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Abstract Aspects of open ocean deep convection vari-
ability are explored with a two-box model. In order to
place the model in a region of parameter space relevant
to the real ocean, it is fitted to observational data from
the Labrador Sea. A systematic fit to OWS Bravo data
allows us to determine the model parameters and to
locate the position of the Labrador Sea on a stability
diagram. The model suggests that the Labrador Sea is in
a bistable regime where winter convection can be either
“on” or “off ”, with both these possibilities being stable
climate states. When shifting the surface buoyancy
forcing slightly to warmer or fresher conditions, the only
steady solution is one without winter convection.

We then introduce short-term variability by adding a
noise term to the surface temperature forcing, turning
the box model into a stochastic climate model. The
surface forcing anomalies generated in this way induce
jumps between the two model states. These state tran-
sitions occur on the interannual to decadal time scale.
Changing the average surface forcing towards more
buoyant conditions lowers the frequency of convection.
However, convection becomes more frequent with
stronger variability in the surface forcing. As part of the
natural variability, there is a non-negligible probability
for decadal interruptions of convection. The results
highlight the role of surface forcing variability for the
persistence of convection in the ocean.
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1 Introduction

Deep convection in the North Atlantic is a sensitive part
of the world ocean’s thermohaline circulation (THC). Its
intensity, location, and variability influence the north-
ward heat transport of the THC (Rahmstorf 1995a), the
pathway of North Atlantic Deep Water (NADW)
(Wood et al. 1999), and the total meridional overturning
(Delworth et al. 1993; Rahmstorf 1995b) in models.
Observational data from the past decades (Lazier 1980;
Dickson et al. 1988; Belkin et al. 1998) display great
interannual to decadal variability in the occurrence and
depth of deep convection events. The role of deep con-
vection in the THC is the removal of heat from the deep
ocean, thus balancing the downward penetration of heat
due to various diapycnal mixing processes (Munk and
Wunsch 1998).

While freshwater fluxes are important for the back-
ground stratification, convection events are usually
triggered by strong heat loss through the ocean surface,
reducing the vertical density gradient until the water
column becomes statically unstable. Vigorous vertical
mixing down to 2000 m and more results (Send and
Marshall 1995). Convection events have an extent of
only a couple of days in time and some 10 km in space
(Marshall and Schott 1999). As this is subgrid scale in
most ocean general circulation models (OGCMs), con-
vection is parameterized by convective adjustment
schemes (Rahmstorf 1993; Klinger et al. 1996). These
schemes remove static instability in the water column at
each time step by mixing vertically adjacent grid cells.
Although this may lead to a too intense mixing (Lilly
et al. 1999) and grid-scale instabilities may occur (Cessi
1994; Molemaker and Dijkstra 2000), convective ad-
justment has proven to be a satisfactory parameteriza-
tion for many applications.



The most simple conceptual model of deep convection
consists of two boxes, one for the permanently mixed
surface layer and one for the deep ocean (Welander
1982). It includes different boundary conditions for the
surface fluxes of heat and salt, as well as a strongly
nonlinear dependence of vertical mixing between the two
boxes on the vertical density gradient. Under certain
boundary conditions, this leads to a bistable regime of
the water column where convection can be either per-
manently “on” or permanently “off ’, depending on the
initial condition. This is due to a positive salinity feed-
back in the presence of surface freshwater input: once
convection is interrupted (e.g., by a freshwater anomaly),
the surface water will become less and less saline, making
a restart of convection increasingly harder to achieve.
Using Welander’s box model, Lenderink and Haarsma
(1994) showed that large regions of a model North
Atlantic were bistable due to this feedback.

In Part I of this paper (Rahmstorf 2001), Welander’s
model is extended in two ways. First, temperature and
salinity of the deep box are introduced as variables
rather than as prescribed fixed values. Heat and salt can
then accumulate in the deep box during nonconvecting
phases and are released by convective mixing. In this
way, the heat flow from the deep ocean through the
convecting water column to the atmosphere is modeled.
Second, a seasonal cycle is introduced in the boundary
conditions for the upper box. This reduces convection to
a short period in winter, rather than occurring perma-
nently. The model demonstrates why the convection
events are so short: slow processes like advection and
diapycnal mixing replenish the heat store of the deep
layer throughout the year, while a few days’ time is en-
ough to release the accumulated heat to the atmosphere
via the much faster processes of convective mixing and
surface exchange.

Welander’s model has been used by some authors
(Lenderink and Haarsma 1994; Pierce et al. 1995;
Lenderink and Haarsma 1996; Hirschi et al. 1999) to
analyze output from OGCMs. Here, we use the modified
version to analyze observational data from the Labrador
Sea. The data from Ocean Weather Ship (OWS) Bravo
(Lazier 1980) show how convection was switched off and
on again in the course of the Great Salinity Anomaly
(GSA) of the years 1968—-1972 (Dickson et al. 1988). By
fitting the model to the OWS Bravo data we can locate
the Labrador Sea in a stability diagram. The results
suggest that the convecting state is only marginally sta-
ble; anomalies in the surface forcing can trigger state
transitions very easily.

The effect of short-term variability on the ocean
surface layer can be represented by adding a stochastic
term to the surface forcing. The most simple form of
oceanic response to stochastic forcing was analyzed by
Hasselmann (1976). In his stochastic climate model, an
ocean surface layer of fixed thickness acts as a reservoir
and integrates white noise temperature forcing from the
atmosphere, which leads to a red noise variance spec-
trum of sea surface temperature similar to that seen in
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observed time series (Frankignoul and Hasselmann
1977). Hasselmann’s mechanism was found to trigger
decadal variability of the THC in an OGCM (Weisse
et al. 1994), where the water column in the Labrador Sea
integrated noisy freshwater forcing. In other models,
decadal variability is generated by stochastic excitation
of internal ocean modes (Delworth et al. 1993) or by a
local convective oscillator (Pierce et al. 1995; Rahmstorf
1999).

Here, we effectively combine the basic ideas of
Hasselmann’s stochastic climate model and Welander’s
two-box model to a stochastic climate model of deep
convection. Adding stochastic perturbations to the
surface forcing of the extended two-box model (devel-
oped in Part I) mimics the essential role of buoyancy
forcing variability in triggering deep convection
(Marshall and Schott 1999; Sathiyamoorthy and
Moore 2001). The frequency of jumps and the resi-
dence times in both model states (i.e., with and without
winter convection) are studied, together with their de-
pendence on model parameters. The interplay of the
different timescales involved is shown to result in
decadal variability.

