total energy for the deterministic trajectories, and the

dotted magenta lines show the range of total energies explored by the stochastic trajectories.

oscillation of the particle in the well. The stochastic forcing here consists of perturbations to the

particle’s total energy, drawn randomly between limits. Autocorrelation is introduced simply by

updating the random component once per period τ (where τ spans several time-steps, but a small

fraction of the particle’s period of oscillation) and having the stochastic energy term vary linearly

between subsequent updates.

The four different potential well shapes represent four different forms for the system’s dy-

namical feedbacks, and each represents a qualitatively different category of dynamical response
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to stochastic forcing:

• Type 0: linear response. For the quadratic potential well (a), the gradient gives a lin-

ear restoring force, and the particle oscillates sinusoidally. The stochastic forcing has no

qualitative effect on the system’s internal mode or mean-state; the response is just a linear

addition of the forcing which will only become significant if the amplitude of the forcing

becomes comparable to the amplitude of the internal mode.

• Type I: non-linear mode-amplification. If the restoring force is non-linear (b), the system’s

internal mode may become more sensitive to the stochastic forcing, and its amplitude may

be altered by a larger magnitude than that of the perturbations. The stochastic forcing makes

new regions of phase-space accessible to the particle, increasing the range of extremes.

• Type II: noise-induced drift. If the restoring force is not only non-linear but asymmetric

about its equilibrium state (c), the non-linear response of the system’s internal mode to

the stochastic forcing may also result in a change in the system’s mean-state. Here, the

stochastic forcing substantially reduces the residence time of the particle near the shallower

extremity of its distribution, causing the mean-state to lie closer to equilibrium.

• Type III: noise-induced transition. Finally, if the system has multiple stable equilibria (d),

the stochastic forcing may make it possible for it to shift to new internal modes or regimes

altogether. Here, the stochastic forcing made it possible for the particle to overcome a

potential barrier which was higher than its total energy in the deterministic case.

Even in this very simple system, the noise-induced response may be highly sensitive to details

of the stochastic forcing. For example, figure 1.4 shows the noise-induced transition behaviour

for the well with multiple equilibria (d), with three different update periods τ for the stochastic

forcing. Interestingly, the longer the timescale of the stochastic forcing, the higher the frequency

of transitions between the two regimes. This is because, in this case, a longer timescale increases

the probability of the particle maintaining a positive excursion to its energy for long enough to

cross over the potential barrier which separates the two regimes.

Whilst the atmosphere is clearly far more complex and has a vastly greater dimensionality

than the simple dynamical system shown here, the same concepts can be extended. Replace the
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Figure 1.4: Long-term trajectories for the particle (position against time) for the double gravitational

well, for (green) the deterministic system, and with the stochastic forcing with timescales of (blue) 0.5,

(magenta) 1.0 and (red) 2.0.

particle position with the atmosphere’s state in a multi-dimensional phase-space, and the well

with the atmosphere’s complex array of non-linear dynamical and physical feedbacks which act

on that state, and adding a stochastic forcing to it should still yield one or more of the same basic

kinds of response.

For example, the Random Parameters stochastic scheme tested by Bowler et al. (2008) was

found to have no systematic effect on the model climate, suggesting that the atmosphere gave a

relatively linear response (type 0) to stochastic parameter perturbations. The Lin & Neelin (2000)

stochastic convection scheme gave a large increase in the slow modes of tropical variability, in-

dicating a non-linear amplification (type I) of these internal modes in response to the stochastic

forcing. In Berner et al. (2008), the Cellular Automaton Backscatter scheme was found to alter

the mean rainfall pattern in the tropics, suggesting a noise-induced drift (type II) in the mean-state

of the model. It was also found to alter the frequency of blocking in the mid-latitudes, indicat-

ing a noise-induced effect on the model’s ability to transition between zonal and blocked flow

regimes (type III). These changes in model behaviour were all found to make the models used

more realistic, suggesting that the corresponding noise-induced effects play a role in determining

the atmosphere’s observed behaviour.

1.7 DISCUSSION AND AIMS OF THIS THESIS

Using theoretical considerations and experiments involving stochastic parameterisations, Various

studies described in section 1.5 have found that the atmosphere’s behaviour at the scales well-

resolved by models is indeed sensitive to the variability at poorly-resolved and unresolved scales,
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as hypothesised by some of the studies mentioned in section 1.4. They have also shown that this

sensitivity covers more than just the amplitude of the small-scale variability; the atmosphere may

behave differently depending on other properties, such as temporal and spatial autocorrelation

of small-scale processes (Lin & Neelin 2000), and the flow-dependence of variability at small

scales (Berner et al. 2009). However, the sensitivity of the atmosphere to such properties (and

other related ones, such as the relationship between high-frequency fluctuations in different at-

mospheric variables, or how exactly the fluctuations are linked to small-scale processes) has not

been investigated rigorously.

Rather, most studies have involved plugging one stochastic parameterisation (or a suite of

stochastic parameterisations at the same time) in to a host model and reporting on the effects it

has on the model, with a focus on potential improvements in forecast skill. Whilst some attempts

have been made to tune stochastic parameterisations to match realistic high-frequency variability

(e.g. by comparison with cloud-resolving model output), the design of structural configurations

for the schemes are usually arrived at by a combination of guess-work (be it brilliantly intuitive!)

and consideration for what will be most practical to code in to a given host model. As a result,

many different stochastic methods have been developed, with a broad (and not entirely known)

degree of overlap in terms of the variability and associated uncertainties they represent.

Indeed, modellers have had little a priori information about the detailed form of real high-

frequency variability in the atmosphere, or even which properties of that variability a model atmo-

sphere will be most sensitive to. Using Cloud-Resolving Models, substantial advances are being

made in defining the properties of small-scale variability in the atmosphere (e.g. Shutts & Palmer

2007). But this information would be of greater use if the sensitivity of the resolved flows to such

properties were better understood.

This study aims to shed light on some key un-answered questions concerning the sensitivity

of the atmosphere to its high-frequency variability:

1. Does the atmosphere’s response to high-frequency variability change drastically depending

on the properties of the variability, the atmospheric state, or the particulars of the simula-

tion? Or is there any robust, generic response common to any form of added noise? This

question is highly relevant to the development of stochastic schemes. For example, if the
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former is true it would justify developing stochastic schemes with a great deal of care and

sophistication, but if the latter is the case, then very simple stochastic methods would suffice

to represent at least a substantial component of high-frequency variability.

2. What is the relative importance of the inherent theoretical uncertainty associated with the

unknown sub-grid state, compared to the pragmatically-based generic uncertainty associ-

ated with model error? This question is relevant to the representation of modelling uncer-

tainties in ensemble prediction systems. If sub-grid state uncertainty is a major component

of overall model uncertainty, then use of schemes which specifically represent physical

sources of variability associated with sub-grid uncertainty (such as the stochastic convec-

tion scheme of Plant & Craig 2008, or the Stochastic Convective Vorticity scheme in MO-

GREPS, Bowler 2008) in ensemble forecasts is important.

3. Where high frequency variability in the atmosphere is found to influence it’s climatic be-

haviour, what are the key mechanisms involved? For example, is the atmosphere’s response

to high-frequency variability dominated by feedbacks from sub-grid and non-dynamical

processes, or by a direct response from resolved-scale dynamics? And which types of

system-response to stochastic forcing (out of those illustrated in section 1.6) tend to occur?

It is hoped that efforts to answer these questions will be of specific practical use to those

in the weather and climate modelling community developing stochastic parameterisations for

atmosphere GCMs, and also contribute to scientific understanding of multi-scale interactions in

the real world’s atmosphere. The experimental method followed is outlined in the following

section 1.8.

1.8 OVERVIEW OF METHOD

To address the first question in the list of aims in the previous section 1.7, it will be useful to

compare the response of atmospheric simulations to their high-frequency variability, for a variety

of different model configurations, atmospheric conditions, and with varied properties of the high-

frequency variability. It will then be informative to see what aspects of the response are similar

across all the simulations, and which properties of the simulations lead to major differences.
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Different atmospheric models contain a variety of different high-frequency variabilities (e.g.

Horinouchi et al. 2003). However, they contain many other differences, so a difference between

the resolved-scale behaviour of two models cannot easily be attributed to differences in their high-

frequency variability responses. In order to investigate the sensitivity of these responses, it will be

necessary to perform multiple experiments with the same model, with a variety of modifications

designed specifically to alter the high-frequency variability. Fortunately, there is a wealth of

literature on stochastic methods designed to do just that (see section 1.5). By comparing the

behaviour of a common host model, using a variety of different stochastic parameterisations, the

sensitivity to high-frequency variability can be explored.

Of course, the control simulation with no stochastic parameterisations is by no means de-

void of high-frequency variability, so comparisons of stochastic runs to the control will not fully

quantify the response. But the differences in the response when different stochastic parameterisa-

tions are compared can be explored as desired. These comparisons can be repeated for more than

one model configuration and the responses can be compared for different atmospheric conditions

within each simulation.

To investigate the importance of physically-based sub-grid uncertainty relative to generic

modelling-uncertainties (the second question under the aims of the thesis), the comparison of dif-

ferent stochastic parameterisations described above will include some generic model-uncertainty

schemes from the literature, along with the physically-based stochastic convection scheme of

Plant & Craig (2008). It was felt that this represents what is likely to be a dominant source of

sub-grid uncertainty, and is therefore a representative scheme to use. The stochastic methods so-

far developed to generically represent model-uncertainty (see section 1.5.1) are largely variations

on two themes; stochastic multiplicative perturbations (e.g. Buizza et al. 1999), and time-varying

stochastic perturbation of model parameters (e.g. Bowler et al. 2008). Therefore, these two

schemes are also included in the comparisons in this study.

To investigate the mechanisms involved in the atmosphere’s sensitivity to high-frequency vari-

ability (the third question), it would be useful to compare responses using one modelling frame-

work which includes all the expected interactions within the atmosphere, and others which include

only some of the processes interactively. It was felt that experiments in fully interactive atmo-

spheric simulations run the risk of being difficult to interpret if the relative contributions from
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resolved dynamical feedbacks and sub-grid / non-dynamical feedbacks are not known. Also,

since this study is particularly interested in the sensitivity of the atmosphere, interactions with

other components such as the ocean and land-surface will not be included.

Therefore, the methodology will be first to perform a comparison of different stochastic pa-

rameterisations in a Single-Column Model with prescribed dynamics, representing only the re-

sponses from parameterised processes. Results from this can then be compared to results from a

comparison of stochastic parameterisations in a fully-interactive dynamical atmosphere simula-

tion with prescribed surface properties. To keep the latter as simple, and interpretable, as possible,

a highly idealised framework will be used in which orography, land-surface and seasonal varia-

tions are omitted. Such a framework, the “aqua-planet”, has been developed and has been used

by the modelling community for some time. It simulates the atmosphere over a hypothetical

simplified Earth, whose surface is covered entirely by ocean with a prescribed, fixed sea surface

temperature pattern, and whose axis of rotation is not tilted relative to the sun.

There is a very large range of possible stochastic methods and model configurations which

could potentially be included in these comparisons, and it is not immediately obvious how to

narrow down this choice so that a practical number of model integrations are performed. For-

tunately, Single-Column Model (SCM) integrations are very computationally cheap to run, so a

much broader range of configurations can be tested in the SCM than is possible in the 3D aqua-

planet framework. It is hoped that a large number of SCM tests of stochastic parameterisation

schemes can be used to narrow down which schemes / configurations would be most useful to test

in a smaller set of aqua-planet experiments.

The SCM experiments, and the stochastic (and deterministic) parameterisations used, are de-

scribed in detail in chapter 2. Preliminary results assessing the SCM’s high frequency variability

and its sensitivity to model physics and stochastic perturbation are also presented in that chapter.

In chapter 3, results of a more rigorous comparison of stochastic parameterisations in the SCM

are presented. Chapter 4 gives details and results for preliminary aqua-planet experiments includ-

ing stochastic model-uncertainty schemes, employing horizontal resolutions and parameterisation

schemes consistent with climate simulations. Overall conclusions are drawn in chapter 5, along

with suggested avenues for further research in this field.
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CHAPTER 2:

INVESTIGATING THE VARIABILITY OF

PARAMETERISED PROCESSES IN A

SINGLE-COLUMN MODEL

2.1 OVERVIEW AND CHOICE OF EXPERIMENT

As described in chapter 1, the over-arching method of the work described in this thesis involves

first investigating the atmosphere’s sensitivity to high-frequency variability in isolation from the

large-scale dynamics. This will inform the study of the interactive, dynamical response in an aqua-

planet framework, described in chapter 4. Various stochastic parameterisations are employed to

explore sensitivities to the aspects of high-frequency variability they represent.

Single-Column Model (SCM) tests, in which the large-scale dynamical effects are prescribed

according to observational estimates, are a useful starting point for assessing the high-frequency

variability and general behaviour of model parameterisations. They are advantageous in that they

allow parameterised processes and their interactions to be studied separately from large-scale

dynamical responses, and are computationally very cheap to run. They have long been a standard

tool in the development, testing and intercomparison of physical parameterisations for weather

and climate GCMs (for example, Lord 1982, Grell et al 1991, Randall et al. 1996, Ghan et al.

1999, Xie et al. 2002). However, stochastic parameterisations have very seldom been tested in

this way. Indeed, many stochastic parameterisations cannot be meaningfully applied in an SCM,

because they act on the horizontal momentum equations which are not simulated (e.g. Frederiksen

& Davies 1997), or they also have an explicitly non-local formulation (e.g. Shutts 2005). There

are nonetheless many stochastic methods aimed at addressing the local thermodynamic variability

of parameterised processes, for which the SCM framework seems a well-suited test-bed.

Page 40



Chapter 2: Investigating the Variability of Parameterised Processes in a Single-Column Model

Model intercomparisons using the SCM framework have formed a major part of the Global

Energy and Water cycle EXperiment (GEWEX) Cloud System Study (GCSS), which aims to

support the development of improved physically based parameterisations for cloud processes.

This collaboration has included a working group on Precipitating Convective Cloud Systems

(PCCS, also known as Working Group 4) for many years, and an overview of their intercom-

parison methodology is given in Moncrieff et al. (1997). Work under the GCSS PCCS, and in

this field generally, has focused a lot on the behaviour of deep moist convection over the tropical

oceans. As discussed in chapter 1, the variability of this key climate process is often poorly sim-

ulated on a range of time-scales, largely due to deficiencies in the convection parameterisations

(which, among other things, GCSS aims to improve). Extensive observational studies of this vari-

ability were made during the Tropical Ocean Global Atmosphere - Coupled Ocean-Atmosphere

Response Experiment (TOGA-COARE) observation campaign in the tropical West Pacific, from

November 1992 to February 1993. This is described by Webster & Lukas (1992).

One feature of rainfall variability over the tropical oceans which has attracted particular atten-

tion is the observed tendency for distinct transitions between periods in which convection is sup-

pressed, giving dry conditions for many days, and periods in which it is active, giving widespread

heavy rain. This behaviour is a key feature in many poorly simulated modes of tropical variability,

such as the MJO, and is studied using TOGA-COARE data by Petch et al. (2007). They com-

pare simulations using a Cloud Resolving Model (CRM), a global Numerical Weather Prediction

(NWP) model, and an SCM. Their simulations cover 3 sub-periods each of the order 10 days

selected from within the 4-month TOGA-COARE observation period, each containing a marked

transition from suppressed to active convection. The modelling framework for these experiments,

including the observation-derived prescribed dynamical forcings, have been designated by the

GCSS as PCCS case 5. This case simulates an interesting and fundamental aspect of atmospheric

variability associated with sub-grid processes, includes a representative range of the atmosphere’s

behaviour over the tropical oceans, and has a well-documented and readily available framework

for running SCM experiments. It has therefore been selected for the present study as an ideal test-

case in which to compare stochastic parameterisations and investigate the variability associated

with parameterised processes.

In this chapter, the behaviour of an SCM simulation very similar to one of those used by
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Petch et al. (2007) is assessed, with particular attention given to the high-frequency variability of

the parameterised convection. A number of modified versions of the model are described, each

incorporating a different stochastic parameterisation approach from the literature, and several

alternative deterministic formulations are implemented for comparison. The variability in some

of these model versions is briefly investigated. This is to assess the usefulness of the SCM for

comparing stochastic parameterisations, and how best to compare them in order to gain insights

about the underlying physics driving the variability. A more rigorous comparison of the stochastic

and deterministic SCM variants, investigating differences in their variabilities and mean-states, is

made in the next chapter.

Detail of the modelling framework and model variants used is given in section 2.2. Section 2.3

gives an overview of the meteorology of the case simulated by these experiments, investigating

the key physical processes involved and the SCM’s ability to capture them. Preliminary results

examining the SCM’s variability and sensitivity to initial conditions and stochastic perturbations

are presented in section 2.4, and a summary and concluding discussion are given in section 2.5.

2.2 EXPERIMENTAL SETUP

The model runs simulate a column of the atmosphere in the tropical West Pacific warm pool re-

gion, at 2oS, 156oE, over the time period 9th - 28th January 1993 (this is the consecutive periods

B and C of GCSS PCCS case 5; see Petch et al. 2007). A description of the model used is given

in subsection 2.2.1 below. A number of alternative configurations of the SCM have been used,

each with differing convection parameterisations or stochastic elements introduced. These are

summarised in table 2.1 and described in subsection 2.2.2, with detail of the different parame-

terisations used. In order to quantify the variability of the SCM, investigate sensitivity to initial

conditions and gain statistically robust results, ensembles of SCM runs have been performed for

all the model variants. Subsection 2.2.3 describes the ensemble framework, with consideration of

ensemble statistics given is subsection 2.2.4. To run an SCM simulation of a real case-study as in

these experiments, the effects of the resolved-scale dynamics (which are not simulated) must be

prescribed according to observation-derived estimates. The large-scale forcing data-set used in

the present study is the same as that used in the SCM runs of Petch et al. (2007), and is described
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in subsection 2.2.5.

2.2.1 MODEL DESCRIPTION

Experiments have been carried out using the UK Met Office Unified Model (UM, Cullen 1993)

in its Single-Column configuration. The default model configuration used is very similar to that

used in the SCM experiments of Petch et al. (2007), including the same set of parameterisations

(essentially those used in the atmosphere component of the Hadley Centre Global Environment

Model (HadGEM1) and described by Martin et al. 2006). The same vertical resolution is used,

with 38 model levels. Further detail of the parameterisations is given in subsection 2.2.2 under

the description of the default UM configuration.

There are however a few differences between the SCM described here and that used by Petch

et al. (2007). Firstly, a time-step of 30 minutes is used for all model routines except the radiation

scheme, rather than the 20 minute time-step with 10 minute sub-step for convection used in Petch

et al. (2007). The longer time-step used in this study makes it more consistent with a climate

simulation, whereas Petch et al. (2007) were comparing the SCM to an NWP simulation. The

radiation scheme uses the same time-step of 3 hours.

Also, a minor improvement was made to the SCM for the present study. Since the model

contains no dynamical adjustment component, the height and pressure of each model level were

held constant in the original SCM such that they were consistent with the initial temperature pro-

file. However, as the temperature profile is then allowed to evolve according to the model physics

routines, the model heights, pressures and temperatures would become thermodynamically incon-

sistent. A scheme was therefore added to modify the heights of the model levels each time-step

so as to maintain hydrostatic balance, given fixed pressure at each level including the surface.

Tests confirm that this modification had a noticeable but very small impact on the simulation (not

shown).
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2.2.2 MODEL VARIANTS

Table 2.1 gives an overview of the different SCM variant runs performed in this study. The mo-

tivation and context for the stochastic parameterisations included were described in the literature

review on stochastic parameterisations in chapter 1; details of their implementation in the UM

SCM are given in the following subsections. Two generic model uncertainty schemes from the

literature (Random Parameters and Multiplicative Noise) are compared, along with a scheme de-

signed to physically represent variability associated with sub-grid uncertainty in convection (the

Plant & Craig 2008 stochastic convection scheme). A deterministic perturbed parameter ensemble

(based on the Random Parameter scheme) is also tested for comparison. Structural uncertainties

in convection parameterisations are explored by comparing three different deterministic convec-

tion schemes in the SCM. The effects of smoothing the convective variability are investigated

using a simple time-smoothing scheme designed for this study. All of the SCM configurations

used are fully described below.

2.2.2.1 DEFAULT UM

The default Unified Model SCM has the prognostic variables temperature (T), zonal, meridional

and vertical wind components (u, v and w), specific humidity (q), cloud liquid water content (qcl)

and ice water content (qcf). Fluxes of heat and moisture in and out of the model due to radiative

transfer, surface fluxes and precipitation are all calculated explicitly by parameterisations and are

not constrained to observations. An overview of the parameterisation set is given by Martin et al.

2006, and includes:

• A boundary-layer turbulent mixing and surface flux scheme, which includes a Richardson

number based local mixing component and a non-local buoyancy-driven component.

• A penetrative mass-flux convection scheme, based on an entraining-detraining bulk plume

model (Gregory & Rowntree 1990), closed on dilute CAPE for deep convection, and on

surface buoyancy flux for shallow convection.

• A large-scale cloud scheme, in which cloud begins to form at grid-mean relative humidities

above a threshold somewhat below 100%, due to sub-grid inhomogeneity.
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Table 2.1: Summary of the model variants used.

Name Abbv. Description Type

Default UM DefUM UM SCM as in Petch et al. (2007), Deterministic

physics as in Martin et al. (2006)

Random Parameters RP As DefUM but with randomly varying model Stochastic

(Varying) parameters, following Arribas (2004)

Random Parameters RPconst As RP, but with the randomly selected Deterministic

(constant) parameter values held constant

Multiplicative MN As DefUM but with randomly scaled physics Stochastic

Noise tendencies (Buizza et al. 1999).

Kain-Fritsch KF As DefUM but with Kain & Fritsch (1990) Deterministic

convection scheme instead of the default

Plant & Craig PC As DefUM but with Plant & Craig (2008) Stochastic

(stochastic) stochastic convection scheme (uses KF plume)

Plant & Craig PCdet As PC but set to simulate deterministic Deterministic

(deterministic) limit of well-sampled cumulus ensemble

Time-Smoothed TSC As DefUM but with time-smoothing applied Deterministic

Convection to the convective tendencies.

• A cloud microphysics scheme, which parameterises the fall-speed for ice particles and

conversions of water between ice, cloud-liquid-water, and rain species.

• A fully interactive 2-stream radiative transfer scheme with several spectral bands in the

Shortwave and Longwave, accounting for the radiative effects of various gases, water-

vapour and cloud.

All of these parameterisation schemes are described, with appropriate references, in appendix

A.
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2.2.2.2 RANDOM PARAMETERS

Here one of the stochastic schemes employed in the Met Office Global and Regional Ensem-

ble Prediction System (MOGREPS, described by Bowler et al. 2008) is implemented in the

SCM. This is the Random Parameters (RP) scheme described therein and in section 2.2 of Ar-

ribas (2004). It is designed to represent parameterisation uncertainty in an ensemble forecast by

randomly sampling various free parameters in the model, in a time-varying manner within each

ensemble member. The motivation and context for the scheme were described in detail in the

literature review on stochastic parameterisations in chapter 1.

The amplitude of the stochastic perturbations introduced by the scheme is set by the bounds of

the allowed range of values for each time-varying model parameter. These bounds must be chosen

somewhat subjectively and with consideration for the numerical stability of the parameterisations

in which they reside, but have been set after consulting experts on each of the relevant parame-

terised processes (Arribas 2004). Some of the parameter bounds used in the RP scheme in this

study differ from those given in Arribas (2004), as the values used operationally in MOGREPS

were revised since and it was felt that the most up-to-date values should be used here. Details

of the model parameters perturbed by the scheme are given below, and refer to elements of the

UM parameterisation schemes mentioned in subsection 2.2.2.1. See appendix A for descriptions

of each parameterisation detailing the elements controlled by these parameters. The parameter

bounds chosen are given in table 2.2.

• Neutral mixing length parameter, par mezcla: This parameter is a coefficient in the formula

to estimate the neutral mixing length scale, which is in-turn a coefficient in the calculation

of vertical turbulent fluxes in the boundary layer scheme.

• Stability function parameter, G0: A coefficient in the empirical stability functions used to

relate boundary layer turbulent fluxes to the Richardson number.

• Entrainment rate coefficient, entcoef: A single parameter which scales the rate of entrain-

ment of air from the environment profile in to convective plumes as they ascend. This

applies to the deep, shallow and mid-level convection schemes.

• CAPE timescale, τCAPE : Sets the timescale over which convection dissipates Convective
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Available Potential Energy. It is used to scale the convective mass-flux and therefore scales

the overall convective response for a given amount of instability. Only applies to the deep

and mid-level convection schemes.

• Critical Relative Humidity, RHcrit : The threshold Relative Humidity for cloud formation;

sets the width of the distribution of saturation used in the large-scale cloud scheme.

• Cloud-to-rain conversion threshold over land, CWland : The threshold cloud liquid water

content above which auto-conversion to rain begins according to the “warm rain” parame-

terisation in the microphysics scheme. This value only applies over land grid-points.

• Cloud-to-rain conversion threshold over sea, CWsea: As CWland , but a lower value which

applies over sea grid-points, to account for the fact that rain forms more readily over the

sea where aerosol concentrations are lower.

• Ice fall-speed coefficient, CI: Coefficient in the formula relating ice particle fall-speed to

ice particle size.

The RP scheme of Arribas (2004) also perturbs two parameters used in the Gravity Wave

Drag scheme, but this is not applicable in the SCM framework. Also, since the case simulated in

this study is over open sea, the CWland parameter has no effect.

Vertical correlation of the parameter values is ensured by using the same set of random pa-

rameters at each model level at a given time-step (except for RHcrit , which varies with height by

default, but the same stochastic term is added to it at each model level). Temporal correlation of

the random parameters is set using a first-order auto-regression model:

Pn+1 = µ+ r(Pn−µ)+ kε (2.1)

where Pn is the value of a parameter P at one time-step, Pn+1 is its value at the next time-step, µ

is the mean value of P, r is the auto-correlation of P, and kε is a stochastic shock term (see section

3.2 of Mylne et al 2005). The value of ε is randomly drawn from a flat distribution between

−1 and 1, with k setting the maximum amplitude of the shock term. In the configuration used

Page 47



Chapter 2: Investigating the Variability of Parameterised Processes in a Single-Column Model

Table 2.2: RP scheme parameter values.

Parameter name Parameterisation Standard value Bounds in RP Units

scheme which uses it (in default UM) scheme (min/max)

par mezcla Boundary layer 0.15 0.05 / 0.5

G0 Boundary layer 10.0 5.0 / 20.0

entcoef Convection 3.0 2.0 / 4.0

τCAPE Convection 1800 1800 / 3600 seconds

RHcrit Large-scale cloud 80.0 77.5 / 82.5 %

CWland Microphysics 8.0E-4 1.0E-4 / 1.0E-3 kg kg−1

CWsea Microphysics 2.0E-4 5.0E-5 / 5.0E-4 kg kg−1

CI Microphysics 25.2 17.0 / 33.0

in MOGREPS, and implemented here, the temporal correlation is forced to act on longer time-

scales by simply applying the auto-regression formula (2.1) to recalculate the parameter values

once every 3 hours, rather than every time-step. Each parameter value is constrained to within its

allowed bounds Pmin, Pmax by applying a simple check to restore it to Pmin (Pmax) if it goes below

Pmin (above Pmax). The maximum amplitude of the shock term is set to k = 1/3(Pmax −Pmin).

Strong autocorrelation is applied, with r = 0.95. Figure 2.1 shows an example time-series of

a model parameter generated by the RP scheme, and figure 2.2 shows the resulting probability

density for the same parameter. The scheme produces a relatively flat distribution across most of

the parameter’s range, but the thresholding applied gives the scheme a tendency to draw the max

and min values particularly often. Each parameter sits on its allowed bound values about 20% of

the time, preferring the boundary closer to its standard value.

Correlations between different parameters are forced by using a single value of ε for all per-

turbed parameters at a given time. To remove any bias towards the standard parameter values near

the start of the SCM runs, the RP scheme is called to recalculate the parameter values 30 times

before the first time-step.
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Figure 2.1: Time-series of the model parameter par mezcla generated by the RP scheme in the SCM

(solid), standard value of par mezcla (dashed) and RP scheme max/min values (dotted).

Figure 2.2: Probability Density Function for the model parameter par mezcla generated by the RP

scheme. Dashed and dotted lines are as in figure 2.1. The PDF was generated from an ensemble of

40 independently perturbed 19-day runs.

2.2.2.3 CONSTANT RANDOM PARAMETERS

Another approach to sampling model parameterisation uncertainty is to run an ensemble of model

runs, each with a different but constant-in-time set of parameter values. This approach was dis-

cussed in chapter 1, along with examples from the literature. Here, such a “perturbed parameter”

ensemble of SCM runs has been generated by running the RP scheme described above to deter-

mine initial parameter values, which are then held constant for the whole run. Different random

values are drawn independently for each ensemble member. As in the time-varying RP runs, the

RP scheme is repeated 30 times before the first time-step, to remove any autocorrelation with

the initial standard parameter values. The ensemble therefore samples the same distribution for
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the parameters as the time-varying RP scheme described above, but removes the stochastic com-

ponent, making an interesting comparison. Note that this approach does not explore the full

possible parameter space, as it is constrained by the correlations between parameters forced by

the RP scheme.

2.2.2.4 MULTIPLICATIVE NOISE

A stochastic multiplicative perturbation scheme following Buizza et al. (1999) has been imple-

mented in the UM SCM. An updated version of this scheme is used operationally in the ECMWF

Integrated Forecasting System ensemble. The Multiplicative Noise (hereafter MN) scheme sim-

ply scales the model’s total parameterised tendencies by a factor which varies randomly but sym-

metrically about unity. It is designed to account for the uncertainty associated with the parame-

terised processes in an ensemble prediction system (see the literature review on stochastic param-

eterisations in chapter 1 for further discussion of its theoretical basis and use in forecasting). In

this implementation, stochastic perturbations to temperature T, specific humidity q, and winds u

and v are added at the end of each time-step, following the formulae

∆Tstoch = βε(∆TBL +∆Tconv +∆TLScloud +∆Tmicro +∆Trad) (2.2)

∆qstoch = βε(∆qBL +∆qconv +∆qLScloud +∆qmicro) (2.3)

∆ustoch = βε(∆uBL +∆uconv) (2.4)

∆vstoch = βε(∆vBL +∆vconv) (2.5)

The subscript stoch denotes the stochastic perturbations, whilst other subscripts denote the un-

perturbed increments from each of the default UM parameterisations listed in subsection 2.2.2.1;

BL for the boundary layer scheme, conv for the convection scheme, LScloud for the large-scale
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cloud scheme, micro for the microphysics scheme and rad for the radiation scheme. ε is a ran-

dom number drawn from a flat distribution between -1 and 1, and β is a parameter which controls

the amplitude of the stochastic perturbations. There is also a check to restore q to zero if the

stochastic perturbation implies a negative value.

The random number ε is not redrawn for the perturbations to different model-levels or vari-

ables, forcing the stochastic perturbations to replicate the correlation structure of the original

parameterised tendencies. Temporal correlation is forced by holding ε constant over multiple

time-steps, the correlation timescale τC of the scheme being set by the number of time-steps. The

scheme of Buizza et al. (1999) also forces spatial correlation by holding ε constant over multiple

neighbouring grid-points to span a correlation length-scale LC, but clearly this is not applicable

to the SCM framework. They found that the scheme yielded the greatest improvement in the per-

formance of an Ensemble Prediction System with β = 0.5, τC = 6 hours, and LC = 10o. The same

values for β and τC have been used here.

2.2.2.5 KAIN-FRITSCH CONVECTION SCHEME

In this model variant the Default UM’s convection scheme has been entirely replaced by a dif-

ferent commonly used deterministic penetrative mass-flux convection scheme; that of Kain &

Fritsch (1990, hereafter KF), with subsequent modifications. The version implemented here is

the one described by Kain (2004). This convection scheme is in many ways similar to the UM’s

standard convection scheme (described in appendix A), but there are nonetheless some structural

differences:

• The KF scheme’s convective trigger function is crucially dependent on the grid-point verti-

cal velocity w, whilst the Default UM convection scheme only uses w to determine whether

to call the deep or shallow version of the scheme.

• The KF and default UM convective plume models have somewhat different formulations

for the exchange of heat, moisture and momentum between the plume and its environment.

• The KF scheme explicitly models the plume vertical velocity, terminating the plume when

this falls to zero, whilst the Default UM scheme simply terminates the plume when the
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ascent parcel ceases to be buoyant. Therefore, the KF scheme may produce convective

overshoots, whilst the default UM scheme does not.