The OWS Bravo data are analyzed and interpreted in
the following section. The third section gives a short
summarizing description of the box model and explains
how it was fitted to the OWS Bravo time series. The
stability diagram in the non-stochastic case is discussed
in section 4. The fifth section is devoted to the influence
of stochastic forcing on the model dynamics, and the
paper ends with some conclusions.

2 Observational data

Long time series of hydrographic data that show clear
signs of deep convection events are rare. The data from
Ocean Weather Ship (OWS) Bravo are exceptional due
to their location and their sampling rate. OWS Bravo
was located in the central Labrador Sea close to the area
of the deepest convection events. In the time from
January 1964 through September 1974 the sampling rate
of the data varied between 6 h and 2 months. This
enables the derivation of a time series of monthly means
that clearly reflects the winter open-ocean deep convec-
tion events.

The original data (Lazier 1980) were interpolated to
standard depth levels. Potential temperature (0) and
potential density (gy) were computed with the standard
formulas (Fofonoff and Millard 1984). To obtain
monthly mean values, the data of each month were
binned and averaged at each depth level. Missing
monthly means were interpolated linearly. Subsequently,
the data were averaged for an upper layer (0-50 m) and
a deep layer (200-2000 m). The intermediate level
(50-200 m) was left out because, on the one hand, this
layer still shows substantial seasonal variations, but on
the other hand, it is not part of the surface mixed layer
throughout the year.
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The resulting time series of monthly means are given
in Fig. 1. The winters 1969-1971 show the impact of the
Great Salinity Anomaly (GSA, described by Dickson
et al. 1988) that suppressed deep convection in the
Labrador Sea by the advection of a large freshwater
anomaly. In consequence, temperatures and salinities
followed different trends in both layers: cooling and
freshening in the upper layer leading to less dense
waters, while the deep ocean is becoming slightly warmer
and saltier. The upper layer values show a strong sea-
sonal cycle. When the potential density difference be-
tween the two layers is small, this indicates deep
convection. For a number of reasons, this difference is
not exactly zero: the mixing of the layers occurs only
during a few days, but the data are averaged monthly;
the mixing does not occur necessarily exactly at the ship
site and throughout the whole water column. In some
winters the upper layer overshoots in temperature
(though not very visible in the monthly means): to
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Fig. 1la— Time series of monthly means obtained from the OWS
Bravo data set: potential temperature (a), salinity (b), and potential
density (c¢) of the upper layer (dashed) and the deep layer (dots).
Interpolated values are indicated by circles. The large minimum
density difference in the winters from 1969 to 1971 is an indication for
the absence of deep convection, which led to the cooling and
freshening of the upper layer

compensate for the deep ocean being saltier than the
surface waters, the upper layer must become colder than
the deep ocean before the vertical density gradient van-
ishes and deep convection starts (see Part I, section 4).

In order to consider seasonal and interannual vari-
ability separately, we first computed the mean seasonal
cycle of the time series (Fig. 2). In the upper layer, the
temperature cycle has its minimum in February and its
maximum in September, with an amplitude of 2.2°C.
The salinity cycle lags by about 1 month: the cycle with
an amplitude of 0.13 psu peaks in March and reaches its
minimum in October. The g, cycle lies in between with
an amplitude of 0.29 kg m—3. The deep layer seasonal
cycles (not shown) are almost 2 orders of magnitude
smaller. They show an annual warming of 0.12°C and a
density decrease of 0.015 kg m~3, both of which start in
April after the convection season, and reach their
extremum in November/December. Deep-layer salinity
variations are very small. The temperature cycle is
mostly forced by fluxes of latent and sensible heat in
winter and short-wave radiation in summer (Smith and
Dobson 1984). Freshwater sources of poorly known
strength (Canadian runoff, meltwater, local precipita-
tion, and low-salinity inflow from the Arctic Sea) ac-
count for the salinity cycle (Lilly et al. 1999).

In a second step, we subtracted the seasonal cycle
from each time series in Fig. 1. The resulting time series
(Fig. 3) show the variability excluding the seasonal cy-
cle. Three distinct phases stand out, marked by either the
occurrence or the absence of convection. In the first
convective phase (phase 1) from January 1964 to March
1968 the values in the upper box fluctuate with hardly
any interannual trend. However, there are trends in the
deep layer. Time series of single depth levels reveal that
these trends are more pronounced in deeper layers. With
maximum convection depth varying from year to year,
the deeper layers sometimes remain untouched and
accumulate heat over more than 1 year.
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Fig. 2 Mean seasonal cycle of the upper layer (0-50 m) from OWS

Bravo data for potential temperature (solid), salinity (dashed), and
potential density (dash—dotted)
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Fig. 3a, b Time series of monthly means with subtracted seasonal
cycle for the upper layer (a) and the deep layer (b) of potential
temperature (solid), salinity (dashed), and potential density (dash—
dotted)

The phase from April 1968 to September 1971 (phase
2) is characterized by the GSA passing the Labrador Sea
and suppressing convection there. Phase 2 begins after
the last convection event and ends with the upper-layer
salinity starting to rise again. Annual trends of all
quantities during phase 2 are given in Table 1. The
decoupling of the two layers induced by advective
freshening (Dickson et al. 1988) in the upper layer leads
there to cooling, further freshening, and a density de-
crease. While the cooling comes to a halt already in early
1970, the strong freshening continues until late 1971. In
the deep layer, the waters are becoming slightly warmer
and more saline, mostly by lateral mixing from adjacent
water masses. Potential density in the deep layer shows a
weak decreasing trend that is clearly smaller than in
phase 1 as the warming and salinification partly com-
pensate in their effect on density.

Phase 3 is again characterized by annual convection
events. Starting in October 1971, strong wind mixing of
the surface mixed layer caused it to deepen and entrain
salt from below (Dickson et al. 1996). Additional strong
cooling then achieved a vigorous deep convection event
in early 1972. Afterwards, convection occurs again every
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Table 1 Trends during the GSA. Trends of potential temperature,
salinity and potential density in the upper layer (index 1) and the
deep layer (index 2) during the GSA (04/68 to 09/71) from the time
series without seasonal cycle depicted in Fig. 3

Quantity 0, S 00,1

Trend (yr™')  -028°C  —0.11 psu -0.060 kg m™
Quantity 0, S, 00,2

Trend (yr™')  0.070°C  0.0072 psu  —0.0013 kg m~>

year until the end of the time series. The upper layer
returns to more saline and dense conditions but remains
cool, in a state clearly different from phase 1. Possibly
this is a consequence of the deep convection chimney
being farther away from the ship now; the larger winter
gap between upper and lower layer salinity (compared to
phase 1, see Fig. 1b) suggests this. The deep layer jumps
back to a colder and less saline state, and a further
cooling and freshening trend sets in, albeit with little
effect on density.

In summary, the OWS Bravo data show a transition
from a state of annual convection to stable stratification
and back to convection. We will now discuss to what
extent the simple box model can help to understand
these transitions.

3 The simple box model
3.1 Model equations

Before discussing the fitting of the convection box model
to the observational data, we recall the equations of the
model and extend them slightly. The reader is referred to
Part T of this paper for a detailed description of the
model and the derivation of its equations. The model
consists of two boxes, a shallow upper box (index 1)
representing the annual mixed layer and a large deep
box (index 2) representing the waters below the seasonal
thermocline. The ratio of the box depths is termed A4*.
For the sake of simplicity, the box depths are fixed, so
effects like variable convection depth or mixed layer
deepening are not included. The model variables are the
temperatures 77, 7> and the salinities S}, S in both
boxes. These four variables are relaxed towards pre-
scribed relaxation temperatures and salinities 77, S}, 75,
S3. Through the use of three different time scales 77, s,
and t,, the different coupling strengths of the heat and
salt fluxes into box 1 and 2 are accounted for. The two
time scales 7,7 and 7,5 of the upper box forcing represent
the different feedbacks affecting temperature and salinity
forcing (similar to mixed boundary conditions); included
in this forcing are surface fluxes as well as lateral fluxes
due to advection and mixing. The use of a single time
scale 7, for the deep box is motivated by the eddy
transfer fluxes at depth. In Part I, the basic equation
system (Eq. 6) was refined by adding a seasonal cycle
with amplitude A7 to the upper box relaxation temper-
ature 7, in order to include seasonality and achieve a
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short winter convection period instead of year-round
convection, in accordance with the observations. To
facilitate comparison with observations and given the
pronounced seasonal cycle in upper layer salinity in the
data, we add a seasonal cycle (with amplitude 45 and
zero mean) to the upper box salinity forcing as well. A
phase shift iy between temperature and salinity cycles is
introduced as an adjustable parameter. Finally, keeping
the dimensions of the variables clarifies the physical
meaning of the parameters. Time is in units of 1 year.
The full equation set now reads:

d7 1

-
?:W(Tz -T) -|—T—[T1 — Arcos(2nt) — Ty

17
(1)

das; 1 L.

E_W(Sz_SI)—i_a[Sl ASCOS(Z?Tt+l//) Sl}
(2)

dn, 1 L.

& A (Tl—Tz)'*‘a(Tz ) (3)

s, 1 1,

& nihp) (51 —Sz)+g(52 -5) . 4)

In each of the equations, the first term on the right-hand
side represents convective vertical mixing, and the sec-
ond term the horizontal and surface heat/salt flux. We
recall that the four relaxation temperatures and salini-
ties, the three relaxation timescales, the two amplitudes,
and the phase shift are model parameters (see Table 2
for a detailed list), but that the time scale of vertical
convective mixing 7. is a strongly nonlinear function of
the model variables through the density difference

Ap=p;—py=—a(lh — )+ B(S1 —$) , (5)

where o and f are the thermal and haline expansion
coefficients of the linearized equation of state of sea-
water, see Eq. (4) in Part I. For stable stratification
(Ap < 0) the vertical mixing is very weak, so 7. has a
large value. In the case of unstable stratification
(Ap > 0) convection starts, i.e., vigorous vertical mixing
with a timescale 7. of the order of days. Since this value

of 7. is much smaller than the other time scales involved,
we assume 7. — 0 and use the common parameteriza-
tion for deep convection, known as convective adjust-
ment (Rahmstorf 1993; Klinger et al. 1996). The water
column is checked at each time step for hydrostatic
stability (we used d# =2 days). Nothing is done in the
case of stable stratification, but any occurring instability
is instantaneously removed by complete mixing. Thus,
the numerical integration scheme has two parts.

1. Integrate forward Eq. (1) to Eq. (4) one time step
without the vertical mixing terms. If we start at time i,
this gives preliminary values 77!, Si' 75l Sitt
for the variables at time i + 1.

. Apply the convective adjustment scheme to obtain
the final values 7/*!, Si' Titl  §iF1 of the vari-
ables. If Ap <0, the final values are identical to the
preliminary ones; if Ap > 0, the two columns are
mixed:

T =n" =w T + (1 - )T and

Sllgrl _ S£+1 _ h*Svi'Jrl + (1 _h*)Swé'Jrl . (6)

3.2 Fitting the box model to the OWS Bravo data

We adjust the model parameters (see Table 2 for a
complete list) to find the best fit of the model to the
OWS Bravo data, and use a least-squares fit procedure
for this purpose. We define a cost function K as the sum
of the quadratic distances of each monthly averaged
model variable time series 77, Sy, 75, S» (weighted by the
thermal and haline expansion coefficients to have a
common density unit) to the observed values. The op-
timal parameter set minimizes K. As discussed above the
OWS Bravo data show two different states with con-
vection (phases 1 and 3, possibly due to different surface
forcing and/or convection locations), but the model can
have only one convecting solution with the same forcing.
Hence we restrict our analysis to phases 1 and 2 of the
OWS Bravo data. (An analysis based on phases 2 and 3
gives similar results). The 10-dimensional parameter
space is spanned by a 10-dimensional matrix. For every

Table 2 Model parameters.