• The KF scheme diagnoses whether to apply a CAPE-based closure (for deep convection)

or a closure based on boundary layer turbulent kinetic energy (for shallow convection)

depending on the depth of the convection, after the plume ascent has been performed. The

default UM scheme applies similar closures, but diagnoses which one to use a priori. Note

that, whilst the Kain (2004) scheme parameterises the timescale for dissipation of CAPE

according to a cloud lifetime which is a function of the grid-size and the horizontal wind-

speed, in this implementation the timescale has been set to a constant value similar to that

in the default UM scheme. This is because the grid-size is not defined in the SCM.

The KF convection scheme was designed for use in mesoscale NWP models rather than cli-

mate GCMs, so it may seem an unusual choice to compare with other schemes in this study.

Its plume model design is more consistent with a single convective cloud (as is plausible in a

mesoscale model grid-box), rather than a bulk plume representing an ensemble of many clouds

(as is more likely in a climate GCM grid-box, and as assumed in the default UM convection

scheme). However, this property made the KF plume model an ideal choice for use in the Plant

& Craig (2008) stochastic convection scheme, which simulates multiple individual plumes simul-

taneously. This scheme has also been used in this study and is described in subsection 2.2.2.6

below. The deterministic KF scheme has therefore been implemented here for comparison with

that stochastic scheme. Also, the UM convection scheme and the KF scheme are both commonly

in use in NWP models, so a comparison of the two is instructive regarding structural uncertainty

in convection parameterisations. Such a comparison is made in the UM in a forecasting context

by Done (2002).

2.2.2.6 PLANT AND CRAIG STOCHASTIC CONVECTION SCHEME

Here the stochastic convection scheme of Plant & Craig (2008, hereafter PC) has been imple-

mented in the SCM. This scheme is designed to account for departures from statistical equilib-

rium in the ensemble of convective plumes within each model grid cell, given the likely small size

of this sub-grid ensemble of clouds. The context and motivation for this scheme was described in
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the literature review on stochastic parameterisations in chapter 1.

At statistical equilibrium convective cloud sizes are assumed to follow the theoretical dis-

tribution of Craig & Cohen (2006). A population of clouds in each grid box is generated by

randomly sampling this distribution. Clouds with different sizes behave differently because those

with larger radii should have a lower rate of entrainment of air from their environment per unit

cloud mass-flux than those with smaller radii.

Each cloud in the population is independently simulated using an adaptation of the KF plume

model. In this model, the mass of air from the environment δme made available for entrainment

in to the plume as it rises over a pressure interval δp is parameterised as δme = m0(−0.03δp/r),

where m0 and r are the mass-flux and radius respectively of the plume at cloud-base. In the

KF scheme, m0 is obtained from the grid-scale closure calculation and r is set to a fixed value.

However, in the PC scheme m0 is drawn from the equilibrium distribution (2.6), r is calculated

assuming that m0 is proportional to r2, and entrainment rates are calculated accordingly for each

cloud. Following Craig & Cohen (2006), the probability distribution function (PDF) for an indi-

vidual cloud’s cloud-base mass flux m0 is:

p(m0)dm0 =
1

〈m0〉
exp

(
−m0

〈m0〉

)
dm0 (2.6)

where 〈m0〉 is the equilibrium ensemble-mean cloud-base mass-flux per cloud and is assumed

to have a constant value of 2.0E7 kgs−1. In each grid-box, the PC scheme generates clouds

randomly in time, and the likely magnitude of convective activity is set by scaling the overall

probability per unit time of generating clouds. This is done by drawing clouds from the distri-

bution 2.6 after normalisation by the equilibrium number of clouds within the grid-box, given

by

〈N〉= (∆x)2 〈M0〉
〈m0〉

(2.7)

where (∆x)2 is the grid-box area and 〈M0〉 is the equilibrium total cloud-base mass-flux per

unit area, which is determined using a CAPE closure method. To obtain physically based con-

vective variability, it is preferable for the closure quantity 〈M0〉 to vary smoothly according to
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the resolved state of the atmosphere rather than responding to variability on the poorly-resolved

scale of an individual grid-box / time-step. The CAPE closure calculation is therefore done using

temperature and moisture profiles averaged over nearby grid-points and recent time-steps. The

spatial averaging cannot be done in the SCM framework, but time-averaging is used to calculate

the CAPE from which 〈M0〉 is derived. Without spatial averaging, a longer time-averaging pe-

riod is needed, and a compromise had to be made between providing a smoothly varying closure

quantity and capturing variations in the large-scale forcings. Initial tests suggested the scheme

behaved most physically when averaging over 10 hours (20 time-steps), and this value has been

used.

As is evident in equation 2.7, a larger (smaller) grid-size will give more (fewer) plumes on

average, which will give a more complete (limited) sampling of the equilibrium distribution and

hence smaller (larger) fluctuations in grid-box mean convection. To investigate this property, the

scheme has been run with two different grid-sizes ∆x of 50km and 100km. The SCM has no

defined grid-size, but this can be set as a parameter within the PC scheme.

2.2.2.7 DETERMINISTIC LIMIT OF THE PLANT AND CRAIG SCHEME

In the limit of large grid-size ∆x, the PC stochastic convection scheme will fully sample the

equilibrium distribution of the ensemble of possible convective clouds, yielding deterministic

behaviour. The scheme can be set to closely approximate this limit by operating as a spectral

convective parameterisation. That is, the plume model is run for a large set of clouds which

evenly samples the distribution of cloud-base mass-fluxes, and the tendencies produced by the

clouds are weighted according to their occurrence probabilities and added up. This is similar to

the approach originally proposed by Arakawa & Schubert (1974), which is used in other spectral

convective parameterisations designed since (e.g. Hack et al. 1984). The PC scheme has been

run in this deterministic mode so that the effect of the stochastic component of the scheme on

the SCM can be assessed by comparison. Comparing this run to the UM implementation of the

KF convection scheme described earlier will also be informative about the structural uncertainty

associated with using a bulk versus spectral convection scheme.
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2.2.2.8 TIME-SMOOTHED CONVECTION

It should be noted that deterministic parameterisations can exhibit considerable variability, even

under constant forcings (see for example Plant & Craig 2008, figure 4, panel (d), in which the

KF scheme varies considerably in a radiative-convective equilibrium SCM test). As shown by

Scinocca & McFarlane (2004), it is possible to enhance this existing variability in GCM param-

eterisations without recourse to stochastic methods, by altering certain properties of the deter-

ministic schemes. They show that forcing the convection parameterisation to respond on longer

timescales, either by increasing the CAPE closure timescale or employing a prognostic closure,

yields improvements in the realism of convective variability. Here a simple method to increase the

timescale of convective variability has been implemented in the UM SCM, and will be referred to

as the time-smoothed convection (TSC) scheme.

Each time-step, the tendencies from the Default UM convection scheme are not used to incre-

ment the model fields directly, but are added to separate convective heating and moistening fields

∆Ttsc and ∆qtsc which are then added to the model fields smoothly over future time-steps. This

process follows the form

d∆Ttsc

dt
=

dT
dt

∣∣∣∣
conv

− ∆Ttsc

τtsc
,

dT
dt

∣∣∣∣
convtsc

=
∆Ttsc

τtsc
(2.8)

d∆qtsc

dt
=

dq
dt

∣∣∣∣
conv

− ∆qtsc

τtsc
,

dq
dt

∣∣∣∣
convtsc

=
∆qtsc

τtsc
(2.9)

where the subscript conv denotes the tendencies from the Default UM convection scheme, and

the subscript convtsc denotes the time-smoothed convection tendencies which are applied to the

model. The amount of smoothing applied is controlled by the timescale τtsc, which has been set

to 2 hours. This scheme has the advantage that, unlike altering the closure calculation, it should

give the same mean convective response as the unsmoothed default convection scheme. So any

changes seen when this scheme is employed should be the result of the change in variability,

rather than an adjustment of the equilibrium state to maintain the convective heating rate under a

different closure.
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2.2.3 ENSEMBLE FRAMEWORK

Although SCMs have only one dimension and typically contain fewer degrees of freedom than 3D

atmospheric models by several orders of magnitude, their solutions can exhibit very strong non-

linearities. This is evident in Hack & Pedretti (2000), who demonstrated that an SCM version

of the NCAR CCM3 model displayed high sensitivity to small initial condition perturbations.

Ensembles of SCM runs each given a different random initial perturbation (of less than 1K in

temperature) diverged to give ensemble spreads of several K at later times. They conclude that

such large solution uncertainties render comparisons of single runs of different SCM formulations

difficult to interpret; results drawn from such a comparison are of little relevance if they are not

reliably reproduced under slight changes to the initial conditions. They suggest that to assess the

effects of a change in model formulation, ensembles of runs with initial condition perturbations

should be compared to check whether any statistically and practically significant changes in the

model’s behaviour occur. Such an approach is taken in the present study to compare different

deterministic and stochastic parameterisations in the UM SCM.

The UM SCM’s sensitivity to different initial condition perturbations will be investigated in

section 2.4.1. After this, results are for ensembles containing a standard set of initial condition

perturbations to temperature, drawn randomly from a uniform distribution between ±0.5K on the

lowest model level, and decreasing exponentially above with a decay height-scale of 1km. A cor-

responding perturbation is also applied to specific humidity so as to conserve relative humidity.

Note that these perturbations are not aiming to quantitatively sample the uncertainty in the initial

conditions used in the model, but are chosen so as to be large enough to force the ensemble to di-

verge into a set of effectively independent realisations during the run, but small enough not to give

any of the ensemble members a lasting thermodynamic bias relative to the ensemble mean. Hume

& Jakob (2005) used ensemble SCM simulations of the Tropical West Pacific to quantify parame-

terisation response to uncertainty in the initial conditions and large-scale dynamical forcings, and

detect biases in the parameterisations relative to observations. These are not aims of the present

study, but similar methods will be used to quantify the variability of various parameterisations

and detect systematic differences between the different model variants.

When a stochastic parameterisation is employed, ensembles can be generated without initial

Page 56



Chapter 2: Investigating the Variability of Parameterised Processes in a Single-Column Model

condition perturbations, by drawing the random numbers used in the stochastic component of the

model independently for each ensemble member. This method is used to compare the parameter-

isation uncertainty to initial condition sensitivity in section 2.4.3. However, for completeness and

fair comparison, all subsequent results for stochastic SCM variants include the initial condition

(IC) perturbations described above as well as independently drawn stochastic parameterisation

(SP) perturbations in each ensemble member.

2.2.4 ENSEMBLE STATISTICS

It will be useful to compare ensemble statistics such as the ensemble mean and ensemble spread

(which will be quantified by the standard deviation of ensemble members) between different

runs, to investigate any differences between them. In a finite ensemble both of these statistics

will have sampling distributions of finite width, so a consideration of the uncertainties in these

quantities is needed. The ensemble mean µ of some variable follows a sampling distribution

which is approximately normal with a standard error of σ/
√

N, where σ is the standard deviation

of the variable at that time and N is the number of ensemble members. It can be shown that

for ensemble sizes N greater than about 25, the sampling distribution of σ is also approximately

normal, with a standard error of σ/
√

2N. Most of the ensembles used consist of a control run with

no initial condition perturbations, and 39 initially perturbed runs. In some cases a larger ensemble

size of 100 was used to check the robustness of results. The standard errors and 95% confidence

intervals for µ and σ for each of these ensemble sizes are given in table 2.3.

Hack & Pedretti (2000) used a much larger ensemble size of 500, which is preferable for

robustly detecting more subtle effects. Given the low computational cost of SCM runs, this would

Table 2.3: Errors in ensemble statistics, expressed as percentage fractions of the ensemble spread σ.

Statistic Ensemble size Standard error 95% confidence interval

Ensemble mean µ 40 ±16% ±32%

100 ±10% ±20%

Ensemble spread σ 40 ±11% ±22%

100 ±7% ±14%
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have been feasible here. However, smaller ensemble sizes are used in this study, in line with the

typical size of operational ensemble systems. As will be seen in the results in section 2.4, the

ensembles used are sufficient to detect any major differences which arise between different SCM

configurations, with only minor, subtle changes being hard to robustly detect.

The confidence intervals for ensemble statistics can be narrowed by averaging over multiple

model levels or time-steps, as is done for many of the results. However, the degree of robust-

ness gained by averaging will depend critically upon the vertical and temporal autocorrelation of

the ensembles used. In some of the results presented later, 95% confidence intervals have been

estimated for vertical or temporal means of statistics by investigating the spread of the sampling

distribution of the relevant averaged statistic when calculated from sub-samples of the ensemble.

The method is described below.

For a statistic SN calculated from an ensemble of size N = n×m, a sample of m values of the

statistic Sn can be calculated from m independent sub-samplings, each of size n. The values of

Sn will have some scatter about SN , from which the width of the sampling distribution of Sn can

be calculated. The sampling distributions of the statistics in question are known to have widths

proportional to 1/
√

ν (for ν degrees of freedom), and the whole ensemble presumably has m

times as many degrees of freedom as each sub-sample. So the standard error of the statistic for

the whole ensemble σSN can be estimated as σSN = σSn/
√

m, where σSn is the standard deviation

of the sub-sample values Sn. For statistics averaged over multiple time-steps or vertical levels, the

Central Limit Theorem dictates that the sampling distributions should be approximately normal

even if the point-wise values of the statistics are not. Therefore, normality has been assumed

when estimating 95% confidence intervals from the standard errors σSN . The confidence intervals

shown in the results have been estimated using m = 10, n = 4. Sensitivity tests found they changed

very little if different values of m and n were used.

2.2.5 FORCING DATA

A forcing data-set derived from TOGA-COARE observation campaign measurements is used to

replace the dynamical component of the model in the SCM. The forcings consist of prescribed

time-series for tendencies in temperature and specific humidity due to large-scale horizontal and
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vertical advection (figure 2.3), and observed wind profiles (figure 2.4). The temperature and

humidity tendencies are simply added to the model fields as increments each time-step, whilst the

model winds are relaxed towards the observed values with a relaxation timescale of 1 hour. Large-

scale advection of cloud condensate variables is assumed to be zero. The forcings were derived

from observations over the TOGA-COARE Intensive Flux Array (IFA, see the map figure 14 of

Webster & Lukas 1992). The method used to derive the large-scale dynamical tendencies from

surface and radiosonde measurements at numerous sites across the IFA is described in Ciesielski

et al. (2003), and involved estimating average heat and moisture budgets for the IFA. Whole

IFA-means of the observations are used for the prescribed winds in the SCM, and also for the

initial conditions. Sea Surface Temperatures (SSTs) are also prescribed according to an observed

time-series from TOGA-COARE and are shown in figure 2.5. All of these data, and further

information about their derivation, are freely available online from the TOGA-COARE SCM

website (http://kiwi.atmos.colostate.edu/scm/toga-coare.html). The meteorology evident in the

plots of the forcing data is described in section 2.3.

Emanuel & Zivkovic-Rothman (1999) found that corrections had to be made to the moist en-

thalpy budget of TOGA-COARE-derived forcing data to prevent errors in the data from causing

large model drift in an SCM test of their convection scheme (their section 3). Wu & Moncrieff

(2000) show that these forcing errors originate in the estimated large-scale advection tendencies

(rather than the observed turbulent or radiative fluxes). Corrections to the moisture budget calcu-

lation to account for known biases in radiosonde humidity measurements have since been made

by Ciesielski et al. (2003), but these have relatively little effect on the budget-derived rainfall dur-

ing the period 9th-28th January 1993 simulated in the present study (see their figure 11). Petch

et al. (2007) suggest that at times during TOGA-COARE there were insufficient observations to

construct an accurate moisture budget, leading to large errors in both the budget-derived rainfall

rate and the large-scale dynamical tendencies used to force SCM and CRM simulations. They

conclude that many of the biases common to both SCM and CRM simulations of the case stud-

ied result from such errors in the large-scale forcings. This is in agreement with earlier model

intercomparison studies using TOGA-COARE forcing data, such as Krueger & Lazarus (1999).

The errors in the forcing data discussed above have been frustrating to studies which attempt

to validate CRMs or parameterisation sets in SCMs against observations. However, they do not
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Figure 2.3: Time-pressure plots of large-scale dynamical tendencies in (a) temperature dT/dt / K day−1

and (b) specific humidity dq/dt / g kg−1 day−1 from the forcing dataset. The time axis is labelled

in whole days (UTC) since the start of the month of January 1993, and vertical lines delineate the

suppressed and active periods (described in section 2.3), as in later figures.

undermine the present study, which is more concerned with the variability of the physical pro-

cesses represented by parameterisations, and in any differences which arise when the variability

is artificially altered through the use of stochastic parameterisations. This study is not concerned

with assessing whether such modifications to the model reduce biases relative to observations

or otherwise improve model performance. Comparisons with TOGA-COARE observations are

made in some of the following sections as a reality check and to aid in the understanding of the

underlying physics.

Initial experiments with the default UM SCM and TOGA-COARE forcing data yielded a large

drift in stratospheric temperature, with temperatures above 20km steadily declining by as much

as 40K during the 19 day simulation (not shown). It is unclear whether this drift was present
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Figure 2.4: Time-pressure plots of observed winds; (a) zonal winds u / m s−1, (b) meridional winds v /

m s−1 and (c) Vertical winds w / cm s−1 from the forcing dataset.
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Figure 2.5: Time-series of Sea Surface Temperatures (SST) / K from the forcing dataset.

in other studies which use the same forcing data as they do not present results for stratospheric

temperatures. Although the simulation appeared to behave realistically in the troposphere, the

stratosphere drift caused unrealistic convection and cloud formation at around 20km. The drift

was clearly a result of a radiative imbalance in the model, but the precise cause is unclear. It may

be that the stratospheric water vapour is inaccurately specified in the initial conditions. But for

the purpose of this study, the temperature drift was remedied by extending the large-scale forcing

data-set into the stratosphere with constant positive values chosen to precisely offset the initial

rate of erroneous stratospheric cooling.

Hack & Pedretti (2000) suggest that SCM frameworks should include a stabilisation compo-

nent to prevent solutions from drifting into unphysical states due to a lack of large-scale dynamical

feedbacks. A number of methods exist to parameterise the interaction of the thermodynamic pro-

file with the large-scale dynamics in an SCM. The vertical advection terms can be calculated

from the evolving thermodynamic profiles and the vertical velocity field (e.g. Hack & Pedretti

2000), the thermodynamic profiles can be relaxed towards observations (Hack & Pedretti 2000),

the temperature profile can be held constant and vertical velocities calculated such that the verti-

cal advection precisely balances the parameterised diabatic heating (Weak Temperature Gradient

approximation, Sobel et al. 2007), or vertical advection maybe coupled to the diabatic heating via

a gravity wave response model (Sardeshmukh 2004). However, as this part of the present study

only aims to examine the non-dynamical component of the atmosphere’s response to variabil-

ity in parameterised processes, a dynamical stabilisation framework would seem an unnecessary
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complication.

One of the SCM ensemble simulations of Hack & Pedretti (2000) (the ARM case) exhibited

large deviations into unphysical states unless dynamical stabilisation was used. Although some

drift in the temperature profile does occur in the experiments studied here (see section 2.3, figure

2.10), this does not seem to render the solutions unphysical, so no stabilisation framework is

essential for a realistic simulation in this case. None has been employed here, and the large-scale

dynamical tendencies are entirely prescribed.

2.3 OVERVIEW OF METEOROLOGY FOR THE CASE

To investigate the physical processes at work in the case simulated in this study, and check that

the SCM is representing these processes, data from the Default UM SCM ensemble is pre-

sented alongside various observation-derived fields for the IFA in this section. The observed

data, and information about their derivation, are available from the TOGA-COARE SCM web-

site (http://kiwi.atmos.colostate.edu/scm/toga-coare.html). The observations are 6-hourly mean

fields, so for fair comparison, 6-hourly means of the SCM data have been computed before cal-

culating the ensemble ranges presented in this section. These will have less spread than the SCM

data at a single time-step wherever variability on timescales shorter than 6 hours is important.

The rainfall variability during the simulated period is investigated in subsection 2.3.1, and its re-

lationship with the temperature and humidity profiles is explored in subsection 2.3.2. Variations

in cloud are compared by studying the Outgoing Longwave Radiation in subsection 2.3.3, and a

summary is given in subsection 2.3.4.

2.3.1 RAINFALL VARIABILITY

The case simulated by this experiment contains two suppressed phases, during which there is rel-

atively little rainfall, each followed by an active phase with heavy convective precipitation. These

are clearly visible in figure 2.6, which shows rainfall rate time-series from the SCM and from the

observation-derived estimated moisture-budget of Ciesielski et al. (2003). The suppressed and

active phases have been labelled here and on other figures for ease of comparison. These phases
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are similar to those defined in Petch et al. (2007), except that they have been further delineated at

times to distinguish the suppressed-to-active transition phases. Note that the time-axis in figure

2.6 and later figures is labelled with tick marks at 00h UTC each day, not local time. The time

of local solar noon is 01:36 UTC, so the tick marks roughly correspond to the middle of the local

day, rather than midnight.

Figure 2.6: 6-hourly mean rainfall rates over the TOGA-COARE IFA; a budget-derived observational

estimate (dotted), and the 5th, 50th and 95th percentiles from an ensemble of runs of the Default UM

SCM used in this study (solid). The time axis is labelled in whole days (UTC) since the start of the

month of January 1993. Vertical lines delineate the suppressed and active periods, as in other figures

(see text).

During the period 12–14 January (supB), convection is largely suppressed. Moderate rainfall

occurs on the 15th and 16th (onsB) during the onset of a vigorous active period from 17–19 (actB).

This transition is accompanied by strengthening Easterly winds from the surface up to 500 hPa

and Westerly winds aloft (see figure 2.4). After exceptionally heavy rains on the 19th, rains

become moderate for the 20th and 21st (staC) as conditions stabilise, giving way to suppressed,

dry conditions for the 22nd and 23rd (supC). Finally, light rains on the 24th and 25th (onsC) give

way to moderately active conditions for the 26th and 27th (actC). At the same time the strong

Easterlies give way to a Westerly wind burst near the surface. Moderate rains also occur during

the first 3 days of the model runs, but this period will be treated as spin-up for the ensembles and

so will not be studied in detail except to investigate initial condition sensitivity (section 2.4.1).

Negative values occasionally occur in the budget-derived rainfall rate shown in figure 2.6

because there are substantial errors in the estimated moisture budget used (these are discussed
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in section 2.2.5). Since the forcings used to drive the SCM are derived from the same incom-

plete moisture budget, the model rain rates are likely also in error. So neither the modelled nor

observation-derived rain-rates can be expected to be a precise representation of the true IFA mean,

but it is reassuring that they are broadly in agreement over the timing and magnitude of rainfall

events. An exception is the apparent heavy rain event at the end of supC in the budget-derived

rainfall. However, negative values of comparable magnitude also occur before and after this event,

suggesting the budget is not reliable during this period.

The vast majority of the rainfall in the SCM is produced by the convection scheme, with just a

small fraction produced by the large-scale cloud / microphysics schemes during the active phases

(not shown). To investigate the processes driving the rainfall variability shown in figure 2.6,

time-series of other variables expected to affect convective rainfall are presented; the prescribed

large-scale moisture convergence and the surface moisture fluxes are shown in figure 2.7, the rate

of change of the total Column Water Vapour in figure 2.8 and the Convective Available Potential

Energy (CAPE) and Convective Inhibition (CIN) in figure 2.9.

Figure 2.7: 6-hourly moisture budget; (dashed) IFA-average observed budget-derived large-scale mois-

ture convergence (calculated as the column integral of the moisture forcing shown in figure 2.3b), (dot-

ted) observed IFA-average surface moisture flux, and (solid) the 5th, 50th and 95th ensemble percentiles

of surface moisture flux from the default UM SCM.

Comparing the rain rates in figure 2.6 to the large-scale moisture forcing in figure 2.7, it is

clear that the rainfall closely follows the large-scale moisture convergence. However, the large-

scale forcings in moisture and temperature (figure 2.3) are closely correlated (the primary term

in both is the vertical advection), so this alone does not prove that the rainfall variability is being
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Figure 2.8: 6-hourly rate of change of the column-integrate water vapour; (dotted) observed IFA-

average, and (solid) the 5th, 50th and 95th ensemble percentiles from the default UM SCM.

forced by moisture convergence, rather than variations in convective instability driven by the

large-scale temperature forcing.

If the latter is the case, there should be a strong signal in the CAPE and/or CIN modulating the

rainfall. Comparing the rain rates to figure 2.9a, there is no such signal in the CAPE; it is broadly

similar in the observations and the SCM, and remains plentiful throughout the period, including

the suppressed phases.

Considering CIN (figure 2.9b), in the observations there is no obvious influence of CIN on

the rainfall variability either (e.g. during suppressed phases no significant rain occurs even when

the CIN goes to near zero, and rainfall increases during actC despite the observed CIN being

persistently high). There is some negative correlation between CIN and rainfall in the SCM

(the highest correlation coefficient r relating 6-hourly CIN and rainfall was -0.36, found for the

logarithms of the two variables, excluding zero values and the erroneous period onsC). However, a

much stronger correlation was found between the 6-hourly large-scale moisture convergence and

rainfall, with r = 0.90. Therefore, large-scale moisture convergence is presumably the primary

factor driving the rainfall variability in figure 2.6, in both the observations and in the model.

The modelled CIN is generally lower than observed (except during onsC, when the CIN cal-

culation in the model profiles is skewed by the appearance of a stable layer at 400 hPa with an

unstable region above it, shown later in figure 2.10). The model and observed CIN both exhibit a
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Figure 2.9: Time-series of (a) non-dilute Convective Available Potential Energy (CAPE), and (b) Con-

vective Inhibition (CIN), calculated using a parcel ascent from the bottom level; (dotted) values com-

puted from the 6-hourly IFA-mean soundings, and (solid) 5th, 50th and 95th ensemble percentiles from

the DefUM ensemble. CAPE and CIN were computed from 6-hourly means of the modelled profiles

before percentiles were calculated.

diurnal cycle, but they are not in phase; the observed CIN has maxima during the night or morn-

ing, whilst the SCM gives maxima during the day. This is presumably symptomatic of the failure

of convection parameterisations to produce a realistic diurnal cycle (e.g. Yang & Slingo 2001).

Note in figure 2.7 that the surface moisture flux is relatively steady, with little ensemble vari-

ability in the SCM, and general agreement between the SCM and the observed IFA-mean. The

time-variation in the moisture budget is dominated by a play-off between large-scale moisture

convergence and rainfall, which are by far the largest terms but largely cancel each other dur-

ing the active phases. During the suppressed phases, the drying (moisture divergence) forced by

large-scale descent is partially off-set by fluxes of moisture from the surface. Figure 2.8 shows
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that the residual of the rainfall, moisture convergence and surface flux still gives some significant

variability in total Column Water Vapour (CWV). Some of the moisture introduced to the column

during onsB and actB is not rained out but causes CWV to increase, whilst the column net loses

water during staC, allowing rainfall to continue despite near-zero moisture convergence at that

time.

2.3.2 TEMPERATURE AND MOISTURE PROFILES

To investigate the temperature and moisture variations during the case, figure 2.10 shows sound-

ings averaged over each of the phases of convective activity. The observed temperature profile

changed very little through the different phases of convective activity, in agreement with theories

that suggest a Weak Temperature Gradient in the tropics (e.g. Charney 1963). The 6-hourly mean

modelled temperature profile shows little ensemble spread, but has some systematic drift as the

simulations progress, with a general cooling trend in the troposphere. Exceptions are the devel-

opment of marked warm stable layers just above 200 hPa from onsB to staC, and at around 400

hPa during onsC.

As was noted in figure 2.8, there are considerable variations in the moisture profile in both the

observations and the SCM. Whilst the dew-point in the boundary layer changes relatively little

(constrained by contact with the sea-surface), the free troposphere shows a moistening trend from

supB to actB, then a drying trend from staC to onsC, and a final re-moistening from onsC to

actC. The SCM has a tendency to drift in to a somewhat drier state than the observations, with

particularly dry episodes coinciding with the aforementioned stable layers during the onset phases

onsB and onsC.

A number of studies have related the occurrence or not of tropical convection and precipitation

to the humidity of the free troposphere. One such study is that of Holloway & Neelin (2009),

who argue that the environment moisture profile through which a convective plume rises is a key

control on its buoyancy via entrainment. The drier the environment air, the greater the evaporative

cooling of the plume due to entrainment and the sooner it ceases to be saturated and buoyant.

Convective rainfall then cannot initiate unless the environment is sufficiently moist to permit an

entraining convective plume to remain buoyant over a sufficient depth for precipitation to form,
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Figure 2.10: Tephigrams showing profiles of dry-bulb (solid) and dew point (dashed) temperatures aver-

aged over each of the phases of convective activity shown in figure 2.6; (thick lines) average of soundings

over the TOGA-COARE IFA, and (thin lines) 5th and 95th ensemble percentiles from the DefUM en-

semble. Dew-points are not plotted where the observed specific humidity was rounded to zero in the

available data. Model ensemble percentiles were calculated after time-averaging.

even if there is plentiful CAPE and low-level moisture convergence. This could explain the highly

non-linear dependence of tropical rainfall on Column-integrated Water Vapour (CWV) observed

by Bretherton et al. (2004), who suggested that rainfall only commonly occurs above some

threshold value of CWV (scaled by a measure of free tropospheric temperature), beyond which it

increases rapidly.

The modelled profiles (thin lines in figure 2.10) are indeed consistent with a relationship

between free-tropospheric humidity and rainfall; the smaller the dew-point depression in the free

troposphere in a given phase, the more rain occurs during that phase. This supports the notion that
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the large-scale moisture convergence controls the rainfall variability in the SCM, via convective

entrainment in the free troposphere as described above. Heavy convective rainfall only occurs

when the large-scale forcings act to make the free troposphere sufficiently moist, and excess

moisture convergence beyond this point is rained out. The SCM achieves this even though its

convection scheme is closed on CAPE, not moisture convergence. This suggests the convection

parameterisation successfully represents the environment humidity control on convective rainfall

described above, via its representation of entrainment in the plume model.

The observed profiles broadly support rainfall dependence on dew-point depression as in the

SCM, except towards the end of the period. The free troposphere remains very dry during onsC

and actC and, unlike in the SCM, the profile does not cool so as to reduce the dew-point depres-

sion. It is unclear why substantial rains occurred during actC in reality (or equivalently, why the

atmosphere equilibrated in a much drier state during actC than it did during other periods with

similar forcings and rain-rates). The observed profile during actC is just as dry as during the

suppressed phase supC, with slightly lower CAPE and greater CIN. Perhaps the observed mois-

ture profiles during onsC and actC are in error due to the sparsity of observations at that time, as

discussed by Petch et al. (2007). Or perhaps the IFA came under the influence of some organised

convective system during actC.

Of course, in the real world there is a two-way interaction between the convective activity and

the large-scale; large-scale ascent promotes cooling and moistening of the troposphere through

vertical advection, which promotes deep convection, which produces diabatic heating which in

turn promotes large-scale ascent. However, in these experiments there is no coupling of the large-

scale forcings to the diabatic heating, so no such feedbacks occur. These feedbacks have been

explored in SCM frameworks which parameterise the dynamical response to diabatic heating

(e.g. Sobel et al. 2007).

2.3.3 OUTGOING LONGWAVE RADIATION

It would be preferable to verify that the model is producing cloud-fields which are reasonably

realistic and representative. One diagnostic that is easily obtained is the IR brightness temperature

Tb measured by the Japanese Geostationary Meteorological Satellite, which was observing the
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tropical West Pacific at the time of TOGA-COARE. This should give an indication of cloudiness

over the IFA, with lower brightness temperatures indicating the presence of high, cold clouds.

To compare this with the SCM’s Outgoing Longwave Radiation (OLR) diagnostic, it has been

converted to an equivalent longwave flux FLW using Stephan-Boltzmann’s law FLW = σT 4
b , where

σ = 5.6704E-8 J s−1 m−2 K−1 is the Stephan-Boltzmann constant. The time-series of FLW is

compared with the SCM ensemble range of OLR in figure 2.11.

Figure 2.11: Time-series of 6-hourly mean Outgoing Longwave Radiation (OLR); (dotted) equivalent

LW flux estimated from the IFA-average IR brightness temperature as observed by the Japanese Geo-

stationary Meteorological Satellite (GMS), and (solid) 5th, 50th and 95th ensemble percentiles from the

DefUM ensemble.

The equivalent LW flux gives unrealistically high values for OLR. The values nearly exceed

the daily-mean downward solar radiation at top-of-atmosphere (429 W m−2), implying a con-

siderable radiative loss (accounting for albedo), whereas the Tropical West Pacific is in reality a

major heat source in the climate system. It would be naive to assume a spectral brightness tem-

perature measurement will be an accurate measure of the broadband OLR, so this discrepancy is

not surprising. The key point to note is that the SCM OLR captures the variability in the observed

brightness temperature well, suggesting that it is producing cold cloud in the right proportion at

the right times. A minor exception is the observed slightly cloudy spell at the end of supB. Com-

paring with the rainfall time-series in figure 2.6, it seems the SCM does produce some rain at that

time but there is no signature of any associated cold cloud in the model OLR.
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2.3.4 SUMMARY

In summary, the default UM SCM is found to represent the observed phases of suppressed and

active convection well. The diurnal cycle of convective inhibition is completely out of phase

with the observations, but this turns out to be relatively unimportant, as the rainfall variability

is primarily controlled by large-scale moisture convergence. This is via its forcing on the free-

tropospheric humidity profile, which controls the occurrence of deep, rain-bearing convection via

entrainment of environment air into convective plumes. The SCM appears to capture this well.