The model parameters with the Parameter Value Uncertainty Description

values determined from fitting .

the model to OWS Bravo data, 11 4.4 °C 4.04.6 °C Upper box restoring temperature

The set of these parameter va- A\ 33.5 psu # Upper box restoring salinity

lues is called the ‘optimal para- 7 4.1 °C 3.9-4.3 °C Deep box restoring temperature

meter set’. The uncertainty S3 34.97 psu # Deep box restoring salinity

range is spanned by all para- . .

meter sets whose cost function  FIT 5 months 3-9 months Restoring timescale of upper box temperature
value exceeds the minimum by  Tis 8 years 6-11 years Restoring timescale of upper box salinity
less than 10%. The parameters 1, 20 years 14-28 years Restoring timescale of deep box

g?r;l;relg dv‘?ﬁ};oigvﬁeiﬁengct)s(tle_ Ar 6.4 °C 5.0-7.8 °C Amplitude of seasonal cycle added to T}
function, but directly from ob- Ag 4.5 psu 3-6 psu Amplitude of seasonal cycle added to S}
servational data (see section 2 v 0.6 months —0.5-1.5 months Phase shift of the seasonal cycles

and 3) n* 1/36 # Ratio of box depths




possible parameter combination out of this matrix the
cost function K is computed from a model run with
convecting state initial conditions. The onset of the GSA
in the model is achieved by adding an anomalous salt
flux of —0.8 psu a~! to the upper box for a period of 3
months in spring 1968 to mimic the arrival of an
advected freshwater anomaly. The crucial idea here is
that we aim to find one single parameter set that yields a
realistic model behavior in both states (convecting and
nonconvecting) with the same forcing; the prescribed
salt flux anomaly provides a brief “’kick” which induces
a state transition in the model.

It turns out that K and its derivatives with respect to
the parameters are smooth functions and behave in a
physically understandable manner. However, both
physical intuition and the objective analysis show that
the ten free model parameters are underdetermined by
the fit, i.e., the problem is ill-posed. This is because the
OWS Bravo data contain a steady convecting state
(phase 1), but not a steady nonconvecting state. Phase 2
of the OWS Bravo data displays the initial trends after
cessation of convection, but does not reveal which
equilibrium values the three variables S;, 75, and S,
would eventually reach in the nonconvecting state. Only
the trend in 77 stops in 1970, so that 7} can be deter-
mined. The impact of the missing nonconvecting state
on the parameter determination can be clarified through
the model equations. Take Eq. (2) for the upper box
salinity. We neglect the seasonal cycle here because it has
no impact on the long-term trend. If no convection
occurs, Eq. (2) then reduces to:

ds, 1, ..
gzaﬁfsl)- (7)
When dS) /d¢ and an initial S| are known from the data,
then on the right-hand side of Eq. (7) for any arbitrary
choice of S} a corresponding value of 715 can be found to
fulfil the equation. Thus, one of the two parameters in
Eq. (7) is free. The situation is similar for 7; and S3; and
since Eqgs. (3) and (4) are coupled through the common
time scale 7, one second degree of freedom arises here.
In short, the least-squares fit procedure constrains the
ten-dimensional parameters space to a two-dimensional
subspace. This null space is clearly seen when attempting
to minimize the cost function.

Two further constraints are thus needed to close the
problem, i.e., to obtain a global minimum in K. One
could assume arbitrary values of 715 and 1,; we opt for
making assumptions about S} and either 7 or S;. This
option is equivalent to assuming the equilibrium mean
values of the three variables S;, 7», S, in the non-
convecting state. The upper box salinity is expected to lie
between the 34.7 psu of the convecting Labrador Sea
and the approximately 32 psu of the North Pacific at the
same latitude. From the mean salinity distribution in the
Labrador Sea (Levitus 1982) a value of S7 = 33.5 psu
seems plausible. For the deep box parameters 7, and S3,
the average values for the waters in the North Atlantic in
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the latitude band of the Labrador Sea (but excluding the
Labrador Sea itself) and between 200 and 2000 m depth
are Ty =4.3°C and S; = 34.97 psu. These values are
almost equivalent to assuming Irminger Sea conditions
for the nonconvecting Labrador Sea. They yield a deep
box time scale of 7, =20 years. In comparison with
other studies on the exchange rates in the deep Labrador
Sea (Khatiwala and Visbeck 2000), this value is rather
large; yet it is in agreement with the small trends in the
deep layer during the GSA (see Table 1). Finally, we
applied one further assumption, namely to restrict the
length of the winter convection event tyc. to less than 20
days, as low cost function values were in some cases
reached also with excessively long convection periods.
All the major conclusions of this paper are insensitive to
the somewhat arbitrary assumptions described in this
paragraph and hold for a wide range of S}, 75, S5, and
maximum fye. The constraints from the OWS Bravo
data are sufficient to determine the stability properties
discussed below.

The fitting procedure now arrives at a global mini-
mum of the cost function K and is repeated with
parameter matrices of higher resolution (in parameter
space) to localize the global minimum more exactly. The
optimal parameter set thus determined is shown in
Table 2. The value for 4* is a result of our analysis in the
previous section and not of the fitting procedure.
Changes in &* (by assuming an upper box depth of
100 m, say) lead to quantitatively slightly different re-
sults. To measure the parameter uncertainty we deter-
mined all parameter combinations for which the cost
function remains within 10% of its minimum value. This
defines an uncertainty range for each parameter (except
the fixed ones).

A comparison of a model run using the optimal
parameter set with the OWS Bravo data (Fig. 4) shows
that many relevant features of the data are captured by
the model. This includes the two upper box seasonal
cycles during phase 1, leading to a winter convection
event each year. The minimum difference between S
and S, is very small in the model time series because the
model mixes the two boxes completely, whereas for a
number of reasons the complete mixing is not visible in
the observational data. In this cyclostationary state of
the model, without stochastic forcing, there is no inter-
annual variability in any variable. Phase 2 starts with a
negative salt flux anomaly in the model run. Convection
ceases, and the model reproduces the observed trends of
all four variables: the upper box cools and freshens
strongly, while the deep box warms and becomes more
saline. (The trends in the deep box are hardly visible on
the scale of Fig. 4). In accordance with the observational
data, the model deep box is not an infinite reservoir of
heat and salt (as in former versions of the box model,
e.g., Lenderink and Haarsma 1994), but receives diffu-
sive fluxes from the neighbouring waters. The end of
phase 2, marked by the beginning salinification of the
upper layer in the OWS Bravo data, is achieved in the
model by a cold and saline anomaly in the upper box
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forcing. Only a strong anomaly in surface forcing is
capable of turning convection on again. It is clearly seen
from the trends in Fig. 4 that the longer convection is
off, the lighter the surface layer becomes and the
stronger an anomaly must be to restart convection. This
point is studied in greater detail in the next section.
After convection is started again, the model returns to
its previous convecting state. The different phase 3 state
of the OWS Bravo data cannot be captured by the
model.

4 Stability of the Labrador Sea

The stable states of the model under varying parameters
are now explored. Of particular interest are changes in
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Fig. 4a—c Comparison of model output (solid upper box; dash—dotted
deep box) and observed time series (dashed upper layer; dotted deep
layer) for temperatures (a), salinities (b), and densities (c¢). The model
was run with the optimal parameter set. All graphs are in monthly
means. The GSA, also called phase 2 in the text, was started by adding
a negative salt flux anomaly in the upper box during April to June
1968. The GSA was stopped by a positive salt flux anomaly during
October to December 1971 accompanied by a cold anomaly in the
upper box temperature forcing. See text for further explanation

the upper box buoyancy forcing, that is in 77 and Sj.
Changing other parameters will lead to similar pictures.
(However, reducing the model time scales by 1 order of
magnitude leads to decadal oscillations which will be
described elsewhere.) The parameter space section along
these two axes (Fig. 5) shows the stable model states: the
convecting state, the nonconvecting state, and a bistable
domain. The states are cyclostationary due to the pres-
ence of the seasonal cycles. The domain boundaries are
given in a good approximation by the analytical
expressions for the necessary conditions for the non-
convecting state:

ao(Tf —Ar = T5) > B(S; —4s = S3) (8)
and for the convecting state:

] . ] o Tir + 0l
o(7; _AT_T2)<ﬁ(S1_AS_S2)W : )

compare Egs. (9) and (12) in Part I. Since we introduced
seasonal cycles such that convection now occurs around
the temperature minimum and the salinity maximum in
the upper box, the respective amplitudes are subtracted
and added in Egs. (9) and (12) in Part 1. The shape of
Fig. 5 is in agreement with earlier studies (Lenderink
and Haarsma 1994). We can thus conclude that the
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the domain boundaries change, but the marginal position of the
parameter set itself is a robust feature. The inclusion of sea-ice effects
would affect the diagram for very low T} values



presence of the seasonal cycles does not change the basic
stability properties of Welander’s (1982) box model.

The position of the model Labrador Sea — repre-
sented by the optimal parameter set — in the parameter
space section is marked by the asterisk in Fig. 5. It is in
the bistable domain, i.e., both states, convecting and
nonconvecting, are steady states of the model under the
given conditions. A sufficiently large anomaly can
switch convection on or off. Moreover, the model is
located very close to the domain where only the non-
convecting state is stable. Changing the buoyancy
forcing by a few tenths of a degree or a few tenths of
psu will lead to the convecting state becoming uncon-
ditionally unstable. In other words, there are two
possible ways for suppressing convection. In the first
way, convection is temporarily switched off by an
anomaly, but can be restarted later by an opposite
anomaly, while the average properties of the buoyancy
forcing (i.e., the model parameters) do not change. This
is the GSA case depicted in Fig. 4, and this may be the
case with a 50 year-long spell of convection in the
Labrador Sea being switched “on” among centuries
without convection that Tett et al. (1997) found in a
coupled GCM. In the second way, under a slowly
changing buoyancy forcing (e.g., 7y or Sj) the con-
vecting state eventually becomes unstable and convec-
tion stops. This scenario could apply to the global
warming GCM run of Wood et al. (1999), in which
Labrador Sea convection stops early in the 2Ist cen-
tury. The role of the anomalies triggering state transi-
tions in both cases is examined in detail in the next
section.

We checked systematically how the stability diagram
changes for different choices of S}, S5 (or T;) and
maximum #ye, as well as for parameter sets in the un-
certainty range defined by a 10% change in the cost
function. Equations (8) and (9) show that those pa-
rameter changes affect the width of the bistable domain:
for instance, for a larger difference (S} — S5) the bistable
domain (in terms of 77) is wider. However, the distance
of the model solution from the border of the bistability
domain varies only by some tenths of a degree on the 77
axis and similarly small amounts on the S} axis. Thisis a
consequence from the OWS Bravo data which explicitly
show that a freshwater anomaly equivalent to 0.2 psu
induced a transition from the convecting to the non-
convecting state. The precarious position of the Labra-
dor Sea, in the bistable domain but close to the
nonconvecting domain, is therefore a robust feature of
the fitted model.

5 A stochastic climate model of deep convection
5.1 Motivation
In the previous section, the essential role of surface

buoyancy forcing anomalies switching convection on
and off became clear. We look for a meaningful way to
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introduce variability that generates these anomalies in
the context of the simple box model used here.
Observations (Lilly et al. 1999; Marshall and Schott
1999) suggest that heat flux anomalies (due to weather
activity) and freshwater flux anomalies (by advection)
act together to trigger or suppress convection. Yet the
heat fluxes clearly prevail in their contribution to the
overall buoyancy forcing (Sathiyamoorthy and Moore
2001). Hence, we focus on heat flux variability as the
primary variability component.

The characteristic time scale of synoptic cyclones is
a few days. Following the concept of Hasselmann’s
(1976) stochastic climate model, we parameterize syn-
optic-scale variability by a noise term added to the
surface heat flux forcing. To estimate this noise term
quantitatively, a 52-year-long time series of daily net
surface heat flux from NCEP reanalysis data (Kalnay
et al. 1996) was analyzed. The analysis — given in detail
in the Appendix — motivates a noise term consisting of
red noise &, with a decorrelation time of about 6 days
times a standard deviation ¢, so that Eq. (1) is
extended to:

dn 1
S (p-T
dr h*rc(Ap)( 2= 1)
1
+— [T — Arcos(2nt) + o0&, — Ti] . (10)
17

With this step, two classical conceptual models — for
deep convection (Welander 1982) and for high-fre-
quency atmospheric forcing of the ocean (Hasselmann
1976) — are combined to give a simple model that could
be called a stochastic climate model of deep convection.
Extended by the seasonal cycles and fitted to the OWS
Bravo data, the box model is now suitable to study the
variability of deep convection in the Labrador Sea.