The moisture budget is dominated by a play-off between moisture convergence and the convective

rainfall response, with the rainfall accounting for most of the ensemble variability in the SCM’s

moisture budget. The surface moisture flux acts to replace the moisture removed from the col-

umn by the large-scale forcings during suppressed phases. The temperature profile in the SCM

gradually drifts away from the fairly constant observed profile, with a modest cooling trend (and

a slight drying). But it doesn’t appear to diverge to any wildly unphysical state, suggesting that

useful results can be obtained without using a dynamical stabilisation framework. The OLR in the

SCM follows a very similar pattern of variations to the satellite-observed brightness temperature,

suggesting that the timing and height of cloud in the SCM is broadly realistic.

2.4 RESULTS

In this section, preliminary results are presented investigating the variability of deterministic and

stochastic parameterisations in the SCM. The variability of deterministic schemes is explored

in subsection 2.4.1, by studying their sensitivity to initial condition perturbations. This is then

related to the variations in convective activity in subsection 2.4.2, and compared to the SCM’s

sensitivity to stochastic physics perturbations in subsection 2.4.3.

2.4.1 SENSITIVITY TO INITIAL CONDITION (IC) PERTURBATIONS

To investigate the initial condition sensitivity of the SCM, ensembles have been performed with

two different sets of IC perturbations. First, minimal perturbations were made, consisting of per-
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turbations to temperature on the bottom model level only, drawn from a flat distribution between

±0.25 K. Second, the standard IC perturbations described in section 2.2.3, which have a larger

amplitude and vertical extent and act on specific humidity as well as temperature, were applied.

Time-series of temperature at 800 hPa for ensembles of Default UM SCM runs with the min-

imal and standard IC perturbations are shown in figure 2.12. In both cases the ensemble diverges

over the first few days of the simulation, giving a temperature range of about 2K at many times.

After a few days the spread of the ensemble saturates and stops increasing, but proceeds to vary

considerably throughout the runs. The ensemble with the minimal IC perturbations takes slightly

longer to saturate (about 4.5 days, compared to about 3.5 days for the standard perturbations), but

thereafter the behaviour of the two appears qualitatively very similar. This suggests that once the

ensembles saturate, their behaviour is no longer sensitive to the IC perturbations which initially

caused them to diverge. Once this occurs, the spread of the ensembles is no longer a function of

the initial conditions, so it must be a function only of the model and the large-scale forcings. The

ensemble members vary rapidly within a wider envelope whose mean value and spread evolves

with time as it is forced by the prescribed large-scale dynamics. Note that each member (looking

at the control run for example) may be one of the warmest at one time and yet be one of the

coolest a couple of days later, suggesting that the ensemble decorrelates with itself multiple times

during the run.

In theory the control run (thick solid line), which has no IC perturbations, should be identical

for both the ensembles shown in figure 2.12. However, despite using the same model and the

same initial conditions, the control runs begin to diverge visibly from one-another after about

3.5 days. Other than the IC perturbations, the only difference between these two ensembles is

that the standard IC perturbation ensemble was later rerun in order to obtain more diagnostics,

after an upgrade had been made to the compiler on the computing platform used, which rendered

results non bit-reproducible. So the tiny differences in numerical truncation error associated with

the compiler upgrade were sufficient to force the realisations followed by the SCM control run

to diverge. This is a sobering illustration of the capability of SCMs to exhibit very strong non-

linear sensitivity to small perturbations, as discussed by Hack & Pedretti (2000), and reinforces

the importance of using ensembles in this context. For example, just comparing the temperatures

given by the two control runs, one could falsely conclude that the latter run is systematically
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Figure 2.12: Time-series of temperature at 800 hPa from the Default UM SCM; (thick solid line) the

control run, (thin solid lines) the 39 perturbed ensemble members, and (dotted) the ensemble mean, with

(a) minimal, and (b) standard IC perturbations (described in text).

warmer and steadier during supC.

Figure 2.13 shows similar temperature time-series for ensembles of runs with the Kain-Fritsch

convection scheme. Although these runs show a similar pattern of mean response to the large-

scale forcings (i.e. cooling during the onset of active phases and warming during the stabilisation

periods at the ends of active phases), the envelope of likely realisations is much narrower than

in the Default UM ensembles for both sets of IC perturbations. For the minimal IC perturbation

ensemble (figure 2.13a) the number of distinct trajectories on the plot appears much smaller than

the size of the ensemble. This is clearly apparent in figure 2.14, which shows the two Kain-Fritsch

ensemble time-series of temperature as in figure 2.13 but zoomed in on the 22nd and 23rd January.

Even after 15 days of simulation, the 40 ensemble members remain tightly clustered, following

only 6 distinct realisations. In this case the ensemble has failed to diverge, and statistics such
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as the ensemble mean and spread will not representatively sample the full solution variability.

However, when the standard IC perturbations are applied, a fully diverged set of realisations is

evident (figure 2.14). But the spread is still considerably narrower than that seen in the Default

UM ensembles.

Figure 2.13: As figure 2.12, but for the Kain-Fritsch model variant.

Both the Default UM and Kain-Fritsch ensembles evidently exhibit discrete and sometimes

large jumps in temperature, ranging in frequency from a couple of events per day during the sup-

pressed phases to near-continuously noisy behaviour during active phases. The tendency of these

jumps to happen more often during convectively active periods suggests that they are related to

the convective parameterisation. Figure 2.15 shows the triggering behaviour of the convection

scheme, for the Kain-Fritsch ensembles during the 22nd and 23rd January as in figure 2.14. Now

comparing figure 2.15a with figure 2.14a, it is clear that the time-steps on which the convection

scheme calls in many ensemble members correspond to those when the temperature jumps occur,

for example just after t = 21.4 days and just before t = 21.8 days. Further, if one checks care-
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Figure 2.14: As figure 2.13, but zoomed in on the 22nd and 23rd January for clarity.

fully, the clustering behaviour of the temperature trajectories is precisely reflected in the timing

of convective triggering; there are only 6 distinct sets of triggering time-steps in figure 2.15a,

each corresponding to the jumps in one of the 6 trajectories in figure 2.14a. 16 of the ensem-

ble members, including the control run, all trigger convection at the same times and follow the

same trajectory, which fortuitously turns out to be an outlier when the ensemble better samples

the likely realisations (when the standard IC perturbations are applied; figure 2.14b). When these

larger IC perturbations are used, the clustering in convective triggering behaviour correspondingly

breaks down, giving a much more random-looking scattering of triggering time-steps for different

ensemble members in figure 2.14b. Some patterns remain, such as the tendency for convective

triggering at t = 21.4 days; these are presumably driven by the large-scale forcings.

The discrete jumps associated with convective triggering appear to dominate the high-

frequency variability in the SCM simulations studied here. Also, the divergence of ensemble

members into distinct realisations often first occurs at such events. For example, the two control
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Figure 2.15: Time-series showing when the convection scheme is active in each ensemble member in

the KF ensembles, for the same time period as in figure 2.14; (a) with minimal IC perturbations, and

(b) standard IC perturbations. A box is coloured if there is any convective increment in temperature

anywhere in the model column in the corresponding ensemble member and time-step.

runs in figure 2.12 first differ visibly when a small convective jump occurs at t = 10 days in (b)

but not in (a). After this the timings and magnitudes of convective events differ increasingly be-

tween the two, and the large convective jump at t = 11.5 days finally forces them in to seemingly

un-related trajectories.

Comparing figures 2.12 and 2.13, it is perhaps surprising that the SCM’s spread response

differs so much when a different convective parameterisation is employed. This is in contrast

to the findings of Hume & Jakob (2005), who show in their section 4.1 that the two different

SCMs used in their study produce very similar ensemble spread in response to initial condition

uncertainty for a range of variables, including 850hPa temperature. Given the role the convection

scheme plays in causing the SCM ensembles performed in the present study to diverge and vary,
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and the large difference in spread between the DefUM and KF ensembles, it is clear that the

ensemble spread is highly sensitive to the convective parameterisation. Presumably the SCMs

used by Hume & Jakob (2005) had fortuitously similar convective behaviour.

The SCM runs of Hack & Pedretti (2000) were similar to those studied here in that the ensem-

ble spread did not simply grow steadily and then saturate at some equilibrium value, but varied

greatly in response to changes in the large-scale forcing and atmospheric state. At some times the

ensemble of states diverges rapidly, whilst at others it reconverges. This behaviour suggests that

after some time the ensemble spread may become more connected to the variability of the physics

represented in the SCM than it is to the initial condition perturbations used to provide the initial

range of states. The mechanisms responsible for generating variations in ensemble spread in the

UM SCM will be explored further in the following subsection 2.4.2.

Hack & Pedretti (2000) also show that large bifurcations exist in their SCM solutions, with

ensemble members clustering into multiple preferred modes at times, even after the ensembles

have fully diverged. They point out that when such behaviour occurs, statistics such as the en-

semble mean and standard deviation may not be representative or meaningful. They found that

this was a particular problem in a case simulating very vigorous convection over continental land,

in which the occurrence of multiple modes was associated with the development of unphysical

model states in the boundary layer. However, their simulations of convection over the tropical

oceans were more stable and not so prone to unphysical behaviour, and the same appears to be

the case in the simulations studied here. The Kain-Fritsch ensemble does show a little tendency

towards bifurcations (for example, during the 20th January in figure 2.13b), but there was no

obviously unphysical mode associated with this, and the ensemble remains more evenly spread

throughout most of the simulation. The occurrence or not of bifurcations appears to be a function

of both the model (here they occur for the KF scheme but not the DefUM) and the large-scale

forcings (in Hack & Pedretti 2000, they had a greater tendency to occur in the continental case

than the oceanic one). But in this study, such behaviour is limited, and ensemble statistics are gen-

erally meaningful, as long as the ensembles fully diverge. The standard IC perturbations appear

to be sufficient to achieve this.
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2.4.2 ENSEMBLE SPREAD AND VARIABILITY

It was noted in section 2.4.1 that once an SCM ensemble saturates, its spread continues to vary,

presumably as a function of the forcings and model physics rather than the initial conditions. This

is explored further in this section.

Figure 2.16 shows a time-height plot of the ensemble spread in temperature in the default UM

SCM ensemble. The spread appears to follow different characteristic regimes during suppressed

and active phases, whilst behaving in a more unsteady manner during transition periods between

the two. During the onset phases prior to each active phase, there is a peak in ensemble spread at

mid-levels followed by a rapid decrease in spread.

Figure 2.16: Ensemble spread (standard deviation) in temperature for the Default UM ensemble using

the standard IC perturbations. Over-plotted are (dotted) the 25th and 75th percentiles of the convective

cloud top pressure, and (solid) the 5th and 95th percentiles of the melting-level pressure. The cloud-

top percentiles are determined at each time-step from the subset of ensemble members in which the

convection scheme triggers, then smoothed for presentation here using 6-hourly averaging.

Most notably during the onset phases, the pattern of ensemble spread appears to be related

to the convective cloud top height. For example, the peak in ensemble spread in the mid-

troposphere on the 15th corresponds to where the ensemble contains considerable uncertainty

regarding whether the convective cloud top penetrates the melting-level inversion. During the

following day the ensemble members fall in to agreement that convection exceeds this height,

and the ensemble spread drops throughout the troposphere. At many times during the run the

maximum ensemble spread is at or near the melting level. This highlights the strong sensitivity
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of deep convection there, and is consistent with the findings of Inness et al. (2001), who found

that adequately resolving the melting-level inversion was important in the simulation of tropical

rainfall variability.

Another interesting feature is the sloping layer of high ensemble spread around the 24th and

25th, which increases in height from around 450 to 350 hPa during onsC. This layer closely

follows the 75th percentile of convective cloud top height, indicating an ascending lid on the

convection (figure 2.10 in section 2.3 confirms a strong inversion was present in the model at

this time / altitude). The ensemble spread is large here because the ensemble members produce a

range of different heights for this lid, which has a sharp temperature gradient across it.

Aside from ensemble spread, the variability of the ensemble can also be quantified by the

rate at which the ensemble decorrelates with itself. A decorrelation timescale τ can be calculated,

following Dawdy & Matalas (1964), as:

τ =
1+ r∆t

1− r∆t
∆t (2.10)

where r∆t is the ensemble autocorrelation at lag ∆t. τ can be thought of as the time taken for

the ensemble members to “forget” where they were relative to each-other. Figure 2.17 shows the

ensemble decorrelation timescale for the default UM SCM. For comparison, figure 2.18 shows

the temperature tendency due to convection in the SCM.

Figure 2.17: Ensemble decorrelation timescale for temperature for the Default UM ensemble. Derivation

is described in the text.
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Figure 2.18: Ensemble-mean convective temperature tendency for the Default UM ensemble.

There is a striking correspondence between the convective temperature tendency and the en-

semble decorrelation timescale τ. Where the convection is active, the ensemble decorrelates with

itself in just a few hours; where convection does not occur, τ is greater than 2 days. This con-

firms the results from section 2.4.1, which suggested convection was the key process generating

temperature variability in the ensemble. Similar results (not shown) apply for other fields such as

specific humidity.

2.4.3 SENSITIVITY TO STOCHASTIC PARAMETERISATION (SP) VERSUS INI-

TIAL CONDITION (IC) PERTURBATION

Here, the variability generated by a simple stochastic physics scheme implemented in the SCM

(the Multiplicative Perturbation method of Buizza et al. 1999, described in section 2.2.2.4) is

compared with the internal variability of the default parameterisation set (generated by initial

condition perturbations as in the previous subsections).

Figure 2.19 shows time-series of the column-mean ensemble spread of temperature, for the

Default UM ensemble with the minimal IC perturbations described in subsection 2.4.1 and the

standard (larger and more extensive) IC perturbations described in subsection 2.2.3, and also for

an ensemble which includes the multiplicative noise scheme, both with and without the standard

IC perturbations added. The corresponding plots for relative humidity are shown in figure 2.20.
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Figure 2.19: Column-mean ensemble spread of temperature in the default UM with minimal (dash-

dotted) and standard (solid) IC perturbations, with multiplicative-noise perturbations (dotted), and with

both standard IC perturbations and multiplicative noise (dashed).

Figure 2.20: As Figure 2.19, but for relative humidity rather than temperature.

Looking first at the two Default UM ensembles, there is more spread over the first 6 days

using the larger standard IC perturbations. However, the minimal and standard IC ensembles

look very similar beyond 6 days, suggesting that the ensemble spread has saturated in both. This

confirms that the saturated level of ensemble spread in temperature is independent of the size and

nature of the IC perturbations, but rather provides a measure of the inherent variability of the

SCM, as hypothesised earlier. For the Kain-Fritsch scheme, the larger IC perturbations produce

larger ensemble spreads throughout (figure 2.13), but this is because the spread did not saturate

when the minimal IC perturbations were used.

In a stochastic physics (SP) SCM ensemble, the stochastic method introduces some hitherto
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neglected source of variability. One might anticipate that the physics perturbations would allow

the SP ensemble to explore at least those realisations accessible to its deterministic analogue1. If

this is true, then IC perturbations should have little effect on ensemble spread when implemented

in an SP ensemble.

It is clear from figures 2.19 and 2.20 that beyond the first 36 hours or so, the ensembles

including multiplicative noise SP perturbations have spreads that are consistently larger than those

occurring in the IC-only ensembles, typically by a factor of about a third. The inclusion of IC

perturbations in addition to multiplicative noise slightly increases the spread during the first day,

but has no significant effect thereafter. This is consistent with the idea that the IC perturbations

allow one to sample different realisations, but do not affect the underlying distribution of likely

realisations that emerges once the spread of the ensemble saturates. Similar conclusions apply for

the other stochastic methods used (not shown).

Comparisons of the effects of IC and SP perturbations have been made before in the context

of global GCM ensemble prediction systems. Buizza et al. (1999) found that IC-only ensembles

produced consistently larger spread than SP-only ensembles, and that ensembles with IC and SP

perturbations produced greater spread still2. Teixeira and Reynolds (2007) found similar results

over the tropics using a multiplicative noise scheme applied only to the moist convective tenden-

cies (their figure 7a). Although these results differ from ours in placing far greater emphasis on

IC perturbations, this is not surprising given the context. In particular, we focus on the saturated

level of ensemble spread due to IC perturbations whereas in the cited studies, the runs do not

reach saturation (see Teixeira and Reynolds (2007), figure 7a for example). Also those studies

used much larger IC perturbations designed to sample IC uncertainty. Clearly the timescale for

ensemble saturation is much longer in a 3D global simulation compared to the SCM, reflecting

the slower, larger-scale dynamical modes which dominate the variability in the former.

Finally, before a rigorous comparison of the various deterministic and stochastic SCM con-

figurations described in subsection 2.2.2 is made (in the next chapter), it would be desirable to

1By which we mean the equivalent configuration with the stochastic component disabled, providing of course that

such an equivalent is well-defined. For example, for a stochastic method in which model parameters are selected

randomly, the deterministic analogue is simply a simulation with the default parameter set.
2This is shown for forecast days 3, 5 and 7 in their Table 1a.
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check that the variability generated by all these schemes is reflected by changes in the ensemble

spread, as it is for the multiplicative perturbation scheme shown in figures 2.19 and 2.20. 40-

member ensembles, including the standard initial condition perturbations, were generated for all

of the model variants. Figure 2.21 shows time-series of their column-mean ensemble spreads in

temperature and specific humidity.

The various SCM configurations exhibit a broad range of ensemble spreads, which differ

significantly from one-another. The spread time-series show large differences in the amplitude of

variability in the different ensembles, and some differences in the time-variation of spread for the

different schemes. The effects of the stochastic methods on the ensemble variability are clearly

visible; both of the model uncertainty schemes (multiplicative noise and random parameters)

are more spread than the default UM throughout, and the stochastic Plant & Craig scheme is

significantly more spread than it’s deterministic counterpart. The differences between the schemes

shown in figure 2.21 will be investigated in detail in the next chapter.

2.5 CONCLUSIONS

An SCM experiment simulating tropical convection, including transitions between suppressed

and active phases, has been chosen for studying the high-frequency variability of parameterised

sub-grid and non-dynamical processes in the atmosphere. The SCM version of the Met Office

Unified Model is used, with the tendencies due to large-scale horizontal and vertical advection

prescribed according to observation-derived heat and moisture budgets (based on data from the

TOGA-COARE intensive observation campaign over the tropical West Pacific).

Other studies using the same framework have found that errors in the budget-derived large-

scale forcings made it difficult to validate models relative to observations. However some de-

parture of the model-state from the one observed in this case is not detrimental to studying sen-

sitivities to high-frequency variability, provided that the model’s behaviour remains physically

realistic. To examine this point, the meteorology and underlying physics of the case were investi-

gated.

The rainfall variability was found to be primarily forced by large-scale moisture convergence
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Figure 2.21: Column-mean 3-hourly-mean ensemble spread of (top) temperature T and (bottom) specific

humidity q for all the SCM variants described in subsection 2.2.2, for 40-member ensembles including

the standard IC perturbations; (black) default UM, (red) multiplicative noise, (solid green) random pa-

rameters, (dashed green) constant random parameters, (orange) time-smoothed convection (blue) Kain-

Fritsch convection scheme, and (purple) the Plant & Craig convection scheme (solid) in deterministic

mode, (dashed) stochastic mode with grid-length 100 km, and (dotted) grid-length 50 km. Thick lines

denote the unbiased estimator of ensemble standard deviation, thin lines show its 95% confidence inter-

vals, estimated as described in subsection 2.2.4. Page 85
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(although in the real world there is a two-way interaction, with moisture convergence promoted

by convective heating). The SCM captures the response of convective rainfall to moisture con-

vergence well; due to the effects of entrainment of air from the surrounding environment into

convective plumes, deep, rain-bearing convection only occurs when the forcings act to make the

mid-troposphere sufficiently moist. Whilst the convection parameterisation is closed on CAPE,

it represents this process via its entrainment formulation. The SCM was found to give some sys-

tematic drift relative to the observed temperature and specific humidity profiles, but this was not

large enough to render the model-states unphysical. Indeed, the SCM seems to produce realistic

time-series of rainfall, surface fluxes and cloudiness throughout. It therefore seems reasonable

to treat the SCM as a realistic representation of the underlying atmospheric physics in this case,

allowing meaningful inferences about the sensitivity of sub-grid and non-dynamical processes to

high-frequency variability to be drawn in subsequent results.

In agreement with other studies, the SCM was found to exhibit strongly non-linear sensitiv-

ity to its initial conditions. Even when applying very minimal initial condition perturbations, an

ensemble of integrations diverged into a set of seemingly independent realisations, with the en-

semble spread saturating in just a few days. At a given time, an individual ensemble member may

not be representative of the distribution of likely states evolving from a set of almost identical

initial states. This supports the point made by Hack & Pedretti (2000) that ensembles of runs

need be performed in order to make meaningful comparisons of different parameterisations in an

SCM framework.

The saturated level of ensemble spread was found to be independent of the initial condi-

tion perturbations used, and instead varies with time as a function of the SCM’s variability. An

SCM ensemble with an alternative convection parameterisation (the KF scheme described by Kain

2004) was found to give smaller ensemble spreads and diverge much less readily, showing that the

SCM’s variability and initial-condition sensitivity is highly dependent on the convection scheme

used. The KF scheme has a somewhat simpler trigger formulation, with fewer “switches” than

the default UM convection scheme. This could explain why it exhibits less strongly non-linear

sensitivity.

Further investigation showed that the “on-off” triggering of the convection parameterisation

is the primary mechanism driving divergence of ensemble members in the SCM. When the con-
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vection triggers, it produces discrete jumps in temperature which dominate the high-frequency

variability. The precise timing and magnitude of these jumps has strongly non-linear dependence

on the model state, effectively generating substantial uncertainty in the model tendencies at a

given time.

Examination of the vertical structure and time-evolution of the spread of the SCM ensem-

ble suggested the spread is closely related to particular uncertainties in the convective behaviour;

large spread occurs where the height reached by convective plumes is uncertain, especially near

discontinuities such as the melting level or other inversion layers which form during the runs. It

was found that once the ensemble saturated, it decorrelated with itself multiple times during the

simulation. The timescale for decorrelation of the ensemble members was found to vary enor-

mously with time and height, closely following the pattern of convective heating. These results

show that the ensemble spread and decorrelation timescale can be studied as good measures of

the amplitude and timescale of convective variability in the SCM.

The inclusion of a simple stochastic multiplicative perturbation method (based on that of

Buizza et al. 1999, which is designed to account for parameterisation uncertainty in an ensemble

forecast) was found to yield consistently larger ensemble spreads than the default deterministic

UM SCM. This confirms that the spread of the SCM ensemble can be used to assess the increase

in high-frequency variability introduced by the stochastic method. Consistent with its design, the

multiplicative perturbation method simply boosts the amplitude of the parameterisation variabil-

ity, but not the qualitative behaviour of its time-series.

The spread of the stochastic SCM ensemble was found to exhibit almost no sensitivity to the

inclusion or not of initial condition perturbations; simply applying different random numbers in

the stochastic physics component of each ensemble member gave a rapid divergence of states re-

gardless. This is in contrast to ensemble GCM studies using stochastic parameterisations, but this

is unsurprising as the SCM lacks the large-scale dynamical modes which dominate spread-growth

in such studies. Such modes are maximally sampled by GCM initial condition perturbations, but

only indirectly perturbed by stochastic physics schemes.

The aforementioned relationship between ensemble spread and convective variability illus-

trates the point that modelling uncertainties can be synonymous with the variability of param-
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eterised processes. For example, in figure 2.16, large uncertainties (as quantified by ensemble

spread) are present wherever the parameterised tendencies are highly variable. Because of the

noisiness and extreme non-linear sensitivities of the convection parameterisation, its variability

between ensemble members is congruent with its variability in time. This lends weight to the

paradigm that model uncertainty can, at least in part, be accounted for in ensemble forecasts by

stochastically representing sources of variability associated with parameterised processes.

A range of alternative deterministic and stochastic variants of the UM SCM have been fully

described, which include either different deterministic convection parameterisations, stochastic

methods based upon those convective formulations, or other deterministic methods relevant to

the variability of parameterised processes. When implemented in ensembles with initial condi-

tion perturbations, all of these SCM configurations were found to produce different time-series

of ensemble spread, characterising their differing variabilities. Each stochastic method produced

consistently greater spread than its deterministic counterpart, indicating that the increased vari-

ability introduced by those methods is quantifiable from the SCM ensemble statistics.

In the following chapter, comparison of the ensemble spread and decorrelation timescale for

all the SCM configurations described should yield useful results regarding the nature and relative

importance of the sources of uncertainty / variability they represent.

Single-Column experiments have long been established as a means to study the responses of

parameterised processes in isolation from resolved-scale dynamics. This is advantageous, firstly

because it allows local physical processes and mechanisms to be identified and studied more

easily (the combination of parameterised and resolved feedbacks in a 3D model may be hard to

disentangle), and secondly because it is computationally much cheaper than running full GCM in-

tegrations, allowing a broader range of model configurations to be explored within the constraints

of time, computational resources and disk-space allocations. The results in this chapter show that

the high frequency variability of parameterised processes, and their alteration using stochastic

methods, can usefully be quantified and analysed in the SCM framework.

The strengths of this SCM approach are also its weaknesses: it can be very helpful to explore

the behaviour of parameterisations in a clean arrangement, but the behaviour is not necessarily

representative of that in the parent GCM. Therefore, as described at the end of chapter 1, a com-
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parison of some of the model configurations described will also be made in a 3D aqua-planet

framework in chapter 4.
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CHAPTER 3:

COMPARISON OF STOCHASTIC

PARAMETERISATION APPROACHES IN

A SINGLE-COLUMN MODEL

3.1 INTRODUCTION

In the previous chapter 2, a Single-Column Model framework was described and validated for

the purpose of investigating the high-frequency variability of parameterised processes, and the

sensitivity of those processes to that variability. The simulation, of transitions between suppressed

and active convection over the tropical West Pacific, was found to exhibit considerable high-

frequency variability. This was primarily associated with the convection parameterisation, and

SCM ensemble tests confirmed that the variability (as quantified by the spread of the ensembles)

could be altered by changing the convection scheme. In particular, it was shown that its amplitude

could be increased by introducing stochastic parameterisations.

Ensembles of runs were performed using the Single-Column version of the Met Office Unified

Model, with small initial condition perturbations introduced. A range of different deterministic

and stochastic variants of the UM SCM were described in section 2.2.2 of chapter 2, and have

been implemented so that a comparison of the SCM’s response to the different schemes can be

made, for which the results are presented in this chapter.

Some of the model variants include alternative deterministic convection parameterisations;

the standard UM bulk scheme based on Gregory & Rowntree (1990), the Kain (2004) individual

plume scheme, or the spectral multi-plume deterministic Plant & Craig (2008) scheme. Some

include stochastic methods based upon those deterministic configurations; the Random Parameter
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method of Bowler et al. (2008), the multiplicative perturbation method of Buizza et al. (1999), or

the stochastic convection scheme of Plant & Craig (2008). And a couple of configurations with

other deterministic methods relevant to parameterisation variability are included for comparison;

a constant perturbed parameter ensemble method, and a time-smoothed version of the default UM

convection scheme.

The purpose of comparing these model configurations in an SCM is to investigate the sen-

sitivity of sub-grid and non-dynamical processes in the atmosphere to differences in the high

frequency variability, as described in chapter 1. Firstly, it would be interesting and useful to find

out whether the response of the parameterised processes to methods which increase the high fre-

quency variability is similar regardless of the exact method, model-configuration or atmospheric

state, or otherwise which of these factors the response is most sensitive to. Secondly, the dif-

ferent stochastic schemes represent different types of uncertainty / variability; information about

the relative importance of the corresponding sources of uncertainty / variability can therefore be

obtained by comparing the schemes. Thirdly, by comparing stochastic SCMs to their determin-

istic counterparts, this study aims to ascertain whether sub-grid / non-dynamical processes give

any systematic non-linear response to the increase in high-frequency variability, other than the

directly forced increase in noise (i.e. changes in mean-state or well-resolved modes). If so, it

would be of key interest to elucidate the mechanisms for any such noise-induced effects.

It is also hoped that the results of this comparison will guide the choice of a smaller number

of schemes to compare in a 3D GCM framework (an aqua-planet), for which the experimental

setup and results will be presented in chapter 4.

Also, this chapter explores a potential criticism of the stochastic methods aimed at repre-

senting modelling uncertainties; whilst they aim to sample ambiguities in the formulation of pa-

rameterisations, they themselves introduce free parameters (controlling the nature of the added

stochastic forcing) whose values are ambiguous. For example, it is not clear a priori what am-

plitude the perturbations should have in a stochastic multiplicative perturbation scheme, such that

the range of parameterised tendencies produced matches the genuine uncertainty-ranges in those

tendencies.

This point can be examined firstly by comparing the range of model states produced in the
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SCM by generic modelling uncertainty schemes to the range of states produced by different deter-

ministic model formulations. If the spread of an SCM ensemble with a generic model uncertainty

stochastic scheme (with its default settings as described in the literature) matches the spread of an

ensemble of different deterministic schemes, then the range of structural uncertainties included

in the latter ensemble is well-sampled by the stochastic scheme. If not, the stochastic scheme’s

settings should be modified.

Also, the sensitivity of a stochastic SCM’s behaviour to the internal parameters and structural

details of the included stochastic method can be investigated. Such sensitivity studies were per-

formed as part of this work, but the results of these were considered beyond the scope of this

thesis. They are of relevance to the modelling community. For example, results for a stochastic

multiplicative perturbation method showed that decorrelating the stochastic perturbations to tem-

perature and moisture gave much greater variability, but did so by violating the conservation of

moist static energy during the formation / evaporation of layer cloud. Such decorrelation was in

fact applied in the stochastic scheme used operationally in the ECMWF forecast system for some

time, but was removed in a subsequent model upgrade due to concerns that the decorrelation of

perturbations allowed the model to deviate from the physical attractor (Palmer et al. 2009).

The remainder of this chapter is structured as follows: Section 3.2 shows results for a com-

parison of the ensemble variabilities of the different SCM configurations. Section 3.3 compares

the ensemble spread resulting from several stochastic (or otherwise perturbed) methods to the

range of model-states produced by different deterministic model configurations. Section 3.4 in-

vestigates noise-induced effects on the SCM’s ensemble mean-state when the various stochastic

methods are applied. Conclusions are drawn in section 3.5.

3.2 COMPARISON OF ENSEMBLE VARIABILITIES

In this section, we investigate changes in the variability of the UM SCM, when various stochastic

methods or other convective changes are introduced.

An ensemble was produced for each of the SCM configurations described in section 2.2.2 of

chapter 2. In the case of the stochastic convection scheme of Plant & Craig (2008), two separate
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ensembles were produced for columns with horizontal scales ∆x of 50 km and 100 km. (As

explained in subsection 2.2.2.6 of chapter 2, the stochastic fluctuations in that scheme depend on

the column size). To ensure a consistent comparison between stochastic physics SCM ensembles

and their deterministic analogues, the standard initial condition perturbations described in section

2.2.3 of chapter 2 were included in all ensembles, although as shown therein they make very little

difference to the stochastic runs.

It was shown in chapter 2 that the amplitude and timescale of the high frequency variability

in the SCM could be quantified well by the ensemble spread and decorrelation timescale respec-

tively. It was found that introducing stochastic methods increased the column-mean spread of the

SCM ensemble, but a more rigorous comparison, including consideration of the vertical structure,

is given here. Figures 3.1 and 3.2 show vertical profiles of ensemble spread in temperature for

each SCM ensemble configuration, time-averaged over each of the suppressed, active and tran-

sition phases of convective activity discussed in section 2.3 of chapter 2 (and labelled in figures

therein).

It was also shown in section 2.4.2 of chapter 2 that the ensemble decorrelation timescale

is very closely related to the convective variability in the SCM. So to gain further insight in to

the differences in convective variability between the different ensembles, profiles of ensemble

decorrelation timescale are compared. Figures 3.3 and 3.4 show profiles of the decorrelation

timescale for temperature.

Equivalent plots for specific humidity (not shown) were also studied, and exhibited similar

differences to those presented for temperature in these two figures.

There are distinct differences between the profiles in figures 3.1 and 3.3, which are for con-

figurations using the default UM’s convection scheme (default UM, RP, MN, TSC), and figures

3.2 and 3.4, which are for configurations based on the Kain-Fritsch plume model (KF, PC).