5.2 Stochastic forcing and state transitions

Thirty years from a model run with stochastic forcing
are displayed in Fig. 6. Several times, convection is in-
terrupted for a few years, indicated by the small mini-
mum density difference Ap between the upper and the
deep box (Fig. 6¢). The upper box temperature T)
(Fig. 6a) is the only variable directly influenced by the
noise, so it shows the strongest variability. Apart from
the convective mixing induced by that variability, the
other three variables evolve in an unperturbed way.
Similarly to the GSA in the OWS Bravo data (Fig. 1), in
the non-convecting years the upper box tends to freshen
(Fig. 6b) and cool (Fig. 6a), until a cold anomaly re-
starts convection again. In contrast to the observed
GSA, the nonconvecting phase in this model run is
kicked off by a warm anomaly in the upper box, not a
freshwater anomaly. This is due to the fact that the
stochastic variability appears in 77 only, not in Sy, so by
construction only temperature anomalies can appear.
However, through the Hasselmann mechamism the
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Fig. 6a— Time series of monthly means from the stochastically
forced model: temperature (a), salinity (b), and density (c) of the upper
box (solid) and the deep box (dash—dotted). The model was run with
the optimal parameter set and a standard deviation ¢ = 18 °C of the
stochastic forcing. The 30 model years shown include several
interruptions of the convecting state. The difference to the observed
GSA (cf. Fig. 1) is that the positive buoyancy anomaly needed to stop
convection is achieved here by local heat fluxes rather than advective
freshwater fluxes. See text for details

upper box integrates the weather noise to (intra-)sea-
sonal temperature anomalies (because 77 = 5 months).
Thus, integrated synoptic heat flux anomalies and ad-
vected intraseasonal freshwater anomalies have the same
impact on Ap.

The key point here is that a comparatively short
anomaly (lasting for a couple of months) triggers the
state transition, and that the long-term trends evolving
afterwards are due to the internal dynamics until the
next anomaly triggers the next state transition. We hy-
pothesize that this picture of a bistable water column
holds for the Labrador Sea. This implies that the falling
surface salinity from 1968 to late 1971 does not result
from anomalous freshwater input during this whole
time, nor does the return to convecting conditions in
1972 result from an end to the anomalous forcing.
Rather, the falling salinity requires only a brief trigger
anomaly (which could even have been thermal rather

than freshwater) that prevents convection in 1968.
Convection then cannot recover by itself but requires
another substantial trigger event. The longer convection
has been off, the larger the trigger needs to be. Had the
winter of 1972 not been such a harsh one, subsequent
winters would have needed to be even colder to restart
Labrador Sea convection.

This hypothesis is consistent with the conclusion of
Dickson et al. (1996), who analyzed the 1972 convection
onset in the Labrador Sea in detail in the observed data.
They conclude that the jump-like rise of the upper layer
salinity is explicable only by anomalously strong wind
forcing that mixes saline intermediate waters into the
mixed layer; advective processes cannot lead to such
strong changes. In other words, observational data show
that the termination of the GSA in the Labrador Sea
was achieved by anomalous weather conditions at the
ocean surface, not by its internal dynamics.

The presence of noise leads to a qualitative change
in the model’s stability behavior: the sharp domain
boundaries depicted in Fig. 5 are replaced by more
gradual changes in the frequency of the occurrence of
convection. As a measure we use n., the fraction of
years with convection out of all years in a model run.
Figure 7 shows how n. depends on the noise strength
0. Using the optimal parameter set with the convecting
state as initial condition and increasing ¢ (Fig. 7a), n.
drops close to zero for weak noise. This reflects the
marginal position of the optimal parameter set in pa-
rameter space (Fig. 5). Any small perturbation shifts
the model into the nonconvecting state, but the small
perturbations are not able to induce a jump back to
convection. For ¢ > 12°C, the convecting state is
reached in some cases. The fraction of convective years
rises quickly and asymptotically reaches a value of
n. ~ 0.75. In this regime of strong noise, the noise
tends to override the deterministic stability properties.
This feature becomes clearer when considering changes
in the surface buoyancy forcing 77 in addition. The
contour plot in Fig. 7b displays how n. depends on ¢
and 7. For ¢ =0, Fig. 7b corresponds to the deter-
ministic (not stochastically forced) parameter space
section (Fig. 5) with only the nonconvecting state being
stable for 77 > 4.5°C. For low noise and large 7} there
is a large, wedge-shaped domain where almost no
convection events occur. The shape of this domain can
be understood when thinking of the convecting state
becoming less and less stable for larger 7). Then, for
larger 7} a smaller amount of noise is needed to trigger
a jump into the nonconvecting state. Since the non-
convecting state becomes more stable for larger 77, a
larger amount of noise is necessary to trigger jumps
back into the convecting state. Figure 7b also shows
that beyond this wedge-shaped domain the noise is
capable of keeping the model in the convecting state
for more than half of the time even when this state is
unstable in the deterministic case. The exact extent of
this domain depends on the respective parameter set:
for instance, a lower S} leads to a less dense upper box
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in the nonconvecting state, so convection is harder to
trigger, and the domain becomes wider.

In the Appendix it is shown that for the Labrador Sea
conditions in the box model o is likely to be near or
larger than 15°C. This means that the model is located
in a domain where n. is sensitive to changes in the sur-
face forcing. There are two ways of making convection
occur less often: either by decreasing the variability ¢ or
by increasing the surface temperature 7} (or equivalently
decreasing S}); but convection can still occur even when
the convecting state is unstable in the deterministic case.
If an increase in 7} is taken as a crude representation of
a global warming scenario, then these results suggest
that the frequency of Labrador Sea convection could
decrease substantially due to a future warming (and/or
freshening) unless variability increases strongly at the
same time.
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5.3 Stability and residence times

It is straightforward to estimate how the stability of the
states (with respect to perturbations) changes quantita-
tively with varying model parameters. Consider a par-
ticle in an ideal double-well potential. If the particle is
initially in one well, then added noise will rattle it. To
leave the initial potential well and jump to the other one,
the particle has to overcome a potential difference AU. If
the noise is Gaussian distributed, eventually one per-
turbation, occurring after time ¢,, is large enough for the
particle to hop into the other well. In this ideal case there
is a simple relation between the particle’s mean residence
time (¢.) in one well, the potential difference AU and the
standard deviation ¢ of the added noise:

AU = ¢*log(t,) + C . (11)

This equation directly follows from Arrhenius’ formula
(Gardiner 1994). The constant C is a function of the
potential’s curvature at the well bottom and at the po-
tential hill that separates the two wells.

The two stable states of the box model (with four
variables) cannot be expressed as minima of an (one-
dimensional) potential. However, there is a way to use
Eq. (11) for our purposes. The potential U can be
interpreted as a quasipotential (see Freidlin and Wentzell,
1998, for a rigorous definition). Then, the potential
difference AU is the necessary perturbation strength for
a state transition. The larger AU is, the more stable is the
state. The mean residence times (z.) and (f,) in the
convecting and the nonconvecting state can be estimated
from long model runs. We do this for leaving ¢ constant
and varying 7} only. With the help of Eq. (11) we are
then able to give a quantitative estimate of the relative
stability of the two states as a function of the surface
forcing. Figure 8 shows how the logarithms of the resi-
dence times change with varying 7}. For low values of
T}, the convecting state is clearly the more stable one.
Conversely, for warm surface forcing the stability of the
nonconvecting state increases strongly. In the case of the
optimal parameter set (dashed line in Fig. 8), the non-
convecting state is about twice as stable as the convec-
ting one. This gives a quantitative understanding of
Fig. 7a: weak noise can provide the anomalies to jump
into the nonconvecting state, but anomalies twice as
large, necessary for the jump back, occur only extremely
rarely. Note the contrast between the sharp stability
domain borders of the deterministic model (Fig. 5) and
the smooth shape of the stability curves for the sto-
chastic case.

From Fig. 8 we see that the mean residence times for
the optimal parameter set and a standard deviation of
o = 18°C in the stochastic forcing are (¢.) = 3.5 years
and (t,) =11 years. Thus, the average time for the
model to jump from one state to the other and back is
about 15 years. In other words, the typical time scale for
the variability is in the decadal range. This is clearly
different from the synoptic time scale of the stochastic
surface forcing. The effect of the weather noise is here to
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the nonconvecting state ({¢,), dash—dotted) in dependence on the mean
surface temperature forcing 7} for constant standard deviation
(0 =18°C) of the stochastic surface temperature forcing. The
dashed line indicates the position of the optimal parameter set: the
convecting state lasts 3.5 years and the nonconvecting state 11.2 years,
on average

excite intraseasonal variability in the mixed layer, which
in turn triggers interannual to decadal variability. The
deep ocean, being isolated from the atmosphere nearly
at all times, “‘sees” the synoptic variability through the
“window” of deep convection events — but responds to
this forcing with its own typical decadal time scale. In
this way, deep convection is a prominent example of
time-scale interactions in the climate system.

The analysis can be carried one step further by ex-
tending our view from the mean residence times (f.) and
(t,) to their distributions pg(t.) and ps(t,) that are
equivalent to the stationary probability density functions
(pdfs). This draws a more complete and accurate picture
of the variability. The different shapes of the two pdfs in
Fig. 9 stand out. The residence times of the convecting
state (Fig. 9a) are distributed following a straight
line, with ¢, > 20 years occurring only rarely during a
100 000-year model run. In comparison, ps(z,) has a bent
shape, with high probability density for very short resi-
dence times and some occurrences of 7, exceeding 20
years. These features are obscured when considering the
mean value only: while the mean residence time is
(t,) = 11 years, we learn from py(z,) that the time series
will contain many cases of only a few years without
convection, but also some occasions where convection is
interrupted for more than 100 years. With the
probability distributions of the residence times (Fig. 10)
this can be quantified. For instance, there is a 10%
probability for the nonconvecting state to last longer
than 13 years, but the convecting state will do so only
with a probability of 1.5%. Hence, the observation of
two decades without deep convection, as in the years
1982-2001 in the Greenland Sea (Rhein 1996; Visbeck
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Fig. 9a, b Distribution of residence times in the convecting state (a)
and the nonconvecting state (b). The frequency of every single
residence time is given as a fraction of the total number of residences
during a 10° year run. Hence, the distributions are approximate
probability density functions. The fraction axis is logarithmically
scaled; the small bar in panel a at ¢, = 25 years corresponds to one
single occurrence. The model was run with the optimal parameter set
and a standard deviation of ¢ = 18°C, yielding a fraction of
convective years n. = 0.26. The tail of the distribution in (b) was
cut arbitrarily; the maximum ¢, is 526 years

and Rhein 2000; J. Holfort personal communication), is
not necessarily a sign of a global climatic trend, but
could be within the natural variability properties of a
convective water column.

The difference between the two distributions in Fig. 9
can be understood qualitatively in the framework of
“runs” introduced by von Storch and Zwiers (1999). A
“run” is defined as the time that a stochastic process
spends uninterruptedly on one side of its mean value.
Von Storch and Zwiers analyzed AR(1) processes with
varying autocorrelation coefficient «;, and found that
for oy =0 (white noise) the run length pdf decreases
exponentially. In a logarithmic plot this pdf of the run
lengths, or residence times, appears as a straight line, as
in Fig. 9a. For red noise («; > 0), long residence times
are more probable at the expense of intermediate times,
which gives the bent shape of the graph in Fig. 9b. In
other words, the linear shape of p(#.) in Fig. 9a means
that the probability for a convection stop is equal in all
years, whereas the exponential shape of p(z,) in Fig. 9b
stems from the diminishing probability of leaving the
nonconvecting state with increasing residence time ¢,.
This feature again reflects the positive salinity feedback.
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6 Conclusions

The aim of this paper is to understand some basic sta-
bility and variability properties of open-ocean deep
convection. The simplest possible model for this purpose
is a two-box model of a water column in a potentially
convective part of the ocean. The simplicity of the model
allows the exploration of large parts of the parameter
space. Observational data from the Labrador Sea show
phases with and without convection and are used for the
parameter determination of the model. Not all of the
model parameters are well constrained by the dataset.
Some properties of a steady nonconvecting state in the
Labrador Sea have to be assumed in order to close the
problem of parameter determination.

With the parameter set obtained, the position of the
Labrador Sea in a stability diagram can be determined.
For a certain region in the parameter space the model
has two stable states, with convection being either “on”
or “off”” each winter. With the Labrador Sea parameters
the model is located in this bistable domain, so that
anomalies in the forcing are capable of triggering jumps
from the convecting to the nonconvecting state and
back. The model shows that lasting anomalies similar to
the Great Salinity Anomaly (1968-1972) can be trig-
gered by short-term anomalies in the surface conditions
suppressing convection in one winter. This mechanism
of transitions between two stable states can explain the
basic properties of the time series from OWS Bravo.
The longer a nonconvecting phase lasts, the harder it is

47

to interrupt it, suggesting that convection might have
ceased for much longer if 1972 had not been an
anomalously harsh winter over the Labrador Sea. Note
the contrast with the hypothesis of Dickson et al.
(1996), and Lilly et al. (1999), who conclude that
anomalous surface conditions (be it in freshwater ad-
vection or local heat fluxes) lasted throughout the 4
years of the GSA and were needed to suppress deep
convection. Our results suggest that a different mecha-
nism might have been working here: a short-term per-
turbation switched convection off, and the subsequent
evolution was governed by internal, local dynamics
until another perturbation switched convection on
again.