The latter grouping exhibits large peaks in ensemble spread in temperature in the upper tro-

posphere and lower stratosphere region, presumably associated with convective overshoots. Such

peaks are absent for the first grouping, which tend to have greater spread in the mid-troposphere.

As was noted in subsection 2.2.2.5 of chapter 2, the KF scheme explicitly simulates the vertical

momentum of the ascending plume and so allows overshoots, whereas the default UM convection
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Figure 3.1: Vertical profiles of ensemble spread (standard deviation) in temperature T , averaged over

different periods as labelled. Colours denote different SCM ensembles; (black) default UM, (red) MN,

(solid green) RP, (dashed green) constant RP, and (orange) TSC. Thick lines denote the unbiased esti-

mator of spread, thin lines denote 95% confidence intervals (estimated by sub-sampling the ensemble,

as described in section 2.2.4 of chapter 2).
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Figure 3.2: As figure 3.1, but for different SCM ensembles; (blue) KF, (solid purple) deterministic PC,

(dashed purple) stochastic PC with grid-length 100 km, and (dot-dashed purple) stochastic PC with

grid-length 50 km.
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Figure 3.3: As figure 3.1, but for the ensemble decorrelation timescale τ, calculated for temperature as

described in section 2.4.2 of chapter 2. The scale on the x-axes is logarithmic.
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Figure 3.4: As figure 3.2, but for the ensemble decorrelation timescale τ, calculated for temperature as

described in section 2.4.2 of chapter 2. The scale on the x-axes is logarithmic.
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scheme does not.

The vertical structure of the ensemble spread profile appears to be primarily dependent on the

model-state and the convective plume model used, with each stochastic scheme mainly acting to

scale-up the spread-profile of the deterministic ensemble which has the same plume model.

There are marked differences between the different phases of convective activity, although

again these differ greatly between the two convective plume models. In the ensembles which use

the default UM plume, the active phases have peak spread in the mid-troposphere, the suppressed

phases have a peak in the lower troposphere, and the onset phases are characterised by a sharp

peak where the convection begins to penetrate a mid-level inversion (this was noted in section

2.4.2 of chapter 2). For the KF plume model many of these features are absent, and there is less

variation of the spread profile between phases. And in the troposphere, the default UM ensemble

generally produces more spread than the Kain-Fritsch ensemble. This confirms that different

deterministic convection parameterisations produce rather different amplitudes of variability in

the host model. Thus, if the high-frequency variability of a model does have important effects on

climate, one should introduce some (stochastic) method to control the high-frequency variability,

or at least should investigate the on-off characteristics of the GCM convection parameterisation.

However, the KF scheme does produce very similar variations in ensemble decorrelation

timescale to the default UM; both have a rapid increase in timescale with height during suppressed

phases (from around 1 day near the surface to greater than a month in the upper troposphere), and

timescales of the order a few hours through most of the depth of the troposphere during active

phases. So whilst the plume model strongly affects the amplitude of the convective variability,

the timescales are less sensitive, at least for these two plume models.

The schemes which represent model uncertainty (multiplicative noise, random parameters and

constant random parameters) tend to scale-up the profile of ensemble spread produced by their

deterministic analogue (the default UM) in the troposphere, whilst having little systematic effect

on the timescales of variability. The RP scheme produces greater increases in spread in the upper

troposphere, while the MN scheme produces a more uniform increase in spread throughout the

depth of the troposphere.

Note that the MN scheme also produces a large increase in spread in the stratosphere; this is
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because it directly perturbs the radiative temperature tendencies, which give large diurnal vari-

ations here. The other runs give very little ensemble spread in the stratosphere, because the

unperturbed radiative tendencies are actually fairly steady and well-defined. This suggests that

applying multiplicative perturbations to the radiation in the stratosphere is not well justified, and

the resulting noise is not physically realistic. Indeed, a recent revision to the stochastic multiplica-

tive perturbation method used in the ECMWF ensemble forecast system (described in Palmer et

al. 2009) includes tapering-off the perturbations in the stratosphere so-as to avoid adding unphys-

ical noise to the radiation. In that revision, the perturbations were also reduced in the boundary

layer for numerical stability reasons (note in figure 3.1 that the MN scheme produces greater

spreads in the boundary layer than any of the other ensembles using the same convective plume

model).

Comparing the deterministic Plant & Craig scheme (a spectral convection scheme) to the KF

scheme (single plume, but the same plume model) in figure 3.2, the Plant & Craig scheme in

deterministic mode gives ensemble spreads broadly similar to the KF scheme. But it gives less

spread than the KF scheme in the upper troposphere during the earlier phases, but notably gives

more spread than KF in the lower troposphere at many times. The latter difference is likely a

common difference between spectral versus single-plume schemes; the Plant & Craig scheme can

simultaneously produce a full spectrum of convective cloud sizes / depths, giving characteristic

peaks in spread in the lower, mid and upper troposphere, whereas the KF scheme does not capture

the shallower clouds (or the mid-level clouds during actC), and therefore does not reproduce the

corresponding spread peaks at these heights.

The deterministic Plant & Craig scheme is designed to behave smoothly and steadily, as it

derives the environment profiles and CAPE closure from time-smoothed versions of the grid-point

variables, representing the well-resolved state, which is expected to be smoother than the grid-

point state (which is affected by numerical “noise”). It is clear in figure 3.4 that the deterministic

PC scheme does indeed behave more smoothly than its single-plume counterpart (the KF scheme)

wherever convection occurs; the ensemble decorrelation timescale is increased from just a few

hours to several days throughout the troposphere during the active phases. However, it does not

give any systematic reduction in the amplitude of the variability, as quantified by the ensemble

spread (figure 3.2). Indeed, during initial tests of the scheme in the SCM case studied here, it
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was found that increasing the time-smoothing of the input profiles did not eliminate convective

“on-off” variability; it made the on-off switching somewhat less frequent but equally pronounced.

It is unclear whether or not applying spatial smoothing of inputs to the convection scheme (as is

done in it’s 3D implementation) would better reduce this numerical behaviour.

The stochastic form of the Plant & Craig scheme is designed to represent the variability arising

from sub-sampling the cumulus ensemble within a finite area, unlike the Multiplicative Noise and

Random Parameter schemes which are generic representations of model uncertainty. Like the

RP scheme, the stochastic PC scheme tends to scale-up the profile of spread produced by its

deterministic mode, with a bias towards the upper troposphere. However, it also significantly

reduces the timescale of convective variability at times. As the grid area is reduced, the PC

scheme gives a less complete sampling of the ensemble of possible convective clouds, producing

greater fluctuations from statistical equilibrium. This reduces the timescale towards that for a

single plume (the KF scheme) and increases the amplitude of the variability.

For an area of side ∆x = 100km, the scheme is certainly more spread than in determinis-

tic mode, but the increase in spread is usually less than that produced by the model-uncertainty

schemes. However, with ∆x = 50km the scheme yields increases in ensemble spread throughout

the troposphere (relative to its deterministic analogue) which are comparable to the increases pro-

duced by the model-uncertainty schemes. These results suggest that at scales of around 50 km,

local fluctuations about convective equilibrium become as important as the estimates of full pa-

rameterisation uncertainty in the MN and RP schemes. This implies that the sub-grid fluctuations

dominate the parameterisation uncertainty at this scale, and will exceed those estimates at smaller

scales.

The time-smoothed convection scheme increases the timescale of convective variability

throughout, consistent with its design. It also produces significant increases in ensemble spread

over all the periods except for the active phases. These increases are largely comparable to those

produced by the model uncertainty schemes RP and MN. The response of the SCM to the TSC

scheme will be explored further in the following sections.

Page 100



Chapter 3: Comparison of Stochastic Parameterisation Approaches in a Single-Column Model

3.3 COMPARISON OF PERTURBED ENSEMBLE SPREADS TO

MODEL-UNCERTAINTY

Although the stochastic physics schemes used in this study do produce significant ensemble

spread, it remains to determine whether or not the levels of spread are appropriate. For exam-

ple, it would be useful to know whether the RP and MN scheme’s estimates of the magnitude

of parameterisation uncertainty match the structural uncertainty between different deterministic

schemes. To examine this point, ensembles that are designed to represent model uncertainty can

be compared to the range of model states produced by different deterministic structural configu-

rations.

Here, we construct a poor-man’s ensemble by combining the 40-member IC ensembles pro-

duced by the default UM, the Kain-Fritsch scheme and the deterministic Plant & Craig scheme,

each with equal weighting. The spread of this combined 120-member ensemble can be used as a

simple measure of the spread of model states associated with model uncertainty. Ensemble per-

centiles of column-integrated water vapour for the combined ensemble are shown in figure 3.5,

along with those for the three constituent ensembles.

The envelope of combined deterministic ensemble states fails to capture the observed evolu-

tion of column water vapour (dotted line in figure 3.5) for much of the period. However, it is

unclear to what extent this is due to systematic biases in all three of the deterministic SCM con-

figurations, or to errors in the prescribed dynamical forcings used to drive the SCMs (these were

discussed in section 2.2.5 of chapter 2). Other SCM and CRM studies using prescribed forcings

derived from TOGA-COARE data have largely attributed such discrepancies to errors in the forc-

ing data (e.g. Krueger and Lazarus 1999, Petch et al. 2007). The Kain-Fritsch and Plant & Craig

schemes (which both use the same plume model, but different closures) produce drier states than

the default UM, although well within the range of values seen when comparing various SCMs

(Woolnough et al. 2007).

The combined deterministic ensemble is significantly more spread than any of the constituent

ensembles, which differ in both their means and spreads. This confirms there is a substantial

model uncertainty component in the case studied. However, the combined ensemble is also sig-
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Figure 3.5: 5th, 25th, 75th and 95th ensemble percentiles of column water vapour for three different

deterministic SCM ensembles; (black) the default UM, (blue) the KF ensemble, and (purple) the deter-

ministic PC scheme. Shading shows the same percentiles for these three combined in to one ensemble

with equal weighting. The dotted black line shows the IFA-mean observed column water vapour.

nificantly more dispersed than the spread of the constituent ensemble mean-states. This shows

that the convective variability within each constituent ensemble introduces considerable uncer-

tainty as well. This emphasises the importance of accounting for the uncertainty in the convec-

tive realisation in SCMs through the use of ensembles which use initial condition- or stochastic-

perturbations; an ensemble of individual SCM runs for different structural model configurations

would not capture the full range of associated uncertainties.

Certainly, the representativeness of the combined deterministic ensemble shown here is also

questionable, with only three different model configurations represented. This is similar to

other “multi-parameterisation” approaches to representing model uncertainty, such as that of

Houtekamer et al. (1996), who applied only two different convective formulations in their en-

semble. Nonetheless, we would suggest that a stochastic scheme which aims to represent model
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uncertainty should produce at least comparable levels of spread to the combined poor-man’s en-

semble in this study. Figure 3.6 shows time-series of several ensemble percentiles of column-

integrated water vapour for each of the stochastic schemes and for the constant random param-

eters scheme and time-smoothed convection scheme, compared to the same percentiles of the

combined deterministic ensemble.

It is encouraging to find that the three schemes designed to represent model uncertainty do

indeed produce comparable spread in Column Water Vapour to the combined deterministic en-

semble. However, these schemes tend simply to broaden the ensemble about the ensemble mean

of their deterministic analogue. Thus, they fail to explore regions of phase-space which are ac-

cessible to the other deterministic schemes.

The model-uncertainty scheme which looks most promising in this study is the random pa-

rameters scheme, in terms of the range of deterministic model states it also covers. As well as

producing appropriate ensemble spread, it appears to give a slight systematic drying at times

which nudges the distribution of column water vapour towards that of the combined deterministic

ensemble. This noise-induced drift will be explored further in section 3.4.

As was noted earlier, the stochastic Plant & Craig scheme produces comparable spread to

generic model uncertainty (as quantified by the spread of model uncertainty schemes RP, constant

RP and MN, or the combined deterministic ensemble) for a grid-size of 50km. This result for

column water vapour backs up those presented for temperature in figures 3.1 and 3.2, suggesting

that sub-grid fluctuations about convective statistical equilibrium will dominate parameterisation

uncertainty at scales of around 50km or less.

Note that the time-smoothed convection ensemble exhibits a drying trend relative to the other

ensembles, drifting into a significantly drier model state than any of the deterministic structural

configurations for part of the runs. This is despite it being based on the default UM’s convection

scheme, which largely gave the moister states in the combined deterministic ensemble. The drift

is further explored in section 3.4. As was noted earlier, the TSC scheme also gives an increase in

spread relative to the default UM, and this is sometimes comparable to the range of deterministic

model states. But it produces a far more disruptive drift in mean-state than the model uncertainty

schemes, placing it further from the combined deterministic ensemble.
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Figure 3.6: 5th, 25th, 75th and 95th ensemble percentiles of column water vapour for six different alter-

native SCM configurations (solid lines), compared to the same percentiles of the combined deterministic

ensemble shown in figure 3.5 (shaded). Colours denote (solid green) RP, (dashed green) constant RP,

(red) MN, (orange) TSC, (dashed purple) PC with grid-length 100 km, and (dotted purple) PC with

grid-length 50 km.
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3.4 COMPARISON OF ENSEMBLE MEAN-STATES

In this section, the sensitivity of the SCM’s mean-fields to alteration of the convective variability

(through stochastic or other methods) is investigated. First, in subsection 3.4.1 some of the sys-

tematic changes in column water vapour (also sometimes referred to as Precipitable Water Con-

tent, or PWC) noted in figure 3.6 (section 3.3) are reviewed. The robustness of the subtle moisture

drift in the RP scheme is tested using further model runs. In subsection 3.4.2, noise-induced ef-

fects on the vertical structure of temperature and moisture are presented and discussed. To further

explore the mechanisms behind the differences in ensemble mean moisture profiles between the

different SCM configurations, changes in the moisture budget are explored in subsection 3.4.3.

Finally, changes in the model cloud fields are investigated in subsection 3.4.4.

3.4.1 NOISE-INDUCED DRIFTS IN COLUMN WATER VAPOUR

Several of the SCM configurations in this study include stochastic physics perturbations but are

based on the UM’s convection scheme. In figure 3.7 we show the difference in ensemble mean

PWC between these configurations and their deterministic analogue, the default UM. Also shown

is the difference between the Kain-Fritsch scheme and the default UM. Figure 3.8 shows similar

plots for the Plant & Craig stochastic convection scheme.

Figure 3.7: Six-hourly mean difference in ensemble mean PWC relative to the default UM, for the

multiplicative noise (dotted), time-varying random parameters (dashed), constant random parameters

(dash-dotted), and Kain-Fritsch (solid) configurations.
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Figure 3.8: As figure 3.7, but for the Plant and Craig scheme with grid-lengths of 50 km (dotted) and

100 km (dashed) and in deterministic mode (dash-dotted), and for the Kain-Fritsch scheme (solid).

The Random Parameters scheme is slightly drier than the default UM during the suppressed

and transition phases, by up to nearly 1mm. However the constant random parameters scheme

did not produce this deviation despite sampling the same range of values for model parameters

(see figure 3.7). This suggests noise induced drift; the stochastic perturbations introduced by

the time-variation of the model parameters causes the SCM to explore an asymmetric region

of phase-space which is inaccessible to the default UM and constant RP ensembles. The Plant

& Craig (2008) stochastic convection scheme also produced a similar drying of the mean-state

relative to its deterministic mode. T-tests indicated that these changes were statistically significant

at the 5% level.

In terms of ensemble mean PWC, the difference between the two convection parameterisa-

tions (default UM and Kain-Fritsch) is several times larger than the changes in mean-state in the

stochastic ensembles. Similar remarks apply to other variables (presented in following subsec-

tions) and suggest that the ensemble mean fields are far more sensitive to structural differences in

the convection scheme than they are to the introduction of stochastic schemes. But the observa-

tion that stochastic physics schemes designed to represent model uncertainty or departures from

statistical equilibrium can change the mean state of the SCM by even a relatively small amount is

nonetheless interesting.

As mentioned in section 2.4.1 of chapter 2, a number of runs were re-integrated to output

further diagnostics, but an upgrade to the compiler meant that experiments did not bit-reproduce.
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Later, the default UM and RP ensembles were re-integrated again on a different computing plat-

form, this time with a larger ensemble size of 100, to verify the statistical significance of some

noise-induced effects. It was at-first assumed that these changes would simply force the ensembles

to follow a different sample of realisations from the same attractors. However, some systematic

differences between the runs on the different processor standards were later discovered.

After the compiler upgrade, the default UM ensemble had a slightly warmer stratosphere and

a cooler boundary layer later in the run (not shown), by of the order 0.1 K (a T-test suggested

these slight changes were significant). After the change of platform, the ensemble was found to

be significantly cooler and moister during the suppressed phases (by up to 0.5 K / 0.5 gkg−1 at

some times / heights, not shown). This was associated with a systematic change in the convec-

tive behaviour; previously the shallow convection scheme was inactive (the UM parameterisation

always diagnosed deep convection, which seemed reasonable given the deep instability of the

profile), whereas on the new platform the shallow convection component triggered during the

suppressed phases, yielding large increases in low-level convective cloud, shown in figure 3.9.

Figure 3.9: Ensemble mean convective cloud water content in the default UM SCM, before (left), and

after (right) a change of computing platform.

The inactivity of the shallow convection scheme on the old platform doesn’t entirely remove

the important shallow convection mode; instead the deep convection scheme produces plumes

which terminate at a shallow depth at times (this is evident in figures 2.16 and 2.18 in section

2.4.2 of chapter 2). But these give smaller cloud amounts than the shallow convection scheme.

The causes of these differences are unclear; no modifications were intentionally made to

the model physics. This raises the unsettling possibility that the machine-specific code changes

required to run the UM on a different processor standard may interact with the parameterisations
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in unforeseen ways. However, it also provides an opportunity to test the robustness of the subtle

noise-induced drift in the RP ensemble under changes in model behaviour.

Figure 3.10 shows differences between the RP and default UM column water vapour (sim-

ilar to figure 3.7) for both runs re-done after the compiler upgrade, and on the alternative new

platform. In both cases, a systematic drift of the RP run’s mean-state relative to the default UM

remains, with no overlap between the confidence intervals of the two mean-states at times dur-

ing onsB and supC. However, in figure 3.10 the RP scheme is not so clearly separated from the

constant RP scheme as it appeared in figure 3.7, as the constant RP ensemble is dryer during sup-

pressed phases in the more recent runs (though this may just be down to sampling uncertainty).

However, statistically robust differences are found between the RP and constant RP ensembles if

one considers the vertical structure, shown in the following subsection.

3.4.2 NOISE-INDUCED CHANGES IN TEMPERATURE AND HUMIDITY PROFILES

Figures 3.11, 3.12 and 3.13 show time-height plots of differences in specific humidity and tem-

perature between the various perturbed ensembles and their unperturbed analogues. Contours de-

noting statistical significance are overlaid. These are computed using a point-wise paired-sample

T-test for the difference between ensemble means, pairing the members of each ensemble which

have the same initial condition perturbations. For the RP and constant RP differences in figure

3.11, the 100-member ensembles performed on the latter computing platform are shown. Plots

for the runs on the previous platform (not shown) exhibit the same general patterns, but with more

noise and lower significance due to the smaller ensemble size. Figures 3.12 and 3.13 show runs

for other schemes on the former platform only.

All of the perturbed or alternative SCM configurations produce complex, state-dependent

mean-responses relative to their unperturbed or standard counterparts, with a lot of statistically

significant vertical structure not evident in the column water vapour plots. As with column wa-

ter vapour (figures 3.7 and 3.8), the largest differences are seen between different deterministic

structural configurations (KF-DefUM in figure 3.12 and KF-PCdet in figure 3.13), and for the

time-smoothed convection scheme (TSC-DefUM in figure 3.12).

Considering the RP ensemble differences in figure 3.11, the SCM’s mean response to the RP
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Figure 3.10: Ensemble mean column water vapour differences relative to the default UM as in figure

3.7, but with the RP and default UM simulations rerun; (top) following an upgrade to the compiler, and

(bottom) following a shift to another computing platform altogether. Lines show (solid green) the RP

scheme, (dot-dashed green) the constant RP scheme, (dotted) estimated 95% confidence intervals for the

default UM and RP ensemble means, and (solid blue) the KF scheme for comparison.

scheme (RP-DefUM) can be interpreted as having two components; a deterministic non-linear

response to the increased range of parameter values available to the system (RPconst-DefUM),

and a stochastic response specific to the time-variation of the parameters (RP-RPconst). The

increased range of parameter values alone gives a general moistening of the upper troposphere

(accompanied by a warming of around 0.5 K), a drying (and slight warming) of the boundary layer

during suppressed and onset phases, and a varying pattern of moistening and drying at different

times in the lower free-troposphere. The stochastic response primarily acts to dry parts of the

mid-troposphere during suppressed and onset phases by up to 0.5 gkg−1, with a corresponding

warming of the atmosphere above inversion layers, and a cooling of the mid-troposphere at other
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Figure 3.11: Differences in ensemble mean (left) specific humidity q and (right) temperature T, in the

100-member ensembles, for (top) the RP ensemble relative to the default UM, (middle) the constant

RP ensemble relative to the default UM, and (bottom) the RP ensemble relative to the constant RP

ensemble. Black contours denote statistical significance at the (solid) 5%, and (dotted) 1% levels, using

a paired-sample T-test (pairing ensemble members according to their initial conditions).

times. But this noise-induced drift is smaller than the non-linear mean-response to exploring

the same parameter ranges deterministically, and far smaller than differences associated with

structural uncertainty in the convection parameterisation (e.g. KF-DefUM in figure 3.12).

The stochastic multiplicative perturbations introduced by the MN scheme (middle panels of

figure 3.12) give a small but significant cooling of the free troposphere later in the period, and

a drying of the column during actB / staC. These differences are far smaller than those which

occur when the convection is time-smoothed (bottom panels of figure 3.12). As hypothesised in

the literature review on the role of high frequency variability in chapter 1, forcing the convection
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Figure 3.12: As figure 3.11, but for differences of (top) the KF scheme, (middle) the MN stochastic

scheme, and (bottom) the TSC scheme, relative to the default UM. Note that the 3 schemes are plotted

with different colour scales to show the patterns clearly.

to respond on a longer timescale allows convective instability to build up more before it is re-

moved. As a result, the TSC ensemble drifts in to a more unstable profile than the default UM,

with temperatures over 1.5 K cooler in the upper troposphere at times. It also becomes signifi-

cantly drier throughout most of the troposphere; this was clearly seen in figure 3.6 (section 3.3)

and is explored further below. The TSC ensemble becomes warmer in the stratosphere; this is

presumably a radiatively driven response to the drying of the column below, and also to changes

in cloud which are shown in subsection 3.4.4.

The KF scheme (top panels of figure 3.12) also drifts into a state with a cooler upper tropo-

sphere than the default UM, but with a different pattern in the lower troposphere. It has a cooler,
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Figure 3.13: As figure 3.11, but for differences of (top) the KF ensemble, and the stochastic PC scheme

with grid-sizes of (middle) 100 km and (bottom) 50 km, all relative to the deterministic PC scheme.

moister boundary-layer and dryer, warmer conditions in the lower free troposphere, consistent

with its tendency to underestimate the shallower modes of convection in this case (these would

transport moisture from the boundary layer to the lower free troposphere, where evaporative cool-

ing would occur). The convective moisture tendencies (not shown) confirm the KF scheme gives

less moistening of the lower free troposphere during suppressed phases. It was also noted in sec-

tion 3.2 that the KF scheme produced less convective variability in the lower troposphere than

other schemes (figure 3.2).

The deterministic PC scheme gives a more unstable temperature profile than the KF scheme

(top panels of figure 3.13). This is consistent with its spectral design; it simulates the full spec-

trum of convective cloud sizes, with the total cloud-base mass-flux closed on CAPE. A substantial
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fraction of the cloud-base mass-flux is prescribed to occur in small plumes, which do not pene-

trate high enough to remove deep instability due to their high entrainment rates. This makes the

scheme less efficient at removing CAPE than the single-plume KF scheme, which has a fixed

entrainment rate sufficient to permit deep plumes for much of the simulation. Investigation of the

moisture tendencies from different parameterised processes (not shown) showed that the pattern

of humidity differences between KF and PCdet is the residual of large competing changes in the

activity of the convection, boundary layer and large-scale precipitation schemes. These changes

appear complex and often change sign at different times / heights, making any systematic mech-

anism hard to pin down, even in this highly simplified framework.

For the Plant & Craig (2008) stochastic convection scheme (figure 3.13), the fluctuations in

the simulated sub-grid ensemble of clouds yield a cooling / drying in the lower troposphere for

much of the period (relative to the deterministic PC scheme, in which these fluctuations are set

to zero) and a warming near the tropopause. These changes follow a very similar pattern for

both grid-sizes, with their magnitudes increasing with decreasing grid-size. This is as expected,

as larger fluctuations from statistical equilibrium occur for smaller grid areas. However, even

at the smaller grid-size of 50km, the changes in mean-state are considerably smaller than the

aforementioned differences between the deterministic PC scheme and the KF scheme.

3.4.3 NOISE-INDUCED CHANGES IN THE MOISTURE BUDGET

To investigate the physical mechanisms behind the moisture profile differences shown in figures

3.11, 3.12 and 3.13, the corresponding differences in several components of the accumulated

moisture budgets are investigated in this section. Figure 3.14 shows differences in the surface

moisture flux and rainfall, figure 3.15 shows the rainfall differences sub-divided in to large-scale

and convective components, and figure 3.16 shows differences in the moisture fluxes at 950hPa

(sub-divided into terms from the convection and boundary layer parameterisations). The selected

height of 950hPa is usually within the boundary layer but near its top. The differences in fluxes

at other heights just below the BL top (note shown) were also checked and found to be similar,

except for the KF scheme. Therefore, these plots are indicative of differences in fluxes near the

boundary layer top, except in the case of the KF scheme, which exhibits greater variations of these

fluxes with height near 950hPa than the other schemes.
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To give an indication of the relative magnitudes of the moisture budget differences shown in

figures 3.14, 3.15 and 3.16, table 3.1 shows the accumulated net 19-day totals for the moisture

terms in the default UM ensemble. Time-series of the moisture budget were also presented in

section 2.3 of chapter 2.

Additionally, for comparison with the surface moisture fluxes, time-series of ensemble mean

near-surface Relative Humidities are shown in figure 3.17. And for comparison with the 950hPa

moisture fluxes, the vertical humidity gradients at the same height are shown in figure 3.18.

Table 3.1: Total 19-day accumulated ensemble-mean moisture budget terms in the default UM / mm.

The large-scale moisture convergence is prescribed and so is the same for all the runs, whilst other terms

differ.

LS moisture Rainfall Surface Moisture flux at 950 hPa

convergence LS-precip Convection moisture flux BL scheme Convection

91 1.7 161 67 28 41

Comparing figure 3.14 with figures 3.11, 3.12 and 3.13, the rainfall and surface flux changes

underlying the profile changes are apparent.

The constant RP ensemble gives slightly more rainfall than the default UM just before the start

of each suppressed phase, slightly less rain at the end of actB, and slightly greater surface mois-

ture flux during the onset phases. The additional noise-induced drying of the mid-troposphere

in the stochastic RP ensemble is driven by slight further increases in rainfall during the sup-

pressed phases, and a reduction in the surface moisture flux relative to the constant RP ensemble.

Whilst it is unclear in figure 3.14 whether the differences between the RP and constant RP ensem-

bles are significant (their confidence intervals overlap), significant differences are apparent if the

convective and large-scale components of the rainfall are considered (top panel of figure 3.15);

the stochastic RP scheme gives an increase in rainfall from the large-scale precipitation scheme,

whereas the constant RP scheme does not. Whilst this 0.6mm increase is miniscule compared to

the total precipitation, it represents a 35% increase in large-scale precipitation, which is largely

inactive during these runs (see table 3.1).

The MN scheme gives slight transient deviations in mean rainfall (e.g. increased rains around

the 19th give a brief drying of the column just afterwards in figure 3.12), but there are no obvious
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Figure 3.14: Ensemble mean differences in cumulative moisture budget components relative to (top and

middle) the default UM and (bottom) the deterministic PC scheme; (dashed, dotted) surface moisture

flux, and (solid, dot-dashed) rainfall. Colours denote (green) RP / constant RP, (blue) KF, (red) MN,

(orange) TSC, and (purple) PC as labelled. Rainfall has been inverted to give a consistent sign conven-

tion for the moisture budget. Thick lines show ensemble means, thin lines show their estimated 95%

confidence intervals. Note that each panel has a different y-axis scale, so that the differences can be

clearly seen despite their differing magnitudes.
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Figure 3.15: As figure 3.14, but for differences in accumulated rainfall from different model components;

(dashed, dotted) from the large-scale precipitation parameterisation, and (solid, dot-dashed) from the

convection parameterisation. Note that in this figure the rainfall has not been inverted as it was in figure

3.14. As in that figure, note that each panel has a different y-axis range.
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Figure 3.16: As figure 3.14, but for accumulated vertical moisture fluxes at 950hPa, due to (dashed,

dotted) the boundary layer parameterisation, and (solid, dot-dashed) the convection parameterisation.

As in figures 3.14 and 3.15, note that each panel has a different y-axis range.
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Figure 3.17: Ensemble mean Relative Humidity on the lowest model level (corresponding to a fixed

pressure of 1009.4hPa; surface pressure is fixed at 1011.7hPa), for all the SCM ensembles; (black)

DefUM, (solid green) RP, (dashed green) constant RP, (red) MN, (orange) TSC, (blue) KF, and (purple)

the PC scheme in (solid) deterministic mode, and in stochastic mode with grid-lengths (dashed) 100

km and (dotted) 50 km. Thick lines show the best estimate of the ensemble mean, thin lines show its

estimated 95% confidence intervals.

systematic changes. As in the RP ensemble, there is a slight increase in surface moisture flux

later in the run. Note that the MN scheme doesn’t quite form a closed moisture budget as in the

other runs. This is because (following Buizza et al. 1999) the total specific humidity tendencies

are multiplicatively perturbed, but the condensate tendencies are not. The perturbation scalings

have been applied to the rainfall and surface flux diagnostics to make them consistent with the

humidity tendencies, but inconsistencies still arise where layer cloud condensate plays a role in

the moisture budget.

The strong drying of the troposphere when the time-smoothed convection scheme is applied

(figure 3.12) is driven by a significant increase in rainfall, entirely from the convection parame-

terisation. This is consistent with the more vigorous convection expected, since the temperature

profile in the TSC ensemble drifts in to a more unstable state than the default UM. Whilst it was

shown in section 2.3 of chapter 2 that the primary factor controlling the rainfall variability in
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Figure 3.18: As figure 3.17, but for the ensemble mean vertical gradient of specific humidity at 950hPa

(corresponding to the height for which vertical moisture fluxes are shown in figure 3.16).

this case is not CAPE but moistening of the troposphere by large-scale convergence, it would be

surprising if the systematic increase in profile instability present had no effect.

It is surprising that in the TSC ensemble the upper troposphere remains cooler than in the

default UM despite an increase in rainfall (which would give additional latent heating). This is

at least partly because the TSC scheme has the effect of delaying most of the convective heating

to occur in the couple of hours after each time-step when convection triggers. The greater the

rate of cooling by the large-scale forcings and radiation, the greater the temperature difference

associated with this lag in the convective heating response. However, the heating-lag cannot

explain why tropospheric temperatures don’t recover after each convectively active period. Also,

the tropospheric drying due to convective rain-out should experience the same lag, but this effect

is out-weighed by the increased rainfall. Radiative responses to changes in water vapour and

cloud also contribute significantly to the temperature difference pattern.

The KF scheme gives less rainfall and surface moisture flux, by about 10mm over the 19 day

simulations. There is a 15 mm decrease in convective rainfall partially offset by a more than 3-

fold increase in large-scale precipitation (figure 3.15). Comparing with the default UM moisture
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budget in table 3.1, note that the surface moisture flux is reduced by 15%. This would likely

give drastic changes in the hydrological cycle if the KF scheme were implemented in a climate

simulation. Considering the atmospheric moisture budget, the changes in rainfall and surface

fluxes cancel each-other by the end of the run, but the rainfall deficit lags the surface flux deficit

at times and exhibits more variations, yielding the pattern of free troposphere drying seen in the

top panel of figure 3.12. The cooling of the upper troposphere in the KF ensemble is consistent

with the decrease in latent heating associated with the reduction in rainfall.

The deterministic PC scheme gives even less rain and surface moisture fluxes than the KF

scheme; it gives almost 10mm less convective rainfall during actB, but this is partially offset as

the PC scheme gives twice as much large-scale precipitation as KF. As with KF-DefUM, the

reduction in latent heating associated with the reduction in rainfall is consistent with the tem-

perature difference in the troposphere, whilst the effects on the moisture budget broadly cancel,

with time-variations of the rainfall deficit relative to the fairly steady surface flux deficit yielding

periods of net moistening and drying at different times. The reduction in rainfall / cooling of the

free troposphere in deterministic PC relative to KF is consistent with the earlier hypothesis that

the PC scheme removes CAPE less efficiently due to its spectral closure.