We found that the position of the model Labrador
Sea in the bistable domain is very close to the border to
the monostable domain without stable convecting state,
irrespective of the parameter assumptions about the
stable nonconvecting state. This position is precarious:
changing the ocean’s surface forcing by about 1 °C to-
wards warmer conditions leads to the convecting state
becoming unconditionally unstable. Such a shutdown of
Labrador Sea convection occurred in a global warming
scenario computed with a coupled AOGCM (Wood et al.
1999). It is not clear yet whether the additional feed-
backs in complex models lead to a less precarious
stability of deep convection.

With the model being in the bistable domain,
anomalies in the forcing are essential to excite state
transitions. Therefore, we included stochastic variability
in the model as in the stochastic climate model of
Hasselmann (1976), to parameterize weather variability
over the Labrador Sea. In this way, two seminal con-
ceptual models, for deep convection (Welander 1982)
and for high-frequency atmospheric forcing of the ocean
(Hasselmann 1976), are combined to give a “‘stochastic
climate model of deep convection”. The parameters of
the noise term are estimated from a daily time series of
surface heat flux.

We conclude that realistic noise amplitudes are large
enough to blur the clear picture of the stability diagram.
Even when the convecting state is unstable in the de-
terministic case, the variability excites frequent convec-
tion events. Conversely, the observation of intermittent
convection in the real ocean or in a model does not allow
direct inferences about the stability of the underlying
deterministic state.

When stochastic variability is taken into account, a
warming (and/or freshening) at the surface will not lead
to a complete stop of convection at a certain threshold,
but rather to a decline in the frequency of convection
events. The frequency of state transitions depends on the
noise level in a highly nonlinear way. There are two
plateaus for the frequency value: weak noise triggers
hardly any jumps, and with strong noise the jumps be-
come very frequent and occur every few years. In be-
tween is a small range of noise levels where the jump
frequency steeply rises. For the plausible parameter
range, the position of the Labrador Sea is in the region
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of this steep rise, which reflects its sensitivity to changes
in surface forcing.

The interannual to decadal jumps are triggered by the
intraseasonal density anomalies in the upper box, which
in turn are excited by weather noise in the surface heat
flux. Advective freshwater anomalies have not been
modeled here, but would have the same impact on the
model dynamics. The probability distribution of the
residence times in the nonconvecting state shows that
there is a small, but not negligible probability for the
nonconvecting state lasting a decade or longer. In con-
trast to a deterministic understanding of the system, this
means that convection may start again after a long break
due to natural variability. The recent 19-year-long
cessation of deep convection in the Greenland Sea is
thus not necessarily due to a long-term climatic trend
but could be part of the normal stochastic variability
properties of convection. On the other hand, a surface
warming or freshening trend as may result from an-
thropogenic global warming can be expected to sub-
stantially reduce the frequency of convection in the
Labrador Sea and possibly elsewhere.
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Appendix

The analysis of a 52-year-long time series of daily net surface heat
flux at the OWS Bravo site is presented here. This time series was
extracted from the NCEP database (Kalnay et al. 1996). The aim is
an estimate for the standard deviation and the decorrelation length
of the noise term in Eq. (10). Assuming that the heat flux time
series Q can be decomposed into an average flux Qp, a seasonal
cycle with amplitude 4y, and a noise term &, with standard devi-
ation oy,

0 = Qy +Apcos(2nt) + apé, , (A1)

it turns out that, for averaging intervals of 1 to a few days, the
autocorrelation function of the noise process & falls off to zero only
after the first few lags. In other words, &, can be modeled by an
AR(1) process

&L=wé + (AZ)

where the value ¢, at time ¢ is determined by the value £,_; at the
previous time step times the autocorrelation at lag 1, oy, plus a
random value {; from a Gaussian white noise process. With values
for o estimated from the NCEP time series, the decorrelation time
as defined in von Storch and Zwiers (1999):

71+O(1
7170(1

Tp (A3)
lies between 5 and 7 days, depending on the averaging interval of
the time series. This decorrelation time is just the typical time scale
for synpotic activity. Using this red noise forcing in the model
(instead of pure white noise) is a more realistic parameterization of
the high-frequency heat flux variability and renders the model
results more robust to changes in the time step of the numerical
integration scheme.

Apart from the decorrelation length, the second parameter
we need to estimate for the noise term in Eq. (10) is the standard
deviation o. Using the heat flux time series in Eq. (A1) to force the
temperature of an ocean surface layer we write:

dr
cppohi A = Qo +Ag cos(2nt) + JQé, — AT , (A4)
with the specific heat capacity ¢, = 3990J kg 'K~', a reference
density p, = 1028 kgm—3, the surface layer depth /; = 50m, and a
restoring constant 4. Setting ¢y = ¢,pohi, this reads:
d7 Qo  Ap

— ==+ —=cos(2mt) +U—Qé, -7,
€o €o

= AS
dr Co Co ( )

Comparison with Eq. (10) shows how the standard deviation ¢ of
the stochastic forcing in Eq. (10) is related with the standard devi-
ation o of the heat flux time series:

o= GQTI—T . (A6)

With a dependence on the averaging interval again, we find
0o = 120-140 Wm™2, which translates into ¢ = 8-9°C. This is a
rather high value, larger than the average flux Oy — and still the
seasonal cycle of the standard deviation itself, reaching its maxi-
mum in winter, has not been accounted for here. Sathiyamoorthy
and Moore (2001), in their analysis of the buoyancy flux at OWS
Bravo derived from weather ship data, obtain a similar result. The
dominant role of the synoptic-scale variability of the heat flux in
the Labrador Sea is highlighted here again. For simplicity we
have added noise only to the surface temperature forcing. To
obtain a realistic variability in the whole surface buoyancy flux,
pronouncedly higher values of ¢ have to be assumed since the
variability of surface freshwater fluxes and of advective transports
of heat and salt have not been considered here. A range of
0 = 15-20°C seems therefore plausible. For the numerical inte-
gration we applied a semi-implicit Milstein scheme following
Kloeden and Platen (1999, Chap.10). Its theoretical convergence
is twice as good as with an ordinary Euler scheme, which is rel-
evant regarding the discontinuities arising from the convective
adjustment.
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