Considering the stochastic PC scheme, the convective fluctuations give substantial increases

in mean rainfall relative to deterministic mode, especially during actB and onsC. These increases

are much larger than those seen in the other stochastic schemes, and are largely matched by simi-

lar increases in surface moisture flux. Note in figures 3.13 and 3.14 that the larger the stochastic

fluctuations (the smaller the grid-size), the more the PC scheme drifts towards the more stable

temperature profile and higher rain-rates seen for the KF scheme. This suggests that the fluctua-

tions in the convective ensemble allow the convection to remove CAPE more efficiently, as in the

single-plume KF closure.

Comparing the differences in surface moisture flux between all the runs (figure 3.14) with the

corresponding differences in near-surface relative humidity (figure 3.17), the surface moisture flux

changes appear consistent with simple responses to the humidity changes near the surface. For

example, all of the stochastic schemes, the constant RP scheme and the TSC scheme are dryer near

the surface during onsC than their unperturbed counterparts, and exhibit corresponding increases

in surface flux during that period.
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Considering the differences in 950hPa moisture fluxes (figure 3.16), notably all the ensembles

which are in some way perturbed (the stochastic schemes, the constant RP scheme and the TSC

scheme) give significant increases in the flux produced by the boundary layer parameterisation,

relative to their unperturbed counterparts. Comparing the 950hPa boundary layer scheme fluxes

to the vertical humidity gradients at the same height (figure 3.18), the times when the perturbed

ensembles give the greatest increases in 950hPa flux largely correspond to times when the vertical

humidity gradients are smaller in the perturbed runs than in their unperturbed counterparts (e.g.

during onsC in the RP, RPconst and MN ensembles relative to DefUM, also days 18–20 for TSC,

and days 20, 22 and 24 in the stochastic PC ensembles relative to deterministic mode). At these

times the perturbed runs have anomalously dry boundary layers with anomalously moist air just

above (see left-hand panels of figures 3.11, 3.12 and 3.13). This is not consistent with a simple

response of the 950hPa fluxes to the differences in humidity gradients (one would expect a reduced

gradient to yield a reduced net flux). Rather, it suggests the increased 950hPa fluxes are forcing

the changes in the moisture profiles. The surface fluxes then increase in response to the drying of

the boundary layer, which is forced by the 950hPa flux increases.

In the MN, RP and constant RP ensembles, there are also compensating decreases in the

950hPa moisture fluxes from the convection scheme at times. These changes, combined with

the increased surface moisture fluxes, act to balance the boundary layer’s moisture budget in the

long-run. However, these convective flux reductions only occur at certain convectively active

times (e.g. days 17 and 26 in figure 3.16), yielding a characteristic residual time-series of net

flux differences between the MN, RP and constant RP runs and the default UM. As a result,

these schemes all give similar lower-troposphere profile responses (figures 3.11 and 3.12) with

a drying / warming of the boundary-layer and moistening / cooling of the free troposphere just

above during onsC, and the reverse of this pattern around day 17.

The RP, constant RP, MN and stochastic PC with grid-length 100 km ensembles all give 5-

10% increases in 950hPa boundary layer scheme fluxes, whilst the TSC and stochastic PC with

grid-length 50 km runs give larger increases. This response is the same in the RP and con-

stant RP runs, so it is not specifically a noise-induced effect. Rather, it appears the boundary

layer scheme is generically affected by an increase in the range of states available to it, whether

through stochastic parameterisations or other methods which increase the ensemble spread. This
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is likely associated with the strongly non-linear behaviour of the boundary layer top, but more de-

tailed analysis of the boundary layer parameterisation is required in order to elucidate the precise

mechanism.

3.4.4 NOISE-INDUCED CHANGES IN CLOUD

Whilst the stochastic schemes studied have been found to produce some drift in the mean tem-

perature and moisture in the SCM, these changes are subtle and generally much smaller than

the differences between different deterministic configurations. We might expect the stochastic

schemes to have a greater effect on the model cloud amounts, as these are generally more sen-

sitive to small changes in the parameterised physics. Figures 3.19 and 3.20 show differences in

convective cloud and layer cloud condensate between the stochastic and deterministic runs.

Interestingly, the RP, constant RP and MN schemes give similar patterns of difference in

convective cloud relative to the default UM, with significant decreases in the upper troposphere

at various times. Comparing with the default UM ensemble mean convective cloud in figure 3.9,

the changes are fractionally quite large, but highly state-dependent. Many of the times of reduced

upper-level convective cloud correspond to times when the convective moisture flux at 950hPa

(figure 3.16) is reduced (e.g. near days 15, 17 and 26), suggesting an overall reduction in deep

convection at those times in the RP, constant RP and MN ensembles.

Reassuringly, the upper-level convective cloud response in the RP and constant RP ensem-

bles remains very similar in the 100-member ensembles run on the new platform, compared to

the response seen for the 40-member ensembles on the old platform. There are of course large

differences between the responses in the lower troposphere at times when the shallow convec-

tion scheme, which was inactive on the old platform, triggered on the new platform (i.e. where

the low-level convective cloud markedly increases on the new platform in figure 3.9; during the

suppressed phases and on day 20).

The TSC scheme gives a general increase in convective cloud during the active phases, con-

sistent with a general increase in convective activity due to the increased convective instability in

the TSC ensemble runs. It also gives significantly less convective cloud near the convective cloud

top, indicating a tendency of the TSC scheme to give slightly lower cloud-tops. This is consistent
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Figure 3.19: Ensemble-mean total specific convective-cloud condensate (liquid + ice) differences be-

tween ensembles. Top row shows differences for the RP ensembles relative to default UM on the old

computing platform, middle row shows differences for both rerun on the new platform (mean convective

cloud for the default UM on both platforms was shown in figure 3.9). The MN and TSC ensembles

(bottom row) are shown for the old platform only. Black contours denote statistical significance of the

differences at the (solid) 5%, and (dotted) 1% levels, using a T-test as in figure 3.11.

with the warming of the atmosphere at and above the cloud-top in the TSC ensemble (this was

shown in figure 3.12). The warming at this height both promotes and is promoted by a slightly

lower termination of convective plumes (plumes are less likely to remain buoyant in warmer air,

and act to cool the air at the cloud-top through evaporation of detrained condensate). It was also

shown in figure 3.12 that much of the troposphere becomes cooler and dryer in the TSC runs.

Whilst this gives more convective instability than in the default UM, it would also be expected

to make convective plumes cooler and dryer as they rise, via entrainment. Since the default UM

Page 123



Chapter 3: Comparison of Stochastic Parameterisation Approaches in a Single-Column Model

Figure 3.20: Ensemble mean total specific layer-cloud condensate (liquid + ice). Top left plot shows the

mean in the default UM ensemble, other plots show differences between ensembles as labelled. Black

contours denote statistical significance of the differences at the (solid) 5%, and (dotted) 1% levels, using

a T-test as in figure 3.11.
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convection scheme does not simulate the vertical momentum budget of plumes, it does not al-

low convective overshoot, so we expect the increased negative buoyancy of entrained air to cause

plumes to terminate lower despite the increased CAPE.

Considering the changes in ensemble mean layer cloud condensate (figure 3.20), all of the

stochastic schemes (RP, MN and stochastic PC), and the constant RP scheme, give significant

increases in layer cloud at many times. Some of the changes in layer cloud are simply consistent

with the noise-induced drifts in humidity (figures 3.11, 3.12 and 3.13); for example, the brief

reductions in layer cloud in the lower free-troposphere at day 17 in the RP and MN ensembles,

and at day 18 in the stochastic PC ensembles, correspond to times when the stochastic runs are

dryer and warmer than their deterministic analogues. The large increases in layer cloud for the

KF ensemble relative to the default UM are similarly explained by KF having a mean-state which

is substantially cooler, yielding higher relative humidities. However, not all the increases in layer

cloud in the stochastic runs line up with obvious humidity increases.

To investigate this further, figure 3.21 shows PDFs of saturation; specific total water content

(vapour plus condensate) qt minus the saturation specific humidity qsat ; comparing all the different

SCM ensembles. The PDFs were computed for the two main periods during which extensive layer

cloud formed; days 15–21 and days 25–27 (see top-left panel of figure 3.20), and for four different

height intervals as labelled.

In general the SCM configurations which use the KF convective plume model (KF and PC)

yield saturation PDFs with different characteristic shapes to those based on the default UM’s

convection parameterisation, with the latter having more spread than the former in the mid and

upper troposphere. This is consistent with the differences noted in the profiles of ensemble spread

in temperature in section 3.2. The latter also have greater mean saturation, consistent with their

increased layer cloud (figure 3.20) and increased large-scale precipitation (figure 3.15).

However, the ensemble mean saturation averaged over each cloudy period remains below zero

for all the SCM configurations at all four heights. Whilst the UM’s cloud scheme allows some

cloud to form at sub-saturation above a critical relative humidity threshold, most of the cloud-

formation in these runs must occur when the model states make excursions substantially above

the ensemble mean saturation.
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Figure 3.21: Probability densities of specific saturation qt −qsat for the two cloudy periods (left) t=15–21

days, and (right) t=25–27 days; for 4 different heights as labelled. Colours denote different ensembles;

(black) default UM, (red) MN, (solid green) RP, (dashed green) constant RP, (orange) TSC, (blue) KF,

(solid purple) deterministic PC, (dashed purple) stochastic PC with grid-length 100 km, and (dotted pur-

ple) stochastic PC with grid-length 50 km. Coloured vertical lines denote the means of the distributions.

Note that the plots at different heights have different axis scales, and the y-axis is logarithmic.
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The primary effect of the stochastic schemes (RP, MN and stochastic PC) on the saturation

PDFs in figure 3.21 appears to be to broaden the tails of the distributions relative to their deter-

ministic analogues (DefUM and deterministic PC). On average, the distributions are broadened

equally for both positive and negative excursions, yielding little change in the mean saturation.

The increased frequency of excursions to very low saturations has no effect on the cloud conden-

sate, as a moderately low saturation in these distributions is still far enough below zero to yield

no cloud condensate. However, the increased frequency of excursions to positive saturations must

have a positive impact on the mean cloud condensate. Therefore, we expect the broadening of

the saturation PDFs associated with stochastic parameterisations (or indeed any scheme which

increases the range of saturation states available to the system) to yield systematic increases in

the ensemble mean cloud condensate, aside from the effects of any noise-induced drift in relative

humidity. The increases in layer cloud produced by the RP, constant RP, MN and stochastic PC

schemes are consistent with this mechanism.

3.5 CONCLUSIONS

The SCM framework described and validated in chapter 2 has been used to compare a number

of different configurations for the sub-grid parameterisations, which were chosen so as to explore

various sources of uncertainty in the high-frequency variability of parameterised processes. A

range of stochastic parameterisations and alternative deterministic formulations were used. Con-

clusions are drawn below, on the nature of the variability of the parameterised processes studied

(section 3.5.1), on the responses of the parameterised processes to changes in their variability

(section 3.5.2), and on the relative importance of physical and modelling uncertainties (section

3.5.3).

3.5.1 ON THE NATURE OF PARAMETERISED PHYSICS VARIABILITY

The vertical profile of the ensemble variability of sub-grid and non-dynamical processes was

found to be crucially dependent on the convective plume model used. The time-evolution of the

ensemble spread profiles followed the changing convective activity, giving peaks in the lower and
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mid troposphere corresponding to periods of shallow and deep convection respectively. Notably

the KF convection scheme of Kain (2004) tended to give less shallow convection than the other

schemes, and correspondingly gave less ensemble variability in the lower troposphere. This is

consistent with results from chapter 2 which showed that the ensemble variability is primarily

driven by the parameterised convection, and that the KF scheme is less sensitive to initial con-

dition perturbations in the lower troposphere. It also demonstrates that structural uncertainties

in the convective plume model manifest as very large uncertainties in the shape of the profile

of variability in diabatic heating. We would expect such disparate variability profiles to excite

quite different gravity-wave spectra, with likely consequences for the simulation of any tropical

atmospheric modes sensitive to high-frequency wave activity.

The characteristic timescales of variability in parameterised processes were found to be highly

state-dependent, following the time-evolution of convective activity, but were relatively insen-

sitive to structural differences in the convective plume model or the introduction of stochastic

parameterisations. Generic model-uncertainty schemes were able to boost the ensemble spread

without imposing their prescribed timescales on the leading modes of variability in the SCM.

Rather, the timescales were found to be much more sensitive to alterations in the closure ap-

plied in the convection parameterisation. Time-smoothing the input closure profiles or the output

tendencies from convection yielded obvious increases in the timescales of the SCM’s variability.

In general, stochastic parameterisations were found to increase the amplitude of the variability

profile, but mostly had little impact on its shape or internal properties.

A notable exception to this was the tendency of the stochastic multiplicative perturbation

method of Buizza et al. (1999) to give disproportionate increases in temperature variability in

the stratosphere, associated with radiative tendencies. This is physically questionable; in real-

ity stratospheric radiative transfer is fairly steady and well-defined, with error correlation scales

which are much larger / slower than those associated with sub-grid processes. A subsequent

revision of the stochastic multiplicative scheme in the ECMWF forecast system tapers the pertur-

bations to zero at upper levels to account for this (Palmer et al. 2009).
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3.5.2 ON THE RESPONSE OF PARAMETERISED PROCESSES TO CHANGES IN

THEIR VARIABILITY

In the case studied here, increasing the high-frequency variability of the sub-grid processes pri-

marily gives an increase in the amplitude of the profile of variability in convective heating, even

though other processes are also perturbed. This is because convection is the process with the

strongest non-linear sensitivity to the atmospheric state, and which generates the largest fluctua-

tions in the moisture budget and diabatic heating. However, if one chose a different case study

which was not dominated by deep convection, different results would be likely.

The introduction of stochastic parameterisations also yielded subtle changes in the ensemble

mean-states of the SCM, typically of the order 0.5 K / 0.5 gkg−1 in terms of tropospheric tem-

perature and humidity . These noise-induced drifts were highly state-dependent, changing sign

at different times and heights. They were much smaller than those associated with switching

between different deterministic convection scheme formulations, which gave consistent profile

changes of the order 2 K / 1 gkg−1.

The increase in convective variability seen when stochastic parameterisations (and some de-

terministic modifications) are introduced increases the range of atmospheric states available to

the system. This has some further generic systematic effects.

The simplest of these is the increase in ensemble-mean layer cloud condensate, due to the

increased range of total specific moisture contents explored relative to the saturation threshold;

increased positive excursions in moisture yield increases in cloud, whereas increased negative

excursions can make no difference beyond removing all the cloud. One would expect this to have

systematic effects on the radiation budget.

There was also a common systematic response from the boundary layer parameterisation,

giving increased moisture fluxes in response to the increased range of states available to it, and

forcing changes in the lower tropospheric humidity profile. It is not clear whether this effect is

particular to the numerics of the UM boundary layer scheme or whether it corresponds to a more

general physical sensitivity of atmospheric boundary layers. This would be an interesting topic

for further study.
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Many of the stochastic (or otherwise perturbed) SCM configurations also gave occasional

compensating decreases in the low-level moisture fluxes from the convection scheme, yielding

reductions in convective cloud at upper levels at certain times. The stochastic parameterisations

may have served to highlight the highly nonlinear sensitivity of interactions between parame-

terised boundary layer fluxes and convection. The distinction between the two is somewhat arbi-

trary in models (there is no defining line between buoyancy-driven boundary layer over-turning

and shallow convection in reality), but the parameterisations for each behave differently at differ-

ent times. As a result, the changes in the relative activity of these two parameterisations promoted

by increased variability yield highly state-dependent changes in lower troposphere temperature

and moisture profiles, and in model cloud fields.

Deterministically forcing the convection to respond on longer timescales (in this case by ap-

plying a simple time-smoother to the output tendencies) was found to increase the ensemble

spread, giving a range of model states comparable with estimates of parameterisation uncertainty.

The time-smoother acts to delay part of the convective heating response to profile instabilities,

yielding a cooler, more unstable profile, which promotes more vigorous, coherent convective re-

sponses overall. This is consistent with the results of Scinocca & McFarlane (2004), who found

that applying a prognostic closure to a convection parameterisation increased the variability of

the convective rainfall. Prognostic closures, which relate the rate of change of dissipation of

CAPE to the amount of CAPE, will similarly act to delay the convective response to instabilities

as the convective mass flux will take a finite time to ramp up to the equilibrium response rate.

It therefore seems reasonable to conclude that they yield increased activity and variability of the

convection parameterisation through a similar mechanism to the simple convective time-smoother

in the present study.

These results show that strong sensitivity of convective variability to the convective closure

can arise from parameterised physical feedbacks alone, although this could be further amplified

by excitement of dynamical modes in the atmosphere in 3D simulations, such as those of Scinocca

& McFarlane (2004).
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3.5.3 ON THE RELATIVE IMPORTANCE OF PHYSICAL AND MODELLING UNCER-

TAINTIES

Stochastic parameterisations designed to represent generic parameterisation uncertainty were

found to produce similar ensemble ranges of states to that associated with a somewhat limited

sampling of different structural configurations for the convection parameterisation. This suggests

that either the poor-man’s ensemble (of three deterministic convection schemes) used in this study

turned out to be fortuitously representative (i.e. that the particular uncertainties in the convective

plume model and closure sampled by that ensemble actually dominate overall parameterisation

uncertainty), or else the stochastic model uncertainty schemes only partially sample parameterisa-

tion uncertainty. The latter is clearly the case when considering the vertical profiles of variability;

applying the stochastic schemes to the default UM convection scheme never yields profiles of

heating variability which look like the other deterministic convection schemes.

Encouragingly however, the stochastic Random Parameter scheme (Bowler et al. 2009) gave

spreads very similar to a constant perturbed parameter ensemble analogue, suggesting that locally

the stochastic method can access the full range of states available to the perturbed-parameter en-

semble, whilst gaining the desirable quality that the ensemble members all have the same attractor.

The effects of sampling the uncertainty in the sub-grid state of convection were quantified by

running the stochastic convection scheme of Plant & Craig (2008), which simulates a realistic

population of convective plumes within a given grid area, drawn at random from a theoretical dis-

tribution of cloud sizes (and corresponding entrainment rates). This scheme was found to explore

a similar range of model states to that associated with the modelling uncertainties investigated in

this study (as quantified by schemes designed to represent generic model uncertainty, and by the

aforementioned sample of three different deterministic convection scheme configurations), for a

grid-size of 50 km. For a larger grid-size of 100 km, the ensemble of possible sub-grid convec-

tive states is more fully sampled, giving more well-defined grid-mean convective tendencies, and

therefore exploring a smaller range of model states.

These results suggest that structural uncertainties in the convection parameterisation are more

important than convective sub-grid uncertainty at scales characteristic of climate GCM grid reso-

lutions (100km or more), but that in current weather forecast models, which often have grid-sizes
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well under 50km, sub-grid uncertainties in convection may well dominate the overall uncertainty

in the grid-mean tendencies.

There is a significant caveat to the result for larger grid-sizes; the Plant & Craig (2008)

stochastic convection scheme used to quantify sub-grid convective uncertainty simulates depar-

tures from statistical equilibrium in an ensemble of non-interacting plumes. It is therefore un-

likely to be representative of fluctuations associated with organised convective systems born of

the neglected interactions between plumes. In current weather forecast models, one would hope

that such systems can be resolved by the model dynamics, making this a moot point, but in climate

GCMs they are certainly not resolved. Therefore, sub-grid uncertainties associated with convec-

tion at the larger grid-size tested in this study might be underestimated; organised convective

systems are the most energetic sub-grid phenomena at these scales.

In the next chapter, the sensitivity of the atmosphere to high frequency variability in an

aqua-planet GCM is investigated, with a horizontal resolution consistent with a global climate

simulation. The results in the SCM suggest that, for the large grid-sizes in the GCM, the sub-

grid convective fluctuations generated by the Plant & Craig (2008) scheme will be dwarfed by

generic parameterisation uncertainties. Therefore, in the aqua-planet climate GCM experiments,

the model uncertainty schemes (random parameters and multiplicative noise) are more likely to

have a significant effect and yield relevant results than the Plant & Craig scheme. The latter

scheme would be a far more valuable tool for investigating the sensitivity to sub-grid variability

in higher-resolution simulations consistent with weather forecast models.
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CHAPTER 4:

SENSITIVITY OF THE ATMOSPHERE

TO HIGH-FREQUENCY VARIABILITY

IN AN AQUA-PLANET FRAMEWORK

4.1 OVERVIEW

This chapter gives a preliminary investigation into the sensitivity of the 3-dimensional global at-

mosphere, with resolved-scale dynamical interactions, to high-frequency variability associated

with sub-grid and non-dynamical atmospheric processes. As in the previous chapter, the method

will be to alter the high-frequency variability in a host model by introducing stochastic parame-

terisations from the literature, and investigate the occurrence (or not) of noise-induced changes to

the mean-state or to modes of variability not directly perturbed by the stochastic scheme.

In the previous chapter, the response of parameterised physical and sub-grid processes to

high-frequency variability consistent with generic parameterisation uncertainty was studied in a

Single-Column Model (SCM) simulation of convection over the Tropical West Pacific, using two

different “stochastic physics” parameterisations used in ensemble prediction systems. Both the

schemes substantially increased the variability of the SCM. The resulting increase in the range of

states available to the model parameterisations also yielded a systematic increase in mean layer

cloud condensate, an increase in the moisture fluxes produced by the boundary layer scheme,

and a highly state-dependent response from the convection parameterisation, which reduced its

moisture flux in the lower troposphere. One of the stochastic schemes (the Random Parameters

scheme described in Bowler et al. 2009) also produced a small systematic drying of the model

column due to increased large-scale precipitation, whereas the multiplicative perturbation scheme

of Buizza et al. (1999) did not. Whilst these changes were on the whole fairly subtle, it would be
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interesting to investigate the additional effects of resolved-scale dynamical interactions.

In this chapter, the same two stochastic methods are implemented in a 3-dimensional model,

and any systematic changes in mean-state or variability are investigated. It will be interesting to

check whether the full dynamical atmosphere’s responses to the stochastic physics schemes mir-

ror those of the Single-Column Model, or whether they are muted by a compensating “dynamical

stabilisation” response, or amplified, or otherwise altered by dynamical feedbacks. Or it is possi-

ble that the atmosphere’s response to high-frequency variability is heavily state-dependent; thus

switching to a different modelling framework, which dynamically follows its own attractor rather

than being constrained to observed tendencies, would yield very different responses.

The SCM experiments in the previous chapter also used the stochastic convection scheme

of Plant & Craig (2008) to investigate the tropical atmosphere’s response to sub-grid variability

arising in deep moist convection due to the likely variations in the size and number of convective

plumes present in a model grid area. It was found that these fluctuations about convective equi-

librium produce more variability than that consistent with estimates of generic parameterisation

uncertainty for grid-sizes less than 50km, but dwindle in magnitude at larger grid-scales.

In this chapter, multi-year integrations consistent with climate simulations will be studied,

using an appropriate horizontal resolution with grid-sizes in the hundreds of kilometres. The re-

sults from the previous chapter show that the Plant & Craig (2008) stochastic convection scheme

would produce only very small fluctuations at these scales; any noise-induced effects would likely

be subtle and hard to detect. Whilst fluctuations associated with mesoscale organised convective

systems are likely to be an important component of sub-grid uncertainty / variability at climate

GCM resolutions, their thermodynamic effects are not explicitly represented by any convection

parameterisation known to the author. Therefore fluctuations about convective statistical equilib-

rium will not be studied in this context.

To aid interpretability, it will be desirable to use the simplest experimental framework avail-

able that is able to simulate the general behaviour of the global atmosphere. For this, the Aqua-

Planet framework, in which the earth’s surface is assumed to consist entirely of open ocean, will

be used. This is an ideal framework to use because it includes full interaction of dynamics and

physics and the basic features of the global circulation, but removes the complications of land sur-
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face interactions, topography and land/sea configuration. The framework used here also fixes the

solar date at equinox so that there is no annual cycle. Further, it is zonally- and hemispherically-

symmetric. Thus in terms of its climate it can be zonally and temporally averaged without los-

ing any of the representativeness of a single point. All these properties allow robust results to

be obtained more easily and with much shorter runs than would be required in a realistic earth-

configuration.

The Aqua-Planet simulations used here are based on those described by Neale & Hoskins

(2001a,b). They investigated the sensitivity of the global circulation to the Sea Surface Tem-

perature distribution, and established a benchmark set of simulations which have been widely

used for testing models and investigating the sensitivity of the global atmospheric circulation to

various factors. In this chapter, preliminary results for aqua-planet simulations employing two

different stochastic parameterisations are presented, compared against a control simulation with

no stochastic element.

The experiments, model configuration and statistical methods used are fully described in sec-

tion 4.2. Results are presented in section 4.3. Conclusions are drawn in section 4.4, along with

further discussion in the light of the conclusions from the Single-Column Model experiments

described in the previous chapter.

4.2 EXPERIMENTAL SETUP

Firstly, the host model is described in subsection 4.2.1. The stochastic perturbed runs are then

described in subsection 4.2.2. Before comparing the stochastically perturbed runs against the

unperturbed control run, it is essential to find appropriate statistical tests to determine which

differences are likely to be systematic effects, rather than chance variations between the runs.

The statistical methods used are described in subsection 4.2.3.
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4.2.1 MODEL DESCRIPTION

The model used is the UK Met Office Unified Model (UM). The particular version used is the

global model used in their forecasting system at Parallel Suite 13 (PS13). The system is described

by Bell (2008); see the table of global model cycles in Annex A of Bell (2008) for detail of which

modifications to the UM system were in effect at PS13.

The model used in the present study differs from the Met Office global forecast model at

PS13 in that (a) a much lower horizontal resolution is used (N48 rather than N320), and (b) it

is run in aqua-planet configuration. To run the model in aqua-planet configuration the following

modifications are included:

• All orography is set to zero and all surface points are set to ocean.

• A fixed zonally and hemispherically symmetric Sea Surface Temperature (SST) field is

specified. This is the “control” case described by Neale & Hoskins (2001a). The surface

temperature Ts in oC is specified as a function of latitude φ using the formula

Ts =

 27(1− sin2(3φ

2 )) : −π

3 < φ < π

3

0 : otherwise

• The time specification in the radiation scheme is modified so that the date is fixed at 21st

March (spring equinox), but the time of day progresses as usual. This removes the season-

ality, but preserves the diurnal cycle, in the solar flux calculated by the radiation scheme.

• An idealised calendar is used with months and years set to fixed lengths of 30 days and

360 days respectively. Since there is no seasonality, this has no consequence for the model-

evolution, but allows time to be easily sub-divided consistently.

• radiatively important trace gases such as ozone are set to zonally and hemispherically aver-

aged climatological fields.

The resolved dynamics are simulated using the dynamical core described by Davies et al.

(2005). This is a grid-point based, non-hydrostatic, non-shallow-atmosphere, mass-conserving,

semi-implicit fluid solver. The scheme uses a predictor-corrector method in which a first esti-

mate of the next time-step model fields is made using semi-Lagrangian advection, and dynamical
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adjustment is then calculated using an iterative algorithm to solve the 3D Helmholtz equation.

The model grid uses Charney-Phillips staggering in the vertical (pressure and horizontal winds on

model-levels, with thermodynamic variables and vertical wind on half-levels above and below),

and the Arakawa C-grid staggering in the horizontal (pressure at main grid-points, zonal winds at

half-points to the E and W, meridional winds at half-points to the N and S).

The parameterisation schemes are essentially the same as those used in the SCM described

in the previous chapter, but with some minor differences in accordance with the modifications

present in the global model at PS13 (Bell 2008). The most substantial of these differences is the

inclusion of a scheme to make convective cloud decay gradually rather than assuming it all disap-

pears by the next time-step; Convective Cloud Amount (CCA) and Convective Cloud Condensed

Water Path (CCCWP) decay with a timescale of 2 hours after the convection scheme outputs them.

A bug fix was also introduced before PS13 which corrected an error in the formula for partition-

ing convective cloud condensate between liquid and ice based on cloud-top temperature. This fix

did not affect the convection scheme itself, but applied to the diagnostic calculation of convective

cloud profiles used by the radiation scheme. This bug-fix was not used in the SCM experiments

described in the preceding chapters, but was later implemented in the SCM and ensemble tests

indicated that it had a detectible but very small effect on the simulations.

Another key difference between the aqua-planet studied here and the SCM studied in the

preceding chapters is the number of vertical levels. The aqua-planet has 50 rather than the SCM’s

38. However, the two level-sets have exactly the same vertical spacing throughout the troposphere,

with all the aqua-planet’s extra levels being added in the stratosphere.

The aqua-planet has a horizontal resolution of N48, which is 96 grid-points in the longitudinal

direction and 73 in the latitudinal. This gives a grid-size of 417-by-278 km at the equator.

As in the PS13 global model, a time-step of 15 minutes is used, with a 7.5 minute sub-step for

the convection scheme and the radiation scheme called once every 3 hours. For comparison, the

single-column model used in the previous chapter had a time-step of 30 minutes with no convec-

tive sub-stepping, but the same 3-hour radiation time-step. 15 minutes may seem an unnecessarily

short time-step to use in a model with such a coarse horizontal resolution (presumably this is the

conventional setting for the N320-resolution PS13 forecast model). It would be tempting to in-
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crease the time-step to 30 minutes to make the runs more consistent with the SCM experiments

and with climate simulations. However, it was felt it would be wise to preserve the model settings

“as received” from the UK Met Office, so that the model can be trusted to behave as documented.

It is also likely to have been tuned for optimal stability with these settings.

4.2.2 EXPERIMENTS

Three Aqua-Planet simulations were initialised using the same model dump from a pre-existing

spun-up aqua-planet simulation. Note that although the experimental framework is entirely zon-

ally and hemispherically symmetric, the initial state used for these experiments is not. Therefore

the runs evolve in a realistically asymmetric manner, permitting irregularly spaced eddies and

flow across the equator as in the real world. But the symmetries of the experimental framework

should eventually yield a zonally and hemispherically symmetric climatology if the model is run

for a long-enough period of time.

Three different experiments were performed, with:

• DefUM: an unmodified control simulation of the aqua-planet described above.

• RP: a version with the Random Parameters stochastic physics scheme based on Arribas

(2004), also described by Bowler et al. (2009).

• MN: a version with the Multiplicative Noise stochastic scheme (MN) following Buizza et

al. (1999).

The implementation of both of the stochastic schemes used are described in detail in section

2.2.2 of chapter 2, and the internal parameters of the stochastic schemes are set to the default

values specified therein. The motivation and context for these stochastic schemes was discussed

in section 1.5 of chapter 1.

In the case of the MN run, in addition to the time-variation of perturbation scalings described

in chapter 2 for the Single-Column Model, there is a spatial component to the variability in the

aqua-planet. This is implemented following Buizza et al. (1999), by drawing random numbers

for the scheme independently at different locations. Horizontal autocorrelation of perturbations is
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applied very simply by drawing the same random number for grid-points falling within each 2D

tile of neighbouring points. Buizza et al. (1999) used tiles of size 10o longitude by 10o latitude. In

the implementation studied in this chapter, this is approximated using tiles spanning 3-by-4 grid-

points, equivalent to 11.25o longitude by 10o latitude. In the case of the RP scheme, following

Arribas (2004), there is no spatial component to the scheme and the same time-series of model

parameter values is applied at all grid-points.

In each of the runs, time-averaged zonal mean data were output for various diagnostics on

15 selected model levels spread throughout the depth of the atmosphere. Also, to investigate the

variability in the runs, 6-hourly mean data for basic model fields, precipitation, surface fluxes and

top-of-atmosphere radiative fluxes were output for the full length of each run. The 3D fields were

calculated as mass-weighted vertical averages over 6 vertical intervals in pressure-coordinates.

Initially, each of these three model configurations was run for 18 months, treating the first

6 months as spin-up and analysing the remaining 1-year of data, following Neale & Hoskins

(2001a). However, it was difficult to gain statistically robust results from these runs, as all three

simulations exhibited interesting long-timescale modes of variability. These led to apparent dif-

ferences between the 1-year average zonal mean fields in the runs which were in fact the result

of the slow modes following a different evolution in each run. The non-robustness of these dif-

ferences was immediately apparent by their possessing large hemispheric asymmetry despite the

model framework being entirely symmetric about the equator.

In order to gain more robust results, longer runs were then performed with a target length

of 4 years and 4 months, treating the initial 4 month period as spin-up. The DefUM and MN

runs completed successfully, each giving 4 years of 6-hourly data and time-averaged zonal mean

fields. The climate of the 4 year DefUM run is described in section 4.3.1.

However, the RP run crashed after 2 years, 4 months and 29 days in to the run. Analysis

revealed that a numerical instability over the South polar region had blown-up in the RP run.

Considering that this may just have been an unlucky numerical misfortune, the integration was

repeated, but this time with the RP scheme set not to apply poleward of ±80o latitude, in case

the interaction of the stochastic scheme with the polar singularity and any related instabilities had

caused the crash. This slight change would also force the new integration to diverge from the old
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one, and so avoid following the precise trajectory known to have led to a crash. Frustratingly,

the new run crashed again in much the same way, after the slightly longer period of 2 years, 11

months and 29 days, even though analysis confirmed the run had indeed followed a very different

trajectory.

There are two possible explanations for this. Firstly the model used might generally have a

polar instability problem which infrequently erupts, and this happened to occur by chance in both

of the RP runs but neither the control run nor the MN run. Or secondly, the RP scheme may be

triggering the crash through a systematic noise-induced effect absent from the other simulations.

Taking the former possibility as a null hypothesis, and assuming that a 4-year integration of the

model ending in a crash is a binary event with a probability of 0.5 (since half of the runs crashed),

the likelihood of the observed outcome can be estimated. The outcome that in a sample of 4 runs,

the 2 RP runs crash and the 2 runs without the RP scheme do not, has a statistical weight of 1 out

of 24 possible permutations, yielding a probability of 1/24 = 0.0625. Therefore, it cannot quite

be rejected at the 5% level, but is fairly improbable.

The mechanism for the crash was studied in more detail; it was found that for both RP runs,

a deep area of low pressure moved over the South polar region, coinciding with the formation

of unusually cold air in the upper troposphere and a strengthening of stratospheric zonal winds

around the pole. In both cases, the low then remained slow-moving near the pole for around 20

days, steadily intensifying to a central pressure below 900hPa, before a rapid further deepening

which precipitated the model crash. The intensification of the low was accompanied by large

surface fluxes of heat and moisture, heavy convective snowfall and unrealistically large vertical

velocities. It kept intensifying despite slack horizontal temperature gradients, suggesting that it

was driven by surface heat exchange and convective instability, rather than baroclinic instability.

However, its horizontal extent spanned many hundreds of kilometres; much larger than scales

typical of polar lows or even tropical cyclones in the real world.

The non-realism of this synoptic-scale feature is presumably associated with the prescribed

sea surface temperatures at the poles, which at 0oC are unrealistically warm and ice-free; the

polar sea in these runs acted as an inexhaustible supply of heat and moisture for the developing

polar cyclone. Coupling the aqua-planet to any kind of interactive ocean component would likely

suppress this unphysical development, as the sea surface would cool in response to the surface
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fluxes associated with the cyclone.

Analysis using a simple feature-tracking algorithm found that intense polar cyclones only

occurred in the run-up to the crash in each RP integration, not earlier in the runs, or at all in

the control or MN simulations. Further work is needed to ascertain whether this is just down to

chance occurrence of an inherently infrequent event. Otherwise, if the RP scheme was to blame

for the occurrence of the polar cyclone, it must be via an indirect mechanism, as the cyclone

still appeared when the RP scheme was switched off over the polar regions. The appearance of

colder air aloft (and the strengthening of stratospheric zonal winds) just as the cyclone became

established over the pole hint that stratospheric dynamics may have played a role in triggering

the cyclone. Unfortunately, insufficient data was output from the stratosphere in these runs to

investigate this in detail.

Meanwhile, by discarding the 4-month spin-up period at the start of each of the two RP

integrations, and a similar period in the run-up to the ill-fated end of each run, the two RP runs

could be compared against the control run to investigate any systematic differences. The results

of this comparison will not be as statistically robust as was hoped, due to the truncated nature of

the runs. Further, the two RP runs cannot be treated as two realisations of an identical model, in

case the altering of the stochastic scheme to suppress perturbations near the poles in the second

RP run had some systematic effect. The two RP runs are therefore compared to the control run

separately. Nonetheless, some significant effects were still detected.

4.2.3 STATISTICAL METHODS

In general, the textbook statistical tests for assessing the significance of differences between sam-

ples, such as T-tests, make the assumption that the data within each sample are independent.

However, the 6-hourly grid-point atmospheric variables from the simulations presented here ex-

hibit considerable autocorrelation in both time and space, associated with variability on a broad

range of scales. So the sample of data for a given model run are clearly not independent.

One approach in common use in the literature, for performing statistical tests on samples

which contain autocorrelation, is to carry out standard tests but account for the autocorrelation

by reducing the degrees of freedom in the tests. There is assumed to be some number of truly
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independent variables underlying the data, this number being some degree less than the sample

size, depending on the degree of autocorrelation. This approach, involving the estimation of the

underlying “effective sample size”, is used in this study. In this subsection, the statistical tests

used are described, followed by the methods used to estimate the effective sample size.

To test the significance of differences in the mean-states of the model runs, a T-test can be

used. Since we anticipate that the stochastic schemes may alter the variability of the model, a

test which does not assume equality of variance between the runs is required. The “Welch T-test”

(Welch 1947) is therefore used here. The implementation of the test used is described in section

B.1 of appendix B.

To test the significance of differences in variance between the simulations, the test of Levene

(1960) is used. This test has been chosen as it is robust even when the distributions of the variables

being tested are substantially non-normal. We would indeed expect some of the atmospheric

variables tested in this study, such as cloud water content, to have heavily skewed distributions.

The implementation of the test used here, and the method for incorporating reduced effective

sample sizes, are described in section B.2 of appendix B.

Next, a robust method of estimating the effective sample size must be found. Perhaps the

most widespread method is that used by Dawdy & Matalas (1964). According to their method,

for samples which consist of time-series containing some autocorrelation, the effective sample

size ne f f is given by:

ne f f =
1− r
1+ r

n (4.1)

where n is the number of values in the time-series, and r is the lag-1 autocorrelation (the

correlation coefficient of the data with itself lagged by one step in the time-series). This formula

is derived by modelling the sample data as a first-order autoregressive process (i.e. it assumes that

the autocorrelation in the data can be entirely described by iteration of the lag-1 relationship).

For the aqua-planet data, we expect that the effective sample size will vary with height and

latitude, depending on the character of the variability in different regions. But we will assume

that it remains constant in time and longitude when the spin-up period is excluded. At each
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height/latitude there is a corresponding 2-D field in time/longitude from which to calculate ne f f .

Equation 4.1 can be generalised in to 2-D:

ne f f =
(

1− rt

1+ rt

)(
1− rx

1+ rx

)
ntnx (4.2)

where rt and rx are the lag-1 autocorrelations in time and longitude respectively, nt is the

number of time-points in the data-set, and nx is the number of grid-points in the longitudinal

direction.

To test the statistical methods in this study, null comparison tests can be made using two sam-

ples from the same simulation. To verify the statistical tests, the first and last year of the control

run have been compared. As long as there is no systematic drift in the model between these two

periods, the null hypotheses should be true, and the test statistics should follow their theoretical

distributions. To assess this, probability values have been computed from the tests for differences

in mean-state and variance described earlier, with effective sample sizes calculated using equa-

tion 4.2. This calculation is done separately at each height/latitude in the data, yielding a sample

of p-values. This sample should follow a flat distribution between 0 and 1, if the null hypothe-

sis is true and the effective sample sizes used are appropriate. The cumulative distributions of

these p-values are shown in figure 4.1, for the test statistics and effective sample sizes calculated

separately for three different model variables.

In the null case, the p-values in figure 4.1 produced by the tests should be approximately

evenly spread between 0 and 1, corresponding to the flat diagonals . However, they are system-

atically under-spread for the zonal winds u and temperature T , whilst somewhat over-spread for

convective cloud water content qc, especially for the test of difference in variance. This suggests

these statistical tests will tend to erroneously fail to reject the null hypothesis when testing on u

and T , and erroneously reject it for qc. Correspondingly, the effective degrees of freedom used

have been under-estimated for u and T , but over-estimated for qc.

This suggests that the lag-1 autocorrelation method based on Dawdy & Matalas (1964) is not

appropriate here and would yield misleading results in statistical tests for differences between the

runs. Subsequent analysis of the data indicated that its autocorrelation behaviour departs substan-
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Figure 4.1: Cumulative probabilities produced by (dashed) the Welch T-test for difference in mean-

states, and (dotted) Levene’s test for difference in variance, for a comparison of the first and last years

of the 4 year control run. Both tests use the effective sample size based on Dawdy & Matalas (1964),

as described in the text. The solid diagonal corresponds to a flat distribution of probabilities. These

have been computed for (left) zonal wind u, (middle) temperature T , and (right) convective cloud water

content qc

tially from the first-order autoregressive model on which the Dawdy & Matalas (1964) effective

sample size estimate (equation 4.1) is based. Substantial autocorrelations occur at lags of many

days, independent of the lag-1 autocorrelation, presumably associated with the atmosphere’s nu-

merous and complex dynamical modes.

An alternative method commonly used for estimating the effective sample size uses the prop-

erties of the known sampling distributions of sample statistics. Most useful statistics have a well

defined theoretical sampling distribution whose variance is a known function of the number of de-

grees of freedom used to estimate the statistic. If the statistic in question is calculated for a sample

of independent sub-sets of the available data, the variance of the statistic can be computed. By

inverting the expression for the variance of that statistic’s sampling distribution, the degrees of

freedom in each sub-set can be recovered.

For example, Lorenz (1969) estimated the degrees of freedom in the observed northern-

hemisphere extra-tropical circulation from the sampling distribution of mean-squared differences

between all possible pairs of observed fields drawn from the data. Similarly, Van Den Dool &

Chervin (1986) estimated the degrees of freedom in anomaly maps of model fields based on the

known sampling distribution of the correlation coefficient (Panofsky & Brier 1968). They es-

timated the variance of the anomaly pattern by correlating the fields at 239 different pairs of
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time-points in their data, and derived the degrees of freedom from this estimate.

One problem with using an estimated effective sample size or degrees of freedom to perform

statistical tests is that we have no reason to assume that the same persistence or autocorrelation

scales will apply to different statistics being compared (e.g. means, variances or correlation co-

efficients) in a given data-set. Indeed, they appear not to for qc in figure 4.1, where the test for a

difference in variance is considerably more over-spread than that for a difference in mean-state.

It therefore seems necessary to estimate the effective sample size separately for each type of

statistic being tested, in a way that specifically considers the sampling distribution of the given

statistic. Here, such methods are described and verified, for use in tests on sample means and

variances.

• Effective Sample Size for the Sample Variance. As was utilised by Lorenz (1969), mean-

squared-differences between sub-sets of a data-set should approximately follow a χ2 distri-

bution with known mean and variance for a given d.o.f. This is also true for mean-squared

differences of sub-sets of the data from their mean, thus the sampling distribution of the

variances of sub-samples of a data-set can be written in terms of a χ2 distribution. From

this, the theoretical mean and variance of the sub-sample variances can be expressed in

terms of the number of degrees of freedom, and the effective sample size can be recov-

ered by calculating these quantities and inverting the expressions for them. The resulting

formula for effective sample size and its derivation are given in section B.3.1 of appendix

B.

• Effective Sample Size for the Sample Mean. Similarly, the sampling distribution of the

means of sub-samples of the data has known mean and variance, in this case given by

the central limit theorem. Therefore, if the variance of sub-sample means is empirically

calculated from the data-set, the theoretical expression for the variance of means can be

inverted to recover the degrees of freedom within each sub-sample, and hence the effective

sample size. The formula used and its derivation are given in section B.3.2 of appendix B.

In the remainder of this chapter, statistical tests are performed with effective sample sizes

estimated from the sampling distributions of the relevant statistics as described above, using sub-
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samples which span all longitudes (96 grid-points) and time-intervals of 15 days (60 output time-

steps). First, a verification of the statistical tests using this revised method for estimating effective

sample size is presented in figure 4.2.

Figure 4.2: As figure 4.1, but for statistical tests using effective sample sizes estimated using the sam-

pling distribution methods described in the text.

Comparing figure 4.2 with figure 4.1, it is clear that the statistic sampling-distribution method

for estimating effective sample size performs far better than the lag-1 autocorrelation method.

This time, the distributions of p-values for the null comparison (between the first and last year of

the control simulation) are close to the theoretical even spread between 0 and 1, suggesting that

the effective sample sizes used are (at least approximately) appropriate.

4.3 RESULTS

In this section the differences in mean-state and variance between the stochastic aqua-planet sim-

ulations and the control run are presented, to investigate any systematic effects resulting from the

increase in high-frequency variability associated with the stochastic schemes. Firstly in subsec-

tion 4.3.1 the control run is analysed in order to elucidate the nature of the simulated climate. The

statistical tests described in section 4.2.3 are then used to compare the mean-states and variances

of the stochastic simulations with the control run, considering the moisture budgets and rainfall

variability in subsection 4.3.2, the radiative fluxes and heat budgets in subsection 4.3.3, and the

large-scale circulation in subsection 4.3.4.
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4.3.1 ANALYSIS OF THE CONTROL RUN

To give an overview of the general features of the aqua-planet’s climate, figure 4.3 shows a repre-

sentative snapshot of surface pressure, thickness and precipitation rate projected on to the sphere.

Note the intense rainfall along the narrow Inter-Tropical Convergence Zone (ITCZ), the sequence

of dry subtropical anticyclones either side, the active mid-latitude storm track at around 40oN

with rain-bearing frontal systems, and the broad polar region characterised by slack temperature

gradients and scattered light precipitation.

The specified Sea Surface Temperature (SST) in the aqua-planet differs substantially from

the zonal mean of observed SSTs (not shown) in that the warm tropical belt is narrower, with

the largest gradients in surface temperature occurring substantially closer to the equator. As a

result, the tropical region and the sub-tropical anticyclones which bound it are more contracted

towards the equator. Also there is no sea-ice, and the SST is held at a constant 0oC poleward of

60o latitude. This gives polar surface temperatures which are much warmer than in the real world,

and uniform over the broad polar region. Due to the lack of temperature gradients, baroclinicity

vanishes polewards of 60o, so there is relatively little eddy activity in the polar region. But with

warmer than real-world surface temperatures across the region, one would expect the atmosphere

immediately above to be similarly anomalously warm and become unstable through longwave

radiative cooling. The presence of convective showers over the pole (as evident in figure 4.3) is

consistent with this source of instability.

Figure 4.4 shows the zonal-mean, time-mean precipitation broken down in to its large-scale

and convective, rain and snow components. Nearly all the rain in the ITCZ is produced by the

convection scheme, and there are also substantial regions of convective activity at ±30o, on the

poleward flanks of the sub-tropical anticyclones. These appear to be associated with troughs that

extend from trailing cold fronts in the mid-latitude storm track in to the tropics (2 such features

are visible in figure 4.3, one near the centre of the image at 0o longitude, the other near 60o

longitude. Tropical / extra-tropical interactions of this kind seldom happen in reality, but seem

to be quite common in the aqua-planet, presumably because the storm-tracks are much closer to

the equator than in the real world. Peaks in storm-track precipitation occur at ±40o. Poleward

of about 50o most precipitation falls as snow, with snowfall associated with convective showers
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Figure 4.3: Snapshot of 6-hourly mean data from the Default UM aqua-planet control run; (solid con-

tours) surface pressure with a 5 hPa contour interval, (red/yellow) 500-850 hPa thickness with a 60m

contour interval, and (blue/white) precipitation rate on a linear colour scale. Rates less than 1 mm day−1

are not coloured, and rates greater than 40 mm day−1 are coloured white.

steadily increasing towards the poles to just over 1 mm day−1.

In figure 4.5, tephigrams are presented showing the control run’s 4-year mean-state and vari-

ability at 4 different latitudes, which characterise the ITCZ, sub-tropical highs, mid-latitude storm

track, and polar regions.

As one would expect, the tropical profile is moist and conditionally unstable up to around 200
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Figure 4.4: Zonal mean 4-year mean precipitation rates for the Default UM aqua-planet; (solid) large-

scale rain, (dashed) convective rain, (dot-dashed) large-scale snow, and (dotted) convective snow.

hPa, consistent with the deep convection which the model produces in this region. It has very

little temperature variability, consistent with Weak Temperature Gradient Theory (e.g. Charney

1963). The sub-tropical profile has a strongly stable layer from about 850hPa up to 700 hPa,

above which the sounding is very dry, consistent with slow radiative subsidence of air which has

ascended in the ITCZ convection. The mid-latitudes exhibit the greatest variability in tropospheric

temperatures, consistent with the frequent passage of mid-latitude cyclones and their associated

fronts, warm-sectors and cold air outbreaks. As inferred from the presence of convective showers

over the unrealistically warm polar region, the polar tephigram has slight conditional instability;

for the 25th percentile of the temperature profile, the non-dilute ascent from near surface (dotted

line) reaches 500 hPa.

Figure 4.6 shows the zonal-mean precipitation, surface moisture flux, and net surface moisture

budget. On average, moisture is net extracted from the sea-surface in the sub-tropical regions

between 5o and 30o latitude by up to 5 mm day−1, with a large net rain-out of 15 mm day−1 in the

ITCZ. Most of the moisture added to the atmosphere in the sub-tropics is clearly advected in to the

tropical rain-belt, but some is advected in to the storm-track where it is rained out in mid-latitude
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Figure 4.5: Tephigrams for the Default UM aqua-planet, at four representative latitudes; (a) tropics, (b)

sub-tropics, (c) mid-latitude storm track, and (d) polar. Lines represent (solid) dry-bulb temperature,

(dashed) dew-point temperature, and (dotted) a non-dilute moist parcel ascent from the lowest model

level. Thick lines are the 4-year-averaged zonal-mean, thin lines show the 25th and 75th percentiles of

6-hourly data throughout the run.
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cyclones. Poleward of 60o, the mean surface moisture flux and precipitation rate nearly cancel,

so that the broad polar regions are on average in local moist equilibrium. The surface moisture

flux has its greatest variability just on the equatorward side of the storm-tracks. However, the

variability in the net moisture budget is dominated by that in precipitation everywhere except in

the sub-tropics, where little precipitation occurs.

The area-weighted mean net surface moisture budget shown in figure 4.6 should in principal

integrate to zero for a long run with no systematic drift in atmospheric moisture. However, for

this simulation it integrates to +0.116 mm day−1. This global mean precipitation excess would

rain out all of the moisture in the atmosphere in well under a year. But over the 4 year run

this has clearly not happened, and analysis confirmed that no systematic drift occurred in the

global-mean atmospheric moisture content. Evidently the model dynamics don’t quite conserve

moisture, generating a slight excess through numerical error in the advection scheme. However,

this is of little concern in the aqua-planet as universal contact with the sea surface has prevented

any model drift in moisture from occurring.

The net heat budgets at the top-of-atmosphere and the surface are shown in figure 4.7, along

with the difference between the two, which quantifies the net heat budget for the atmosphere.

Contributions from SW and LW radiation and surface fluxes are plotted, as well as their variability.

At top-of-atmosphere, the difference between incoming SW and outgoing LW radiation yields

a net flux of heat in to the planet everywhere between ±45o latitude), whilst the polar regions

strongly lose heat to space. There are considerable variations in both incoming SW and outgoing

LW in the tropics, associated with variations in cloud. Both fluxes reduce towards the ITCZ,

and become more variable in time. But the net radiation at top-of-atmosphere is flat across the

tropics with relatively little time-variability, suggesting that the modelled effects of the tropical

clouds on SW (increasing reflected radiation) and LW (reducing outgoing radiation) nearly cancel

each-other out on average.

At the surface, the balance of SW and LW radiative fluxes, and sensible and latent fluxes

of heat from the underlying global ocean, yields a net flux of heat in to the sea across most

of the planet. Exceptions are the near-neutral sub-tropics and a strong net loss of heat by the

polar seas. In the tropics, the surface primarily loses heat by imparting moisture (latent heat) to
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Figure 4.6: 4-year zonal mean moisture budget components in the control run; (dashed) precipitation,

(dot-dashed) surface moisture flux, and (solid with markers) net moisture budget. Thick lines denote

the mean, thin lines show 25th and 75th percentiles based on daily mean data. The latitude axis has

been scaled by an area weighting so that the area enclosed by the curves is representative of surface-

integrated flux, as in later budget figures. The sign convention followed is to plot fluxes of moisture out

of the atmosphere positive.
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Figure 4.7: 4-year zonal mean heat budgets; (top) top-of-atmosphere radiation, (middle) surface heat

fluxes, and (bottom) atmospheric net budget, equal to the difference of the upper two plots. Lines show

(solid) net SW radiation, (dashed) net LW radiation, (dot-dashed) latent heat flux, (dotted) sensible heat

flux, and (solid with markers) the total net heat flux, as labelled in the legend at the top of the figure.

Thick lines denote the mean, thin lines show 25th and 75th percentiles based on daily mean data. The

sign convention followed is to plot upward fluxes positive for the top-of-atmosphere and surface budgets,

and plot fluxes out of the atmosphere positive for the atmospheric budget.
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the atmosphere, whilst the polar seas mainly lose heat by LW radiation. There is a pronounced

minimum in the latent heat flux on the equator, due to the lighter winds and higher humidities in

the ITCZ. This dip more-than offsets the reduction in surface SW associated with ITCZ cloud, so

there is a considerable net flux of heat in to the surface at the equator.

The difference between the top-of-atmosphere and surface heat budgets (bottom panel of

figure 4.7) yields a net flux of heat in to the atmosphere of around 50 W m−2 equatorwards of 20o,

and a net flux of similar magnitude out of the atmosphere polewards of about 35o. Interestingly,

there is very little time-variation in the amount of SW radiation absorbed by the atmosphere,

despite SW being the biggest source of variability in the top-of-atmosphere and surface heat

budgets. This suggests that the variations in cloud (which drive the large variations in the amount

of SW reflected out to space or absorbed by the surface) have little effect on the modelled SW

absorption by the atmosphere. The large time-variations in the atmosphere’s net heat budget are

mainly driven by variations in surface latent heat flux and LW emission.

Whilst the atmosphere over the polar regions was found to be near local moist equilibrium,

it is clearly not in local thermodynamic equilibrium, with a net heat-loss of around 50 W m−2.

Interestingly, this implies a strong meridional heat transport by the atmosphere in to the polar

regions, despite there being rather flat temperature gradients and very little implied meridional

moisture transport there. As is evident in later plots, the model is in fact transporting heat to the

poles via convergence and subsidence at mid-levels.

Assuming the model to be thermodynamically balanced, the zonal-mean net heat budgets

should be balanced by meridional heat transports at each latitude, and integrate to zero globally.

However, the area-weighted global means of the heat budgets were computed and found not to

be in global balance during the simulation. At top-of-atmosphere there was a global mean net

radiative forcing of +11.1 W m−2, whilst at the surface there is a net mean global downwards heat

flux of +12.4 W m−2.

It is unsurprising that the surface heat budget remains globally out of balance during the sim-

ulation, as the Sea Surface Temperatures are prescribed. If the simulation included an interactive

ocean component instead, a net warming of the ocean would occur until the surface heat budget

equilibrated. The model also produced a difference between the global mean top-of-atmosphere
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radiative forcing and the global mean surface heat flux, implying that the atmosphere lost heat

during the simulation at a mean rate of 1.2 W m−2. Analysis found no corresponding drift in

temperature in the model, so the atmosphere must contain a small erroneous heat source. As was

noted earlier, the model atmosphere also rained out slightly more moisture than was evaporated in

to it during the run, at a global mean rate of 0.116 mm day−1, due to numerical error. We would

expect a spurious latent heating term associated with this, but the latent heat equivalent of this

numerical moisture excess is 3.3 W m−2, somewhat greater than the heat excess of 1.2 W m−2.

So the model clearly doesn’t quite conserve heat. But as with the moisture budget imbalance, this

is of little consequence in a fixed SST aqua-planet framework.

In summary, the aqua-planet control simulation appears to capture the basic features of the

earth’s atmospheric global circulation. However, it differs substantially from the real world in that

the tropical circulation is more closely confined towards the equator, the mid-latitude storm track

is closer to the equator and interacts more strongly with the tropical circulation, and the broad

polar regions are characterised by slack gradients and convective showers (due to the somewhat

unrealistic ice-free surface with prescribed 0oC flat temperature distribution there). The mois-

ture budget reflects the equatorially confined nature of the model circulation; in the sub-tropics,

evaporation exceeds precipitation polewards of 5o latitude, whilst in the polar regions evaporation

and precipitation are in local balance polewards of 60o. The heat budgets during the simulation

give insights in to the radiative impacts of cloud in the model, and the implied meridional heat

transports. Variations in tropical cloud appear to have little net effect on the top-of-atmosphere

radiation balance or on SW absorption by the atmosphere. There were found to be small dis-

crepancies in the moisture and heat budgets, as the model dynamics don’t quite conserve these.

However, this should be of little concern, as the prescribed SST pattern prevents any substantial

model drift.

4.3.2 COMPARISON OF MOISTURE BUDGETS AND RAINFALL VARIABILITY

In this section, the effects of the two stochastic parameterisations on the hydrology of the model

atmosphere are investigated.

First, we consider differences in the moisture budgets of the stochastic simulations relative
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to the control run (the moisture budget for the control run was presented in figure 4.6). Differ-

ences in precipitation, surface moisture flux, and net moisture budget (precipitation minus surface

moisture flux) are shown in figure 4.8. The primary differences between the stochastic runs and

the control are hemispherically asymmetric shifts in rainfall near the equator. The T-test suggests

that only an isolated point in the tropics in each simulation differs significantly from the control

run. Given the large number of points being considered, such a sparse scattering of “significant”

points is consistent with the expected type I error-rate of the test. Also, given the symmetry of the

modelling framework, any systematic biases induced by the stochastic schemes ought to possess

hemispheric symmetry.

The apparent differences in rainfall in the tropics are the residual of long-timescale variability

in the ITCZ, which happens to follow a different evolution in each run. Hovmoller plots of tropical

rainfall variability over the first year of the control run are shown in figure 4.9. Variability in the

total amount of rainfall in the ITCZ is dominated by equatorially trapped Kelvin waves, which

travel around the globe from West to East in about 30 days. However, the North-South asymmetry

of the ITCZ rainfall is dominated by much slower modes. Northward or Southward excursions

of the ITCZ sometimes persist over broad sectors of the tropics for up to 40 days, exhibiting a

gradual Westward propagation, circling the globe in 60–80 days. This is in the opposite sense to

the Kelvin waves, and with a much lower phase speed.

Given the long timescales of the ITCZ’s North-South mode, the hemispherically asymmetric

differences between runs of up to 0.5 mm day−1 are not surprising. The effective sample size used

in the T-test for these differences has identified the long timescales, and accordingly assigned low

statistical significance to most of these differences.

An investigation in to the Kelvin wave and North-South modes which dominate the model’s

tropical rainfall variability was performed, but did not detect any systematic differences in these

modes between the stochastic aqua-planet simulations and the control run. Correspondingly, no

significant difference in the overall variance of tropical precipitation was found. This is evident

in the power spectra of tropical rainfall, shown in figure 4.10. The spectral peak at frequencies

corresponding to around 10 days is due to the Kelvin wave activity evident in figure 4.9. The

only systematic difference between the tropical rainfall power spectra is the slight increase in

variance at higher frequencies in the Multiplicative Noise run. The precipitation diagnostics were
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Figure 4.8: Time-averaged zonal mean moisture budget differences of stochastic runs relative to the

control run; (red) the simulation with Multiplicative Noise, and (green, blue) the two runs with Random

Parameters; (dashed) precipitation, (dot-dashed) surface moisture flux, and (solid with markers) net

moisture budget. Black cross-hairs denote statistical significance of the differences, at the 5% level,

whilst stars indicate significance at the 1% level. The sign convention followed is as for the control run

in figure 4.6; increased precipitation is positive.
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Figure 4.9: Hovmoller plots of rainfall between ±15o latitude; (top) total mean rainfall, and (bottom)

mean rainfall North of the equator minus mean rainfall South of the equator.

directly perturbed in this run, to ensure a consistent moisture budget when the stochastic scheme

perturbed the parameterised tendencies in moisture. The increase in spectral power in the MN run

is consistent with this direct white-noise-like forcing and so does not indicate any dynamical or

physical response of the model to the multiplicative noise scheme.

These results are in contrast to Lin & Neelin (2000), who found that introducing a simple

stochastic parameterisation scheme substantially increased tropical rainfall variability, including

its slower modes. They introduced stochastic variability, modelled as an autoregressive process,

to the CAPE input to the convection parameterisation. In their study, the response of tropical

rainfall variability was highly sensitive to the autocorrelation timescale of the applied stochastic

forcing; major changes in the precipitation power spectra occurred for their experiment with the

stochastic timescale set to 1 day, but the response was much smaller for timescales of 2 hours or

20 minutes. A similar stochastic element is applied in the Random Parameters scheme studied
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Figure 4.10: Mean power spectrum for rainfall between ±15o latitude, for (black) the aqua-planet con-

trol simulation, (red) the Multiplicative Noise run, and (green, blue) the two Random Parameters runs.

Spectral power has been normalised so that its integral over the frequency domain is equal to the total

variance.

here, through variation of the UM convection scheme’s CAPE removal timescale parameter. The

RP scheme updates parameter values once every 3 hours, but with considerable autocorrelation

between subsequent updates (see the description of the scheme in chapter 2), giving it a timescale

most consistent with Lin & Neelin’s 1-day stochastic timescale run, which gave dramatic changes

in rainfall variance.

It is interesting that the Lin & Neelin (2000) stochastic convection scheme induced such a

strong response in their experiment, whilst the RP scheme, with a similar stochastic timescale,

and extensive perturbations to convection and other sub-grid processes, induces no systematic

response in the rainfall variability. This maybe due to differences in the host models used; Lin

& Neelin’s control simulation had very little rainfall variability at low frequencies and required

the stochastic scheme to activate the slow modes, whilst the aqua-planet simulation in the present

study exhibits slow modes with considerable amplitude without a stochastic scheme.

Scinocca & McFarlane (2004) showed that tropical rainfall variability in a 3D simulation was
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strongly connected to the partition of rainfall production between the convective and layer cloud

parameterisations. The precipitation differences between the stochastic runs and the control run

in this study are shown divided in to their components from the UM convection and large-scale

precipitation schemes in figure 4.11.

Figure 4.11: Differences in precipitation components; (solid) from the large-scale precipitation scheme,

and (dashed) from the convection scheme, for (red) MN-Control, (green, blue) RP-Control, as labelled

in the legend above the figure.

Whilst the convective rainfall differences are dominated by the large hemispherically asym-

metric shifts noted in figure 4.8, there is a consistent increase in large-scale precipitation in the

tropics for all three stochastic runs. Note that as the separate large-scale and convective compo-

nents of precipitation were only output as time-averaged zonal means, the statistical tests used in

other figures could not be applied here. Comparison with the control run’s precipitation compo-

nents shown earlier (figure 4.4) shows that the 0.1 mm day−1 additional large-scale rainfall in the

stochastic runs amounts to about a 10% increase in large-scale precipitation. This, and the con-

sistency of the increase between all three stochastic runs, suggests this is likely to be a significant,

systematic effect of increased high frequency variability. But it makes a negligible contribution

to the total rainfall in the tropics.

4.3.3 COMPARISON OF RADIATION, HEAT BUDGETS AND CLOUD

In this section, differences between the heat budgets in radiative and surface fluxes in the aqua-

planet simulations are presented, with the main differences associated with changes in cloud
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which are also presented. The control run’s heat budgets were shown in figure 4.7, and differences

of the stochastic runs relative to the control run are shown in figures 4.12, 4.13 and 4.14 below.

In the Multiplicative Noise run (figure 4.12) there is a significant increase in the net down-

welling SW radiation by around 3 Wm−2 in the sub-tropics, at top-of-atmosphere and at the

surface. There is also a significant increase in surface upwelling LW (by about 1 Wm−2). But

these systematic changes evident in the sub-tropical radiation budget do not have a significant

effect on the atmosphere’s net heat budget. Note that the control run’s heat budget showed re-

markably little variability in net SW absorption by the atmosphere, suggesting that variations in

cloud have relatively little effect on it, despite dominating the variability in the surface and top-

of-atmosphere radiation budgets. The increases in net downwelling SW and net upwelling LW

are consistent with a systematic decrease in sub-tropical cloud in the MN run. They also give

a net positive radiative forcing on the surface relative to the control run; globally averaged, this

amounts to +0.9 Wm−2.

Differences in the atmosphere’s heat budget appear to be dominated by differences in the la-

tent heat flux, which the statistical tests indicate can be accounted for by internal variability. There

is however a significant decrease in the sensible heat flux in the sub-tropics. No corresponding

significant differences in near-surface temperature or winds (not shown) were found between the

runs, suggesting that the sensible heat flux has changed as a direct response to the multiplicative

noise scheme.

In the Random Parameters runs (figures 4.13 and 4.14), there are significant differences in

the heat budgets relative to the control run in the extra-tropics. Both RP runs give a significant

decrease in the net downwelling SW at the surface and top-of-atmosphere at latitudes around

±50− 75o, by around 1-2 Wm−2 (there are substantial differences in the extent and magnitude

of this effect between the two RP runs). At the surface, these decreases in SW are more than

compensated for by significant decreases in net upwelling LW and surface fluxes in the same

regions, yielding a net positive radiative forcing on the surface in those regions (relative to the

control run).

With the significant SW-change forcing in the upward sense at top-of-atmosphere, and signif-

icant LW and surface flux-change forcings in the downward sense dominating the surface budget,
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Figure 4.12: Time-averaged zonal mean heat budget differences of the Multiplicative Noise run rela-

tive to the control run; (top) top-of-atmosphere radiation, (middle) surface heat fluxes, and (bottom)

atmospheric net budget, equal to the difference of the upper two plots. Lines show (solid) net SW ra-

diation, (dashed) net LW radiation, (dot-dashed) latent heat flux, (dotted) sensible heat flux, and (solid

with markers) the total net heat flux. The sign convention followed is to plot upward fluxes positive

for the top-of-atmosphere and surface budgets, and plot fluxes out of the atmosphere positive for the

atmospheric budget. Black cross-hairs denote statistical significance of the differences at the 5% level,

whilst stars indicate significance at the 1% level.
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Figure 4.13: As figure 4.12, but for differences of the first Random Parameter run relative to the control

run.
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Figure 4.14: As figure 4.12, but for differences of the second Random Parameters run relative to the

control run.
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a significant loss of heat from the atmosphere at the corresponding latitudes would be expected.

The atmospheric heat budgets do show net outward flux differences of about 2 Wm−2 at around

±60o latitude in both RP runs, though they are not consistently statistically significant. The Ran-

dom Parameter simulations also appear to give a reduction in net down SW over the equator,

though the two RP runs disagree over the magnitude and significance of this effect. More robust

statistics (i.e. longer runs, or more of them) are needed to verify whether these differences are

systematic effects of the RP scheme.

The changes seen in the radiation budgets when the stochastic schemes are applied are most

likely driven by changes in cloud. To investigate this in more detail, model cloud variables are

presented. Figure 4.15 shows total layer-cloud water content (the sum of the liquid and frozen

components), and figure 4.16 shows the total convective cloud water content. 4-year zonal means

and variances for the control run are shown, along with differences of the stochastic runs relative

to the control.

All three stochastic runs give substantial increases in layer cloud-water, by of the order 5%,

across large areas of the model domain. The increase has been identified as significant in all three

over the ITCZ, in the storm-tracks at around ±40o latitude, and at around ±60o. The increase in

layer cloud condensate over the tropics is consistent with the increase in large-scale precipitation

seen in all three stochastic runs. The Multiplicative Noise run also gives a significant decrease in

layer cloud of a similar magnitude in the sub-tropical boundary layer.

The MN scheme also has a dramatic effect on the convective cloud, decreasing it by around

5% throughout the sub-tropics, and in the boundary layer further poleward. The convective cloud

response in the RP runs is less clear; there are significant increases in the tropical upper tro-

posphere and in the mid-troposphere at around ±40o and ±70o, but the two RP runs give very

different extents, magnitudes and levels of significance for these increases.

Note from the colour-scales of the figures that in the control run the mean convective cloud

water content is typically about 4 times the layer cloud content, and the changes occurring in

convective cloud have typical magnitudes about 3 times greater than those in layer cloud. So the

changes in convective cloud will likely have greater radiative impact than those in layer cloud.

Comparing the cloud changes shown in figures 4.15 and 4.16 with the changes in radiation
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Figure 4.15: Layer Cloud water content ql; (left) time-averaged zonal means and (right) standard devia-

tions; for the control run, and differences of the stochastic runs from the control run, as labelled. Black

contours denote statistical significance of the differences, at the (solid) 5% and (dotted) 1% levels.
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Figure 4.16: Convective Cloud water content qc; (left) time-averaged zonal means and (right) standard

deviations; for the control run, and differences of the stochastic runs from the control, as labelled. Black

contours denote statistical significance of the differences, at the (solid) 5% and (dotted) 1% levels.
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budgets shown in figures 4.12, 4.13 and 4.14, the radiative changes appear consistent with the

cloud changes. The significant increases in net downwards SW in the sub-tropics in the MN

run are due to the reduction in boundary-layer cloud there (the major contribution coming from

convective cloud, with some effect from layer cloud). The decreases in downward SW in the

extra-tropics in the RP runs are due to increases in both layer cloud and convective cloud at a

range of depths in the same regions. Polewards of ±30o latitude, the changes in cloud in the MN

run appear to have no effect on the radiation budgets; presumably the effects of the increase in

mid-tropospheric layer cloud and the decrease in low-level convective cloud roughly cancel.

The stochastic schemes also induce significant changes in the variance of the cloud variables.

These changes are broadly consistent with the changes in the means (for a noisy variable with

a frequently-realised zero base-value, the mean and standard deviation both indicate the typical

magnitude of departures from zero), but there are some less trivial changes. In the MN run, there

is a significant increase in the variance of convective cloud in the equatorial mid-troposphere,

where there is a slight decrease in its mean. And in the RP runs, the convective cloud variance

increases in the mid-troposphere in parts of the extra-tropics. These changes are consistent with

the stochastic schemes increasing the variability of the height reached by convective cloud tops

in those regions.

To further investigate the convective activity in the runs, figure 4.17 shows time-averaged

zonal mean convective heating and moisture tendencies from the control run, and their differ-

ences between the stochastic runs and the control. The statistical test for the significance of the

differences in mean-state could not be applied for the convective tendencies, as only the time-

averaged zonal means of these fields were output.

The Multiplicative Noise run gives a 5% reduction in convective moistening of the lower tro-

posphere in the sub-tropics, and some increase in convective heating / drying over the equator.

The sub-tropical changes in convective activity are consistent with the reduction in shallow con-

vective cloud there, which was found to be statistically significant (figure 4.16). Whilst analysis

of the moisture profiles did not identify any statistically significant changes in mean humidity

in the MN run, the reduction in the convective moisture flux out of the boundary layer in the

sub-tropics likely explains the coincident reductions in layer cloud in that run (figure 4.15). It is

not clear whether the changes over the equator are significant; they largely do not coincide with
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Figure 4.17: Time-averaged zonal mean convective tendencies in (left) temperature, and (right) specific

humidity. Top two panels show the mean-fields for the 4-year control run, others show differences

between stochastic runs and the control run as labelled.
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significant changes in convective cloud.

The changes in convective tendencies in the RP integrations relative to the control are on the

whole hemispherically asymmetric and/or not consistent between the two RP runs, so they are

unlikely to be significant.

4.3.4 LARGE-SCALE CIRCULATION

As well as clouds and their effects on radiation budgets, the large scale circulations in the aqua-

planet simulations were studied by analysing the wind, temperature and moisture fields (not

shown). However, none of the stochastic runs were found to have any statistically significant

effect on the mean-states of these variables. On the whole, the variances of these fields were also

un-changed in the stochastic runs, suggesting that the increase in high-frequency variability intro-

duced by the stochastic schemes had no systematic effects on the slower, larger-scale dynamical

modes which dominate the overall variance of temperature, humidity and winds.

Or if there were any systematic effects, they were too small to be detected compared to the

very slow modes who’s residuals dominate the mean-field differences between each stochastic

run and the control run. The statistical tests at least ruled out any systematic changes in mean-

state greater than of the order 0.5K in temperature, 0.5% in specific humidity, and 5% in zonal,

meridional and vertical winds.

The one exception found was a significant increase in the variance of vertical velocity w in

the tropics and sub-tropics in the Multiplicative Noise run. This is shown in figure 4.18, along

with the mean and variability of the control run’s vertical velocity.

The standard deviation of w in the MN run is around 5% greater than in the control run in the

ascending and descending branches of the Hadley circulation in the lower and mid-troposphere,

and in the stratosphere above. The mean w in the MN run has no systematic difference from the

control, so it is just the variability of w which has been affected by the MN scheme. The Random

Parameters runs (not shown) didn’t give any significant change in the mean or variance of w. To

investigate the variability in w further, figure 4.19 shows power spectra for w at three locations

where it’s variance increased significantly.
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Figure 4.18: Vertical winds w; (left) time-averaged zonal mean, and (right) total standard deviation, for

(top) the control run, and (bottom) differences between the Multiplicative Noise run and the control run.

Black contours denote statistical significance of the differences, at the (solid) 5% and (dotted) 1% levels.

In the lower troposphere over the equator, there is a peak in the spectrum at a period of 10

days, consistent with the Kelvin waves which dominate the rainfall variability shown in section

4.3.2. As noted in that section, the stochastic schemes do not significantly affect this mode, but

the multiplicative noise scheme significantly boosts the variability at timescales faster than around

2 days. At all three locations this boost is sufficient to affect the overall variance of w, by simply

adding the high-frequency multiplicative noise on top of the leading modes rather than actually

altering them.

Of course, the model-field variances and power spectra studied have all been calculated from

the output 6-hourly means of the data, so any changes which only affect variability on timescales

faster than 6 hours have been neglected in this chapter. The aim was to look for changes in

the slower, resolved modes rather than in the fast on-off convective noise known to be directly

perturbed by the stochastic schemes. Nonetheless, the stochastic forcings applied by the MN and

RP schemes have components of variability at timescales longer than 6 hours; the MN scheme

applies white noise above this timescale and thus has a flat spectrum, whilst the RP scheme gives

a heavily reddened time-series of parameter values. One might expect these to show up in the
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Figure 4.19: Mean power spectra for vertical velocity w at three latitudes / heights where a significant

increase in variance was found in the MN run, for (black) the aqua-planet control simulation, (red) the

Multiplicative Noise run, and (green, blue) the two Random Parameters runs. Spectral power has been

normalised as in figure 4.10, but the axes scales are logarithmic.
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model data, yet in most variables they don’t.

It is interesting that vertical velocity gains high-frequency noise from the MN scheme al-

though it is not directly perturbed, whereas the variables which are directly perturbed by the

scheme (temperature, moisture and horizontal winds) do not show any significant change in vari-

ance. For temperature and moisture, this can be explained by a dynamical stabilisation response.

The convective triggering events which dominate the high frequency variability act to warm and

dry the model atmosphere. If the MN scheme acts to amplify (suppress) such an event, the

dynamics respond with an increased (decreased) vertical velocity so-as to remove the tempera-

ture perturbation. This also creates vertical moisture advection in the right sense to oppose the

moisture perturbation. In this way, the high-frequency variability added to the temperature and

moisture fields is suppressed by the dynamics, producing vertical velocity variability instead.

The dynamical stabilisation clearly acts on timescales faster than 6 hours, so that no increases in

temperature and moisture variance in the stochastic runs are evident in the 6-hourly data.

It is tantalising to hypothesise that the increased high-frequency variability in the stratosphere

above the tropics could be a result of vertically propagating gravity waves excited by the increased

convective heating variability below. However, it was shown in chapter 3 in the Single-Column

Model framework that the MN scheme produces considerable heating variability directly in the

stratosphere as it perturbs the strong radiative tendencies there. A dynamical stabilisation re-

sponse to these stochastic radiation perturbations is likely to be the primary cause of the increase

in variance of w in the stratosphere.

4.4 DISCUSSION AND CONCLUSIONS

Idealised aqua-planet simulations of global atmospheric circulation were performed; two with

different stochastic schemes designed to represent parameterisation uncertainty were compared

against a deterministic control run, to investigate the sensitivity of the global atmospheric circu-

lation to changes in the high frequency variability of parameterised processes.

The control run was found to simulate the basic features of the large-scale circulation, but with

a more equatorially-confined Hadley circulation and convective showers over the polar regions,
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both due to large departures of the prescribed SST pattern from reality in those regions.

The aqua-planet’s tropical rainfall variability was found to be dominated by equatorially

trapped Kelvin waves, which propagate Eastwards around the globe in around 30 days, and

slower-moving Westward-propagating North-South oscillations in the latitude of the ITCZ. These

modes were found to be insensitive to the stochastic parameterisations used in this study, as was

the full spectrum of rainfall variability. This is in contrast to other studies such as Lin & Neelin

(2000), who found that modelled tropical rainfall variability was highly sensitive to stochastic

perturbation of the convection parameterisation.

However, the stochastic schemes were found to give a systematic increase in rainfall from the

large-scale precipitation scheme over the tropics (although this was insignificant compared to the

total rainfall there, which was mostly convective). For the RP scheme, this is in agreement with

results from the Single-Column Model (SCM), presented in chapter 3. However, the MN scheme

did not appear to give a significant increase in large-scale precipitation in the SCM (figure 3.15

in chapter 3). This could be because the SCM runs were not representative of the full tropical

variability explored by the aqua-planet. There is also some ambiguity over the amount of large-

scale precipitation in the MN runs, as the MN scheme does not form a closed moisture budget.

Large-scale rainfall is produced from condensate, but condensate variables are not perturbed by

the scheme, such that their tendencies become inconsistent with the specific humidity tendencies.

The increases in large-scale precipitation are expected given the systematic increases in layer

cloud condensate in the stochastic aqua-planet runs. Similar increases in layer cloud also oc-

curred for all the stochastic schemes in the SCM experiments (figure 3.20 in chapter 3). These

were found to be a generic response to an increase in the range of humidities occurring in the

model; positive humidity perturbations above saturation always increase condensation, but neg-

ative humidity perturbations can make no difference beyond removing all the condensate; a net

increase in mean condensate inevitably results from this asymmetry.

Analysis of the 6-hourly temperature and moisture profiles in the aqua-planet found no sig-

nificant differences between the stochastic runs and the control, in either the mean-state or the

variance. It is at first confusing that significant increases in layer cloud still occurred, despite the

fact that the key mechanism for the cloud-increases is thought to rely on an increase in humidity
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variance. However, only the variance on timescales slower than 6 hours was studied in the aqua-

planet, as 6-hourly mean data was used. The stochastic schemes presumably forced increased

variability in temperature and humidity associated with the time-step-wise on-off variability of

the convection scheme, as in the SCM. But this appears to have been suppressed on timescales of

6 hours or more by an atmospheric dynamical stabilisation response.

In the SCM, the RP and MN schemes gave similar increases in high-frequency temperature

variability. For the MN scheme, the dynamical stabilisation response translated this in to ver-

tical velocity variability in the aqua-planet, giving overall increases in the variance of w where

convection and radiation give large parameterised tendencies. But the RP scheme did not give

a significant increase in the variability of temperature or vertical velocity in the aqua-planet. A

likely explanation for this is that the convective variability is too concentrated at high frequencies

for significant stochastic effects to be seen in 6-hourly mean data, and the vertical velocity vari-

ance generated by the MN scheme is almost entirely forced by perturbing the more slowly-varying

radiative tendencies.

The MN scheme also gave a significant reduction in convective cloud, especially in sub-

tropical shallow convection. This was associated with a substantial decrease in the amount of

moisture vented from the boundary layer in to the lower free troposphere by the convection pa-

rameterisation in the sub-tropics. Given that no significant change occurred in the humidity pro-

files, moisture budget or large-scale circulation, the sub-tropical convective flux decreases must

be balanced by compensating increases in the moisture fluxes from the boundary layer parame-

terisation. A similar effect was seen for all the perturbed runs (including the MN scheme) in the

SCM; increases in the boundary layer scheme moisture fluxes at 950hPa consistently occurred,

and compensating reductions in convective moisture fluxes occurred at times. Whilst the SCM

runs simulated the deep tropics, rather than sub-tropics, the boundary layer changes were espe-

cially pronounced during phases when deep convection was suppressed and shallow convection

dominated, as in the sub-tropics in the aqua-planet.

For the RP run, the changes in the sub-tropical convective cloud and moisture fluxes seen in

the SCM were not clearly apparent in the aqua-planet. The RP plots in figures 4.16 and 4.17

hint at some changes in low-level sub-tropical cloud and convective tendencies, but these are not

consistent or statistically significant. Also, the RP scheme gives significant increases in convective
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cloud in the upper troposphere over the tropics in the aqua-planet, but there was no clear sign of

this in the SCM simulations. These results suggest the response of the convection and boundary

layer parameterisations to the RP scheme is either highly modified by the dynamical response,

or is highly dependent on details of the model or atmospheric state which differ between the

SCM and aqua-planet. Perhaps there are two competing responses; the increased boundary layer

moisture flux / decreased convective flux (seen in the SCM RP runs) could be competing with

a separate response mechanism which gives a general increase in convection in the aqua-planet.

Further work is needed to investigate this hypothesis, or alternative mechanisms.

The changes in cloud in both the MN and RP runs were found to significantly affect the radi-

ation budgets in the model. The radiative changes were driven primarily by the convective cloud

changes, with a secondary effect from the layer cloud increases, as convective cloud amounts

were generally larger than layer cloud amounts in these runs. In the MN run, the reduction in

low-level convective cloud gave a 3 Wm−2 increase in net downwelling Short-Wave radiation in

the sub-tropics, resulting in the MN scheme giving a global mean net positive radiative forcing on

the planet of nearly 1 Wm−2 relative to the control simulation. The RP scheme gave far less sys-

tematic change in the net radiation budget, with decreases in both net downwelling Short-Wave

and net upwelling Long-Wave at the surface in the extra-tropics. This is consistent with the in-

creases in cloud in the mid- and upper- troposphere in these regions, and yielded a net negative

radiative forcing on the extra-tropics at top-of-atmosphere, a positive forcing on the surface, and

some net loss of heat by the atmosphere. In a global-mean sense, these forcings were largely

compensated for by changes in other regions which were not statistically significant; longer runs

(or ensembles) are needed in order to investigate these robustly.

These results suggest that the simple stochastic schemes used here would likely have pro-

found effects on coupled simulations with interactive ocean models. The surface radiative forc-

ings associated with the cloud changes would alter the sea-surface temperatures and oceanic heat

transports; this would in-turn alter the large-scale atmospheric circulation. Although the radiative

forcing changes are fractionally small, coupled feedbacks in the ocean-atmosphere system could

potentially yield substantial changes in the equilibrium climate mean-state.

However, in the absence of any coupled feedbacks from the ocean, the stochastic schemes

had no detectable effect on the large-scale circulation or thermodynamic profiles in the aqua-
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planet, despite significantly perturbing the cloud amounts and radiative fluxes. Analysis of the

control run’s radiation budgets suggested that variations in cloud primarily affect the amount of

Short-Wave reflected or transmitted by the atmosphere, but have less effect on the net absorption

/ emission by the atmosphere. This is consistent with the results for the stochastic schemes; the

changes in cloud had a significant effect on the top-of-atmosphere and surface radiation budgets,

but not on the atmosphere’s radiation budget. This, and the dynamical stabilisation response

discussed earlier, likely explain the insensitivity of the atmosphere’s mean-state to the stochastic

parameterisations.

Further discussion and overall conclusions are given in the next and final chapter.
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CHAPTER 5:

CONCLUSIONS

5.1 SUMMARY

The atmosphere’s climatic behaviour is thought to exhibit key sensitivities to the nature of its

high-frequency variability, but these sensitivities are not fully understood. This issue is of prac-

tical importance in weather forecasting and climate modelling, as parameterisations of sub-grid

processes often exhibit deficient or otherwise unrealistic high-frequency variability, and the mod-

elling community has paid increasing attention to developing stochastic parameterisations to im-

prove the realism of high-frequency variability in models of the atmosphere.

Whilst a broad range of different stochastic methods have been developed, they share theo-

retical underpinnings in attempting to represent the uncertainty in / variability of the unresolved

components of atmospheric variables. Deterministic formulations cannot wholly represent this as

the sub-grid details of the atmosphere’s state are by definition undefined in models. The continu-

ous variability spectra observed in the atmosphere show that for any plausible model resolution,

there will always be a component of variability which affects the resolved scale, but can neither

be adequately resolved nor described entirely as a function of resolved variables using a statistical

equilibrium assumption.

As well as leading to deficient variability at the smaller resolvable scales in models, this is-

sue also leads to inherent uncertainties in tendencies produced by sub-grid parameterisations. In

ensemble forecasting systems, it is important to account for all sources of uncertainty in the fore-

cast, otherwise they give overconfidently small ensemble spreads. Various stochastic schemes

have been developed to generically sample uncertainties in the formulation of parameterisations

within ensemble forecasts, but it has long been recognised that some component of parameterisa-

tion uncertainty derives from the inherent sub-grid uncertainty in their tendencies.
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In order to design appropriate stochastic parameterisations, both for improving the fidelity of

model climates and for representing model uncertainties in ensemble forecast systems, a greater

understanding of the atmosphere’s sensitivity to the variability of sub-grid processes would be

greatly beneficial. This thesis aims to address three key questions in particular, which were posed

in section 1.7 of chapter 1; in summary:

1. Is the atmosphere’s response to high-frequency variability highly dependent on the internal

properties of that variability, the atmospheric state, or model-specific details? Or does it

exhibit generic responses to any increase in “noise”? This is an important question regard-

ing how sophisticated and realistic stochastic parameterisations need to be in order to yield

realistic responses on the resolved scale.

2. How important is the theoretically underpinned notion of sub-grid uncertainty relative to

generic model uncertainties, such as those associated with different choices of parameter-

isation formulation? If it is a major component of model uncertainty, ensemble forecasts

should incorporate stochastic schemes consistent with known sub-grid uncertainties. If not,

schemes which fully sample structural uncertainties in parameterisation formulation are

more important.

3. What are the key mechanisms by which high-frequency variability can influence the global

atmosphere’s climatic behaviour? This question is of general interest in understanding

atmospheric scale-interactions, and is relevant to guiding well-targeted efforts to develop

stochastic (and other) parameterisations aimed at improving the realism of climate simula-

tions.

To address these questions, the sensitivity of an atmospheric GCM (the UK Met Office Unified

Model) to various alterations to its high-frequency variability was investigated. Sensitivity to

model uncertainties was also explored by comparing multiple different deterministic convection

parameterisations in the host model; various studies have shown that the parameterisation of

moist convection is the leading source of high-frequency variability and modelling uncertainties

in atmospheric GCMs, and the results in chapters 2 and 3 of this thesis are in agreement with this.

The high-frequency variabilities of some of these deterministic configurations were then altered
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using several stochastic or other methods drawn from the literature, to investigate the sensitivity

of the atmosphere to the sources of variability / uncertainty they represent.

First, a broad comparison of stochastic and deterministic model configurations was made in

a UM Single-Column Model simulation of transitions between active and suppressed phases of

convection over the Tropical West Pacific. As well as providing useful results regarding the re-

sponse of parameterised processes to different variabilities, these experiments guided the choice

of a smaller set of configurations likely to yield interesting results in a 3D framework consis-

tent with climate simulations. A comparison of this more limited set of configurations was then

performed using the UM aqua-planet, to investigate the nature of the full, dynamically-coupled

atmospheric response, and to what extent the dynamics modify the parameterised response.

Discussion and conclusions drawing from the results of these experiments is given in the

following three sections, addressing each of the three questions posed above.

5.2 IS THE ATMOSPHERE’S RESPONSE TO HIGH-FREQUENCY

VARIABILITY HIGHLY DEPENDENT ON IT’S INTERNAL PROP-

ERTIES?

All of the different stochastic parameterisation methods investigated in this study were found to

give qualitatively similar high-frequency responses, constituting a simple “scaling-up” of the host

model’s existing convective variability. Whilst different deterministic convection parameterisa-

tions were found to have very different variabilities, a generic scaling-up of those variabilities was

found for stochastic schemes applied to two different convection parameterisations. The result-

ing increase in the range of thermodynamic states available to the system induced some further

generic responses from parameterised processes. The mechanisms for the changes in convective

variability, parameterisation responses, and the implications, are discussed further in section 5.4).

In both the SCM and aqua-planet simulation frameworks, all of the stochastic schemes gave a

systematic increase in layer cloud condensate due to the increased spread of humidities explored

relative to the saturation threshold.
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The SCM experiments also indicated a generic response from the boundary layer parame-

terisation, which gave consistently increased fluxes in the upper boundary layer in response to

increased variability. However, there were also (possibly related) responses from the convection

parameterisation. One stochastic scheme (a stochastic multiplicative perturbation method) gave

similar moisture flux changes in the sub-tropics in the aqua-planet to those in the SCM, increasing

the fluxes from the boundary layer scheme and reducing the activity of the convection scheme in

the lower troposphere. But this resulted in a large decrease in low-level convective cloud in the

aqua-planet not evident in the SCM. Meanwhile, another stochastic scheme (stochastic pertur-

bation of model parameters) gave very different moisture flux and convective cloud changes in

the SCM and aqua-planet, giving an increase in convective cloud in the latter. Clearly the con-

vective cloud response to high-frequency variability maybe highly sensitive to particulars of the

model, the atmospheric state, dynamical feedbacks and / or the type of stochastic parameterisation

employed.

In the SCM, the play-off between the boundary layer scheme and convection responses gave

subtle, highly state-dependent changes in the ensemble mean temperature and humidity profiles,

with little in the way of systematic changes in a time-averaged sense. Correspondingly, the

stochastic schemes gave no detectible mean-state response in temperature and humidity in the

aqua-planet. The convective responses dominated the stochastic effects on the aqua-planet’s radi-

ation budget, due to associated changes in convective cloud, but differed enormously between the

two different stochastic methods.

So, whilst the variability of the parameterised convection responded quite generically to var-

ious different stochastic methods, and the mean layer cloud condensate responded generically to

the increased variability, the convective cloud / radiative response to the high-frequency variability

was highly non-generic and there was little or no systematic mean response from the atmosphere

in terms of thermodynamic profiles or the large-scale circulation.

These results suggest that in the design of stochastic parameterisations, much attention should

be given to their interactions with the convection parameterisation. In particular, if the convec-

tion is tuned to give appropriate profiles of convective cloud, it will likely need to be retuned if

stochastic parameterisations are subsequently introduced.
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As is discussed in more detail in section 5.4 below, the responses of the convective cloud and

boundary layer fluxes are likely to be symptomatic of non-linearities in the way the model treats

various forms of buoyancy-driven fluxes, through arbitrary partition between separate bound-

ary layer, shallow convection and deep convection parameterisation modules. In this study, the

introduction of stochastic parameterisations which merely aim to symmetrically sample model

uncertainties may have served to highlight unphysical non-linearities in this modelling strategy.

Further work is needed to investigate the precise mechanisms involved (e.g. to what extent the

convection and boundary scheme responses to stochastic forcing are related).

However, these results hint at the prevalence of purely numerical sources of uncertainty /

variability where the different sub-grid parameterisation modules compete to handle some of the

same physics, with the modules differing in their treatment of processes for which they overlap

(e.g. there is no exact physical definition to partition which fluxes should be handled by the

boundary layer and shallow convection schemes and in practice they overlap in the host model,

but produce very different amounts of cloud depending on which one dominates). This points

towards a need for a more unified understanding of sub-grid buoyancy-driven motions in the

atmosphere, and a correspondingly unified framework to represent them in models. A proposal

for such a framework is given in section 5.5.

5.3 HOW IMPORTANT ARE INHERENT SUB-GRID UNCERTAIN-

TIES RELATIVE TO GENERIC PARAMETERISATION UNCER-

TAINTIES?

The SCM framework was used to directly compare ensemble spreads associated with estimates

of sub-grid uncertainty and generic parameterisation uncertainty.

Sub-grid uncertainty was quantified by the Plant & Craig (2008) stochastic scheme, which

simulates the fluctuations in grid-mean convective tendencies associated with likely sub-grid vari-

ations in the population of convective plumes within a grid-area. Since convection was shown to

be the primary source of variability / uncertainty in the SCM, and is the most energetic unresolved

atmospheric process, focussing purely on convection (i.e. neglecting the sub-grid fluctuations in
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other parameterised processes) shouldn’t be too detrimental to this comparison. The smaller the

grid-size, the larger the fluctuations / sub-grid uncertainties in the convective tendencies produced

by the stochastic convection scheme, as a smaller grid area will encompass a more limited sam-

pling of the possible spectrum of different convective plumes, and so tend to venture further from

statistical equilibrium.

Generic parameterisation uncertainty was quantified by the spread of two stochastic schemes

from the literature aimed at accounting for just that, as well as an analogous constant perturbed

parameter ensemble, and a combined deterministic ensemble directly sampling the structural un-

certainties between three different convection parameterisation formulations. All of these mea-

sures of parameterisation uncertainty were found to be broadly in good agreement, although it

would seem surprising if the uncertainties could be fully sampled by just three closely related

deterministic model configurations.

The comparison suggested that sub-grid uncertainty as measured by the Plant & Craig (2008)

scheme will dominate the modelling uncertainties sampled by the aforementioned methods at

horizontal scales of 50 km or less, but become an increasingly unimportant contribution to model

uncertainty at scales larger than 100 km. This would suggest that it is important to use stochastic

schemes consistent with physical sources of sub-grid variability / uncertainty in state-of-the-art

weather forecast models, which typically have grid-sizes smaller than 50 km, but that methods

aimed at sampling generic parameterisation uncertainties should be a higher priority for climate

simulations, which usually have grid-sizes of around 100 km or more.

This conclusion comes with the caveat that both sub-grid uncertainty and parameterisation

uncertainty maybe underestimated in this study. In the case of parameterisation uncertainty, a

larger number of current deterministic model formulations need to be compared to get a more

representative measure of the structural uncertainties. In the case of sub-grid uncertainty, it is

not clear that the effects of mesoscale organisation of convection are accounted for in the Plant

& Craig (2008) stochastic scheme. At smaller grid-sizes, such systems become increasingly

resolvable by the model dynamics, making this less of an issue. But at climate GCM grid-sizes,

organised convective systems represent the most energetic mode of sub-grid variability.
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5.4 WHAT ARE THE KEY MECHANISMS INVOLVED IN THE

GLOBAL ATMOSPHERE’S SENSITIVITY?

In the SCM experiments, the primary response to stochastically forced increases in the variabil-

ity of parameterised processes appeared to constitute a more-or-less linear scaling-up of the fast,

“on-off” variability of the convection scheme. It was shown that this convective variability is the

leading mode at short timescales, and also the main source (among sub-grid or non-dynamical

processes) of non-linear sensitivity to perturbations. Whilst the changes in ensemble variabil-

ity seen when stochastic schemes were introduced acted through the strong non-linearities in the

“on-off” convective triggering, their dominant effect was more akin to a linear stochastic forcing

response (the Type 0 response illustrated in a toy-model in section 1.6 of chapter 1). The various

stochastic parameterisations were found to directly force an increase in the amplitude of the con-

vective variability, but did not yield major qualitative changes in its behaviour, or in the slower

modes of variability. Only subtle, state-dependent changes in ensemble mean thermodynamic

profiles occurred when stochastic parameterisations were introduced, and these were far smaller

than the mean-state differences between different deterministic convection scheme formulations.

Results in the aqua-planet framework showed that the dynamical response to simple stochastic

schemes designed to generically sample modelling uncertainties was similarly linear, with no

significant changes in the atmosphere’s mean-state or internal modes of variability. Further, the

variability in the temperature and moisture profiles generated by convective variability appears to

be suppressed by a dynamical stabilisation response, at least on timescales greater than 6 hours.

Whilst parameterised convection is known to have unrealistic variability (the “on-off noise”

driving the stochastic response in this study is considered by many to be numerical artefact),

its’ strongly non-linear sensitivities are presumably in some ways representative of those in the

real world. For example, convection-resolving weather forecasts diverge very rapidly relative to

the observed locations and intensities of thunderstorms. Therefore, the increased variability of

parameterised convection in response to stochastic perturbations should be in some way useful

for quantifying the instantaneous uncertainty in convective tendencies.

These results support the use of generic stochastic forcings to represent uncertainties in pa-
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rameterised processes in ensemble forecasts; if appropriately tuned, the forcings can yield ap-

propriately increased ranges of parameterised tendencies in an ensemble, whilst having minimal

effect on the finely tuned mean-state and modes of variability of the host model.

However, comparison of different deterministic convection parameterisations in the SCM

showed that structural uncertainties in the convection scheme can yield large uncertainties in

the shape of the profile of heating variability. If this is important in the fidelity of atmospheric

simulations (and studies investigating the importance of gravity wave excitation by convective

heating suggest it might be), then the profile of heating variability needs to be tuned in climate

simulations, or its’ internal uncertainties well-sampled in ensembles. However, the stochastic

parameterisations investigated in this study on the whole didn’t seem to change the shape of the

heating profile; they simply increased its amplitude, so they may not be effective at tuning or sam-

pling its shape. To more fully represent modelling uncertainties, it may be necessary to develop

stochastic parameterisations which sample uncertainties in the convective plume model formula-

tion, rather than being restricted to perturbing certain control parameters or the overall amplitude

of the convective response.

It was also notable in this study that the stochastic parameterisations which attempted to di-

rectly force prescribed timescales on the “on-off” convective variability (the Random Parameters

and Multiplicative Noise schemes) failed in this endeavour; they simply acted to boost the existing

convective noise without affecting its internal timescales. It therefore seems likely that efforts to

improve the realism of the timescales of variability of penetrative mass-flux convection schemes,

through direct stochastic forcing of their outputs or closure parameters, will have limited success.

This study found that, consistent with studies using prognostic closures on the convection

parameterisation, altering the convective closure to time-smooth its response is far more effective

at imposing longer timescales on the convective variability. However, the time-smoothing scheme

studied in the SCM in this study also caused a large drift in the atmospheric mean-state. This was

not a response specifically to the increased timescales of convection; time-smoothing the response

to convective instability partially delays the response, resulting in a more unstable atmospheric

state and more vigorous convection. In the SCM, further changes then resulted from radiative

feedbacks to the associated drying of the moisture profile.
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Whilst the mean-states of thermodynamic profiles and winds were not found to have major

sensitivity to an increase in convective variability in this study, the cloud variables were found

to be quite sensitive to the introduction of stochastic parameterisations, or other schemes which

increase the range of thermodynamic states explored by the parameterised processes.

Firstly, as discussed earlier, in both the SCM and the aqua-planet frameworks, all of the

stochastic schemes investigated yielded a general increase in layer cloud condensate, independent

of any changes in mean humidity. The mechanism for this is straightforward; a symmetric in-

crease in the range of humidities explored by the system usually gives an asymmetric (positive)

response in mean cloud condensate, because greater positive humidity excursions yield equiva-

lently greater condensation, whereas greater negative excursions can make no difference beyond

evaporating all of the condensate. In the aqua-planet, and in some of the SCM runs, the increased

mean layer cloud condensate also resulted in an increase in the amount of precipitation produced

by the layer-cloud microphysics scheme.

In the design of model cloud schemes, much attention has been given to accounting for the

effects of sub-grid inhomogeneity, which yield increases in cloud relative to a homogeneous mois-

ture field, essentially via the same mechanism as that described above. Sub-grid fluctuations can

cause cloud to form in some parts of a model grid area even when the grid-mean humidity is

well below saturation. Failure to account for this sub-grid variability results in unrealistically low

cloud amounts and inflated humidities. The results of this study show that the same will be true

to some extent in models which have unrealistically low humidity variability at and above the

grid-scale. In practice, the cloud schemes in models are often tuned so as to yield realistic cloud

amounts and humidities overall, but the results of this study suggest that this will yield inappro-

priately large sub-grid cloud contributions if the grid-scale humidity variability in the host model

is too small. Where stochastic parameterisations are implemented in forecast or climate models,

the cloud scheme may need to be retuned, just as it would under a change in model resolution.

The increase in the range of thermodynamic states associated with increased variability of pa-

rameterised processes was also found to give a systematic response in the activity of the boundary

layer and convection schemes in the lower troposphere. In the SCM, all the stochastic schemes

gave systematic increases in the moisture fluxes from the boundary layer parameterisation, driven

by increases in its activity near the boundary layer top. This effect was largely off-set in a time-
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averaged sense by a highly state-dependent response from the convection scheme, which gave

decreased moisture fluxes in the boundary layer at times.

Whilst the sum of these two effects gave very little net change in the time-averaged moisture

budget of the lower troposphere, the changes in the activity of the convection scheme yielded

large changes in convective cloud amounts. In the UM, the radiative effects of convective cloud

are parameterised independently of the grid-scale cloud variables, as cloud within convective

updrafts and spreading anvil formations largely evaporates or is rained-out once the convective

moisture tendencies are fed-back to the grid-scale variables seen by the radiation scheme. The

shallow convection scheme tends to parameterise substantially larger cloud amounts than are

generated by the boundary layer / large-scale cloud schemes (this was evident in the aqua-planet

simulations). Therefore, changes in the relative activity of these schemes in the lower troposphere

gave substantial changes in cloud.

It is unclear whether the boundary layer and convection scheme responses have any physical

mechanism underlying them. It might be purely a model issue related to the somewhat arbitrary

partitioning of buoyancy-driven fluxes in to “boundary layer” overturning, “shallow convection”

and “deep convection”. Further work is needed to investigate the mechanisms for these flux

changes.

Whilst the mechanism for the convective cloud response to stochastic forcings is unclear, these

results strongly suggest that the changes in cloud will themselves form a mechanism for signifi-

cant sensitivities of the mean-states of coupled climate simulations to high-frequency variability,

as they yield substantial radiative forcings on the surface.

5.5 FUTURE WORK

Whilst the results presented in this thesis have allowed some conclusions to be drawn, there are

also some areas where further analysis or improvements to the methodology are needed in order

to make more definitive statements regarding the questions posed. Suggested avenues for further

work within the present methodological framework (comparisons of stochastic and deterministic

model configurations in SCM and aqua-planet simulations) are given in subsection 5.5.1. Whilst
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it is unlikely that the author will have the opportunity to carry out these improvements to the

methodology, they are described here for the benefit of anyone conducting related experiments in

the future. There are also some areas which could be better addressed using alternative methods.

These are proposed in subsection 5.5.2. Finally, the results of this study have led the author

to suggest some potential avenues for improving GCM parameterisation schemes, described in

subsection 5.5.3.

5.5.1 EXTENSION OF THE PRESENT METHODOLOGY

Firstly, the Single-Column Model experiments revealed some parameterised responses to changes

in high-frequency variability for which the underlying mechanisms were not apparent. Further

work to identify these mechanisms would be useful.

In particular, the increase in moisture fluxes at 950 hPa from the boundary layer parameteri-

sation was identified as a consistent response to increasing the range of available states, and as a

key driver of changes in the lower troposphere moisture profiles and surface fluxes, but it’s cause

is unclear. The SCM ensemble simulations could be repeated with further diagnostics output

from the boundary layer parameterisation to investigate this further. The mechanism behind the

highly state-dependent changes in mean convective activity were also unclear, and again further

diagnostics from the convection scheme could be output to investigate this. The relationship be-

tween these two responses is also worth investigating; it might be that the boundary layer scheme

changes are driving the convective changes. This could be investigated by performing SCM en-

semble runs in which the convection scheme is disable and replaced by prescribed tendencies from

the default UM run, and others in which the same is done to the boundary layer scheme instead,

and investigating whether the boundary layer and convection responses to stochastic schemes still

occur in each of these configurations. Repeating the deterministic and stochastic ensemble runs

with alternative boundary layer scheme formulations would also be useful, to identify whether

the responses are specific to the UM boundary layer scheme.

Another unexplained stochastic response in the SCM experiments was the increased rainfall

and more stable thermodynamic profile when stochastic convective fluctuations were introduced

in the Plant & Craig (2008) scheme. This could be explored by repeating the Plant & Craig
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scheme runs with more diagnostics relating to the convection scheme. For example, the effects

of reducing the prescribed grid-size (which controls the magnitude of fluctuations in the scheme)

on the population of convective plumes simulated, the spectral CAPE closure and the convective

triggering might give some clues.

It would also be good to clear up the moisture budget ambiguities in the implementation

of the stochastic multiplicative perturbation scheme (based on Buizza et al. 1999) used in this

study; simply perturbing the condensate, precipitation and surface moisture fluxes consistently

with the specific humidity during the run would address this. More reliable difference plots for

precipitation and surface fluxes relative to the Default UM could then be studied.

Whilst the crash of the aqua-planet simulation with the Random Parameters (RP) stochastic

scheme based on Bowler et al (2008) was frustrating, it was also potentially an interesting result

in itself, if it was actually forced by the stochastic scheme rather than being a chance occurrence

in those runs. The crash was caused by the appearance of an unrealistically intense polar cyclone

which fed off the unphysically warm prescribed sea-surface temperatures over the poles, but more

data is needed to identify why exactly this cyclone appeared in the RP runs and not the other runs.

No significant changes in the mean-state of the RP simulation were apparent from the available

data, but very little data was output from upper levels. The available data suggested a cooling over

the pole at upper levels just as the cyclone became established. Runs could be repeated with more

data from the stratosphere, to investigate the hypothesis that the cyclone was able to intensify due

to upper-level cooling, induced by a response of stratospheric dynamics to the RP scheme.

A single, long integration was performed for each aqua-planet configuration, as other studies

suggested that slow modes of tropical rainfall variability might be sensitive to stochastic forcing.

Whilst some interesting low-frequency modes were present, they displayed no detectable sensitiv-

ity to the stochastic schemes investigated. Instead, responses from parameterised processes were

found. These did not require such long runs to spin-up, and the long time-series of 6-hourly mean

data, with few physical diagnostics, were not ideal for investigating them. And the differences

between the parameterisations and model-states between the SCM and aqua-planet frameworks

prevented more direct comparisons of the parameterisation responses in the two. A shorter length

of run in an ensemble framework would better suit such comparisons (in particular, using ensem-

bles of runs would allow more statistically robust comparisons of different model configurations).
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But it would nonetheless be beneficial to sample the full range of model states explored by the

aqua-planet’s long timescale modes.

An appropriate method might be to perform a long control integration, say 20 years in length,

and then use 6-monthly model dumps from that run to initialise 40-member ensembles for the

stochastic schemes, each 1 month in length. The 40 1-month-long segments of the control run

following each dump could be analysed as an ensemble for comparison. The 6-month spacing of

the dumps would make the ensemble members reasonably independent of one-another (adjacent

segments would be more correlated, undermining the use of simple statistical methods). In each

ensemble member, detailed diagnostics could be output at a few representative grid-points (tropi-

cal, sub-tropical, mid-latitude and polar locations). These could then be analysed using the same

methods as in the Single-Column Model. Further, the dynamical tendencies from the aqua-planet

at those points could be output and used to force additional Single-Column Model runs, which

could be compared directly to the aqua-planet ensemble data to better quantify the dynamical and

parameterised responses to stochastic forcings.

Much attention has been given by operational forecasting centres to the development of

stochastic backscatter schemes, which directly perturb the model winds and aim to excite high-

frequency dynamical modes, consistent with upscale transfer of energy from unresolved modes.

Studies have found that such schemes can influence model climatologies and improve the proba-

bilistic skill of ensemble forecasts. Backscatter schemes could not meaningfully be investigated

in the Single-Column Model, which prescribes the dynamics, but it would be interesting to inves-

tigate the mechanisms for the noise-induced effects of a backscatter scheme in the aqua-planet

framework.

Results from the Single-Column Model using the stochastic convection scheme of Plant &

Craig (2008) suggested that the sub-grid convective fluctuations it simulates could play a key role

in high frequency variability at resolutions consistent with weather forecast models. The aqua-

planet used in this study has a much larger grid-size, at which that scheme would likely have little

effect. It would be interesting to investigate the role of sub-grid convective fluctuations in the

climate of a higher resolution aqua-planet, with a horizontal resolution of say N240, consistent

with a weather forecast model.
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5.5.2 OTHER SUGGESTED EXPERIMENTS

In the Single-Column Model (SCM), different deterministic convective formulations were found

to give very differently-shaped profiles of variability in convective heating, implying large param-

eterisation uncertainties, which were not adequately sampled by the stochastic parameterisations

tested. However, it seems likely that constraints on the profile of convective heating variabil-

ity could be derived from Cloud-Resolving Models (CRMs). The observation-derived forcings

and initial condition perturbations used to drive the SCM ensembles (see chapter 2) could be

applied to an ensemble of CRM integrations covering a domain consistent with a climate-model

grid-box, say 100km square. The domain-mean heating rates could then be computed for each

ensemble member to obtain an ensemble of “grid-mean” sub-grid tendencies, from which the

profiles of ensemble spread and decorrelation timescale could be computed equivalently to the

SCM data. By comparing the SCM ensemble profiles of heating variability for various different

parameterisation formulations to the profiles from the CRM, it should be possible to determine

which convection parameterisations give the most realistic profiles, and which are clearly unre-

alistic. Whilst comparison of parameterisations to coarse-grained data from CRMs is already a

widely used methodology, most studies focus on the ensemble means of thermodynamic profiles

or sub-grid tendencies. The author believes such methods would be well-suited to investigating

high-frequency variability.

Also, the SCM comparison of sub-grid uncertainties (as quantified by the Plant & Craig 2008

stochastic convection scheme) to model uncertainties could be validated by using the ensemble

variability of the domain-mean CRM data as another, perhaps more robust, measure of sub-grid

uncertainties. In that comparison, model uncertainties also need to be better quantified. This could

be achieved by expanding the combined deterministic SCM ensemble described in chapter 3 to

include a larger, more representative range of different parameterisation formulations. The spread

of such an ensemble could be compared to the spread of the ensemble of CRM domain-mean

data, to make more definitive statements about the relative magnitudes of sub-grid uncertainties

and generic parameterisation uncertainties.
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5.5.3 SUGGESTED MODEL DEVELOPMENTS

It was noted in section 5.2 that unphysical non-linear sensitivities may arise in models from the

arbitrary partitioning of buoyancy-driven fluxes between the boundary layer, shallow convection

and deep convection parameterisations, and that this issue could be addressed through a more

unified treatment of buoyant plumes. One way to achieve this might be through an extension of

the stochastic spectral convection parameterisation paradigm on which the Plant & Craig (2008)

scheme is based. That scheme already replaces the separate shallow and deep convection schemes

with a spectrum of plume sizes which bridges the shallow and deep modes consistently. Why not

also replace the non-local buoyancy-driven component of the boundary layer parameterisation

with a unified scheme simulating the full spectrum of sub-grid buoyancy-driven mass-fluxes,

from boundary-layer thermals to thunderstorms? The Plant & Craig (2008) scheme aborts plumes

which terminate without producing cloud; this check could be turned off to include the smaller

plumes internal to the boundary layer.

Whilst the Plant & Craig (2008) scheme automatically computes appropriate entrainment

rates for the different plume sizes, it applies a single spectral dilute CAPE-based closure to the

overall mass-flux, which may not be as appropriate for the smallest plume sizes; shallow convec-

tion schemes are often closed on a measure of surface buoyancy flux rather than CAPE. To bridge

these two types of closure consistently, a buoyancy-flux term could be added to the plume work

function for all the plumes used in the spectral closure to calculate total mass-flux; the plume

work function would still dominate where deep plumes release significant CAPE, but where this

does not occur the surface buoyancy flux term would dominate, yielding shallow convective be-

haviour. Crucially, the intermediate spectrum of “cumulus congestus” type plumes would then be

handled consistently.

The distribution of plume mass-fluxes used in the Plant & Craig (2008) scheme is based on a

radiative-convective equilibrium in which a full spectrum of plume sizes has become established.

This equilibrium assumption (not to be confused with the statistical equilibrium assumption!)

could be relaxed by modifying the distribution of plume mass-fluxes in the scheme to account

for non-equilibrium behaviour. A simple modification would be to impose an evolving maximum

bound on the allowed size of individual plumes, consistent with a horizontal scale equal to the
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depth of the boundary layer, or the maximum height reached by other recent plumes if this is

greater. This would incorporate the observed tendency of convective plumes not to have a much

greater horizontal scale than the depth of over-turning (with the exception of organised convective

systems, but these only occur under specific conditions). Crucially, this would only allow the

parameterised convection to access the small entrainment rates consistent with well-established

deep cumulonimbus once it has managed to penetrate to such depths via smaller congestus-type

plumes with higher entrainment rates, as observed. This should improve the realism of the diurnal

cycle of parameterised convection, which is known to trigger deep plumes too early in the cycle.

A further point of potential unphysical non-linearity highlighted in this work is the very dif-

ferent cloud amounts seen by the radiation scheme, depending on whether the cloud is actually

handled by the UM cloud scheme or represented diagnostically as an output from the convection

scheme. Scinocca & McFarlane (2004) showed that alterations to the convective closure can dras-

tically alter the partitioning of cloud and rainfall-production between the equivalent two schemes

in a different model, and in this study stochastic perturbations applied to an aqua-planet yielded

large changes in sub-tropical boundary-layer cloud due to a change in the partitioning of fluxes

between the convection and boundary-layer schemes. This suggests a more unified framework

for representing clouds in models would be beneficial.

At present, the condensate within convective plumes is accounted for diagnostically, and then

all either rained-out or evaporated on detrainment. If the detrained moisture gives sufficient moist-

ening of the grid-mean state, it is then handled by the large-scale cloud scheme, potentially re-

sulting in “double counting” of its’ radiative effects. An alternative might be to handle only the

rained-out convective cloud condensate diagnostically, whilst all the remaining moisture from

convective plumes is handled by a unified cloud scheme, at the level where it is detrained. The

scheme would need to account for the increased sub-grid inhomogeneity in the moisture field as-

sociated with buoyancy-driven plumes, or it would likely underestimate the cloud amounts. This

could be done by tuning the cloud scheme interactively to produce appropriate cloud amounts

where buoyancy-driven moisture fluxes occur, but relaxing it back towards lower sub-grid inho-

mogeneities where they do not. Crucially, such a scheme could give a more consistent treatment

of boundary-layer top cloud (in which very little convective rain-out occurs) as all the cloud would

be handled within the same framework and experience the same microphysics.
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APPENDIX A:

DETAIL OF THE PARAMETERISATION

SCHEMES USED IN THE MET OFFICE

UNIFIED MODEL

This appendix describes in some detail the parameterisations of sub-grid and non-dynamical pro-

cesses applied in the UM, with appropriate references given. This material is included here,

particularly for reference regarding the Random Parameters stochastic model uncertainty scheme

(Arribas 2004, Bowler et al. 2008) tested in the SCM and the Aqua-Planet in this study, which per-

turbs parameters in the UM parameterisations. The UM includes parameterisations for boundary-

layer turbulent mixing and surface fluxes, sub-grid convection, cloud (accounting for sub-grid

moisture inhomogeneity), cloud microphysics / precipitation, and radiative transfer. Each of these

schemes is described in the sections below. The UM also includes a parameterisation for oro-

graphically generated gravity waves, but this is not applied in the experiments conducted in this

thesis (neither the SCM or the Aqua-Planet contain any orography), so it is not described here.

A.1 BOUNDARY LAYER

A Richardson number based scheme is applied for local mixing (Smith 1990). The vertical tur-

bulent flux of each model variable is assumed to be proportional to its vertical gradient, the mag-

nitude of the wind-sheer, an empirical stability function dependent purely on the Richardson

number, and an estimate of the neutral mixing length at each model level.

There is also a non-local component which applies for unstable boundary layer conditions,

to parameterise the effects of buoyant motions driven by heating at the surface or cooling at
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the boundary layer cloud-top. This is described by Lock et al. 2000. It applies turbulent mix-

ing profiles covering multiple model-levels, consistent with the expected influence of surface or

cloud-top buoyancy sources.

A.2 CONVECTION

The convection parameterisation used is based on the penetrative mass-flux bulk plume model of

Gregory & Rowntree (1990), but with a different and more complex closure and interface to the

host model (briefly described in Martin et al. 2006).

The scheme first employs a test parcel ascent calculation and an analysis of the stability of

the boundary layer temperature and moisture profiles to estimate whether convection capable of

penetrating the boundary layer top is possible. If so, it then assesses whether the convection will

likely be “deep” or “shallow” (based on the height reached by the test parcel and a check for

large-scale subsidence at the boundary layer top) and calls either a deep or shallow version of

the Gregory & Rowntree (1990) plume model accordingly. Each version then applies a trigger

function, only actually producing any convection if the profile contains a parcel which, if given a

small buoyancy excess (which is calculated as a function of the environment buoyancy gradient),

remains buoyant if lifted by one model level. If this condition is met, a bulk entraining-detraining

plume calculation is performed to estimate convective cloud condensate, precipitation and the

effect of plumes on their environment.

The deep convection scheme represents the cumulonimbus clouds which generate most of

the convective heating and rainfall. It employs the CAPE closure method of Fritsch & Chappell

(1980). The convective mass-flux is scaled such that the convection will remove the dilute CAPE

calculated over the plume ascent at a specified rate, which is set by a timescale τCAPE .

The shallow convection scheme represents the effects of the small but widespread “fair

weather” or “trade wind” cumulus clouds, which produce little rain or heating but play a vital role

in moistening the lower free troposphere. It uses a closure based on a boundary layer turbulent

kinetic energy budget, relating cloud-base mass flux to a turbulence vertical velocity scale which

is a function of the surface buoyancy flux (Grant 2001). It also employs different entrainment and
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detrainment calculations (those of Grant & Brown 1999).

Additionally, there is a third “mid-level” version of the scheme, which is designed to represent

convection that originates outside the boundary layer. It therefore calls at all points independently

of the boundary layer tests applied for the deep and shallow schemes. It is subject to a more

stringent trigger function, with a smaller parcel buoyancy excess constrained to be less than 0.2K.

It uses the same CAPE closure method as the deep scheme.

All three schemes incorporate the convective downdraft scheme of Gregory & Allen (1991).

The convective momentum transport scheme of Gregory et al. (1997) is also included, although

this will have little effect in the SCM as winds are strongly relaxed towards observed profiles.

A.3 LARGE-SCALE CLOUD

The cloud scheme of Smith (1990) is used. Cloud fraction and condensed water content are calcu-

lated as diagnostic functions of the total water content, temperature and pressure. The scheme ac-

counts for sub-grid inhomogeneity by assuming a symmetric triangular distribution for the differ-

ence between specific total water content and the saturation specific water vapour content within

each grid-box. This has the effect of starting to form clouds when the grid-point value of rela-

tive humidity (RH) passes some critical value RHcrit somewhat below 100%. Cloud fraction and

condensed water content then increase smoothly with relative humidity above this threshold. The

scheme can be tuned via the free parameter RHcrit .

Note that the scheme of Cusack et al. 1999b used in HadGEM1, which calculates RHcrit from

the variability between neighbouring grid-points based on a scaling relationship, is not used in

this study. Clearly it cannot be formulated in an SCM. Instead, unless otherwise stated RHcrit

is prescribed at a value of 80% at all levels except within the boundary layer, where it increases

towards the surface to reach 95% at the lowest model level.
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A.4 MICROPHYSICS

The scheme used is essentially the mixed-phase cloud and precipitation scheme of Wilson & Bal-

lard (1999). There are four water species; vapour, cloud-water, ice and rain. Conversions between

these phases are simulated by physical process equations, which depend upon parameterisations

for the size distributions and fall-speeds of condensate species.

Rain is assumed to fall to the surface during the time-step in which it forms, whilst the other

three species are prognostic variables in the model. The single variable for ice represents the sum

of ice cloud particles, snow, hail etc. with an assumed continuous size distribution which has a

longer tail towards large particle sizes as the total ice content increases. Ice is always assumed

to fall at a parameterised speed, which is a function of the particle size. Combining this with the

assumed distribution of ice particle sizes yields a bulk ice fall-rate which increases with specific

ice content. Liquid water can only fall by conversion to rain. In the absence of ice formation, this

can only occur if the liquid water content exceeds an auto-conversion threshold, beyond which a

“warm rain” parameterisation takes effect.

A.5 RADIATION

The fully interactive 2-stream radiative transfer scheme of Edwards & Slingo (1996) is used, with

gaseous absorption parameterised according to Cusack et al. (1999a). The radiative effect of

clouds is represented by the condensate variables and cloud fraction produced by the large-scale

cloud and microphysics schemes, along with assumptions about condensate particle sizes and

overlap of partial cloud at different levels.

However, cloud condensate in the convection parameterisation is not passed to the model’s

condensate variables but is all either rained out or evaporated. To represent the radiative effect

of convective cloud, the convection scheme produces diagnostics for the total cloud condensate

in the bulk plume, the convective cloud fraction, and height of the cloud base and top, which are

used to construct profiles of convective cloud properties for the radiation scheme. The spread-out

“anvil clouds” seen at the tops of deep convective plumes are represented according to Gregory
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(1999) by applying a larger cloud fraction on model-levels near the cloud top.
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APPENDIX B:

STATISTICAL METHODS USED TO

TEST THE SIGNIFICANCE OF

DIFFERENCES BETWEEN

AQUA-PLANET SIMULATIONS

This appendix describes the statistical methods used to ascertain which differences between the

aqua-planet simulations described in chapter 3 were likely to have resulted from systematic effects

of the stochastic parameterisations, and which were not significant enough for such a claim to be

justifiable. Section B.1 describes the statistical test used to assess differences in the mean-states

of the simulations, whilst section B.2 describes the test used to assess differences in variance.

Section B.3 details the method used to estimate effective sample sizes for use in these statistical

tests, to adequately account for autocorrelation in the data.

B.1 TEST FOR DIFFERENCES IN MEAN-STATES

The Welch T-test (Welch 1947) is used to test whether each stochastic aqua-planet simulation’s

mean-state differs significantly from that of the control run. In this method, the test statistic for

two samples x1 and x2 is given by:

T =
x2− x1√

s2
1

n1
+ s2

2
n2

(B.1)

where s2
1 and s2

2 are the unbiased estimators of the sample variances. In the case of the null
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hypothesis where the samples (model runs) are drawn from populations (hypothetical infinitely

long model runs) with equal means, T follows a Student’s T distribution with degrees of freedom

given by:

d.o. f . =
( s2

1
n1

+ s2
2

n2
)2

( s2
1

n1
)2/(n1−1)+( s2

2
n2

)2/(n2−1)
(B.2)

If T exceeds the cumulative T-distribution score (with the above degrees of freedom) for a

specified probability threshold, the test may reject the null hypothesis and conclude a significant

difference between the mean-states of the model runs. To account for autocorrelation in the

data, reduced effective sample sizes are substituted for n1 and n2 in equations B.1 and B.2 when

performing the T-test.

B.2 TEST FOR DIFFERENCES IN VARIANCE

Levene’s test (Levene 1960) is used to test whether the variances of the stochastic simulations

differ significantly from those in the control run. This test uses the absolute deviates of variables

from their sample means to test for differences in variance across any number of samples being

compared. For the case of a comparison between two samples, the test statistic is:

W = (n1 +n2−2)
n1(Z1−Z)2 +n2(Z2−Z)2

∑
n1
j=1(Z1, j −Z1)2 +∑

n2
j=1(Z2, j −Z2)2

(B.3)

where n1 and n2 are the samples sizes, Z1 and Z2 are the absolute deviates |x−x| of the sample

variables x from their means, and Z is the combined mean of Z1 and Z2. In the case of the null

hypothesis where the samples are drawn from populations with equal variance, W follows an

f-distribution with degrees of freedom 1 and n1 + n2 − 2. Thus if W exceeds the cumulative f-

distribution score for a specified probability threshold, the test may reject the null hypothesis and

conclude a significant difference in variance between the two model runs. To incorporate reduced

effective sample sizes as described in chapter 4, equation B.3 can be re-written:
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W = (n1 +n2−2)
1
n2

(Z1−Z)2 + 1
n1

(Z2−Z)2

1
n2

(Z1−Z1)2 + 1
n1

(Z2−Z2)2
(B.4)

To properly account for autocorrelation when establishing the significance of a difference in

variance, the effective sample sizes need to be substituted for n1 and n2 in equation B.4 and in the

degrees of freedom used in the f-distribution test score.

B.3 ESTIMATION OF EFFECTIVE SAMPLE SIZE

It was shown in chapter 4 that a commonly used method to estimate the effective sample size

of autocorrelated data, using only the lag-1 autocorrelation coefficient, would yield misleading

results in this study. This is because the aqua-planet data exhibits complex autocorrelation on a

range of scales and so cannot be modelled as a first-order autoregressive process, as that method

assumes. Instead, effective sample sizes are estimated based on the sampling distributions of

the statistics concerned (mean and variance), as quantified by repeatedly sub-sampling the data.

The method used to estimate the effective sample size for comparing variances is described in

subsection B.3.1, and that for comparing means in B.3.2

B.3.1 EFFECTIVE SAMPLE SIZE FOR THE SAMPLE VARIANCE

For data which is approximately normal, mean-squared-differences of the data from their mean

follow a χ2 distribution. This can be written in terms of the variance of a sample as

ns
σ′2

s

σ2
p
∼ χ

2
ns−1 (B.5)

where ns is the effective size of sub-samples, σ2
p is the population variance, and σ′2

s is the

sample variance. Here and elsewhere in this section, the superscript ′ denotes the sample variance

normalised by ns (not ns−1 as in the un-biased estimator of variance). An un-biased estimate of

σ2
p is related to the variance of the whole available data-set, σ′2

d , by s2
d = σ′2

dndσ/(ndσ−1), where

ndσ is the effective sample size of the whole data-set (with respect to variance), which is not
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known a priori. If sub-samples are selected by evenly dividing up the entire data-set, we expect

the overall sample-size to be the number of sub-samples ms times the size of each sub-sample

(ndσ = msns). Substituting the above in (B.5), we obtain

(msns−1)
ms

σ′2
s

σ′2
d
∼ χ

2
ns−1 (B.6)

The χ2 distribution with ns − 1 degrees of freedom has mean ns − 1 and variance 2(ns − 1).

Thus expressions for the mean µ
σ′2s

and variance σ2
σ′2s

of the sampling distribution of sub-sample

variances can be obtained:

µ
σ′2s

= (ns−1)
ms

msns−1
σ
′2
d (B.7)

ms

ms−1
σ
′2
σ′2s

= 2(ns−1)
(

ms

msns−1

)2

σ
′4
d (B.8)

Note that on the left-hand side of B.8, the theoretical variance of sub-sample variances has

been replaced by an un-biased estimator based on the variance of the finite sample of ms sub-

samples. Taking (B.8), dividing by (B.7) and rearranging, a simple expression for the effective

sample size of the data-set, ndσ = msns, can be obtained:

ndσ = 1+2(ms−1)
σ′2

dµ
σ′2s

σ′2
σ′2s

(B.9)

This equation estimates ndσ based on the width of the sampling distribution of sub-sample

variances relative to the population variance and the mean of the sub-sample variances. The

less spread the sub-sample variances are, the more comprehensive the sampling within each sub-

sample, and the greater the implied degrees of freedom.

However, even when taking sub-samples of a substantial size, some autocorrelation between

the variances of adjacent samples may occur, and will need to be accounted for if present (be

it far smaller than the autocorrelation between adjacent points in the original data). Otherwise,

assuming the sub-samples to be independent will lead to an over-estimate of the effective sample
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size. If the sub-samples each cover an appropriately long period of time, many of the dynamical

modes which lead to complex non-first-order autocorrelations in the data will be averaged out and

accounted for by the sub-sampling method, and the remaining inter-sub-sample variability should

be closer to a first-order autoregression model than the original data. Therefore, for the statistical

tests used in this study, it was deemed appropriate to use the Dawdy & Matalas (1964) method to

estimate the effective size of the sample of sub-samples, to account for timescales of variability

in the data which are longer than the sub-sample size. To do this, ms in equation B.9 is calculated

as:

ms =
1− r

σ′2s

1+ r
σ′2s

msub (B.10)

where r
σ′2s

is the autocorrelation of adjacent sub-sample variances, and msub is the actual

number of sub-samples.

B.3.2 EFFECTIVE SAMPLE SIZE FOR THE SAMPLE MEAN

According to the Central Limit Theorem, the mean µs of a sample s drawn from a population with

mean µp and variance σ2
p follows a sampling distribution which rapidly tends towards normal with

increasing sample size ns, with mean µp and variance σ2
µs

given by

σ
2
µs

= σ
2
p/ns (B.11)

Thus, if sub-samples are drawn from the available data and means computed for each, the vari-

ance σ2
µs

of the means can be used to estimate the effective size ns of each sub-sample. Note that ns

here is the effective sub-sample size with respect to the mean, and so may differ from that in ear-

lier equations which were with respect to the variance. For unbiased results, unbiased estimators

should be used for both σ2
µs

and σ2
p. These are s2

µs
= σ′2

µs
ms/(ms −1) and s2

d = σ′2
dndσ/(ndσ −1)

respectively, where ms is the number of sub-samples, ndσ is the effective sample size of the data-

set with respect to variance, calculated using equation B.9, σ′2
µs

is the variance of the finite sample

of sample-means, and σ′2
d is the variance of the whole available data-set. As before, the ′ denotes
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variances normalised by sample size rather than degrees of freedom. Substituting the above in

equation B.11, we obtain:

σ
′2
µs

ms

ms−1
= σ

′2
d/ns

ndσ

ndσ−1
(B.12)

which can be trivially rearranged to yield an expression for the effective sample size of the

whole data-set with respect to sample means, ndµ = msns:

ndµ = (ms−1)
σ′2

d

σ′2
µs

ndσ

ndσ−1
(B.13)

This equation estimates ndµ based on the width of the sampling distribution of sub-sample

means; the less spread the sub-sample means are, the greater the implied degrees of freedom

within each sub-sample.

As with the effective sample size with respect to variance, autocorrelation between the means

of adjacent sub-samples can then be accounted for using the Dawdy & Matalas (1964) method to

estimate the effective number of samples ms to use in (B.13):

ms =
1− rµ′2s
1+ rµ′2s

msub (B.14)

where rµ′2s
is the autocorrelation of adjacent sub-sample means, and msub is the actual number

of sub-samples.
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