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DAbstract

Ocean convection is a highly non-linear and local process. Typically, a small-scale phenomenon of this

kind entails numerical problems in the modelling of ocean circulation. One of the tasks to solve is the

improvement of convection parameterization schemes, but the question of grid geometry also plays a

considerable role. Here, this question is studied in the context of global ocean models coupled to an at-

mosphere model. Such ocean climate models have mostly structured, coarsely resolved grids.

Using a simple conceptual two-layer model, we compare the discretization effects of a rectangular grid

with those of a grid with hexagonal grid cells, focussing on average properties of the ocean. It turns out that

systematic errors tend to be clearly smaller with the hexagonal grid. In a hysteresis experiment with the

atmospheric boundary condition as a hysteresis parameter, the spatially averaged behaviour shows non-

negligible artificial steps for quadratic grid cells. This bias is reduced with the hexagonal grid. The same
holds for the directional sensitivity (or horizontal anisotropy) which is found for different angles of the

advection velocity. The grid with hexagonal grid cells shows much more isotropic results. From the limited

viewpoint of these test experiments, it seems that the hexagonal grid (i.e. icosahedral–hexagonal grids on

the sphere) is recommendable for ocean climate models.

� 2003 Published by Elsevier Ltd.
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1. Introduction

To the largest part of its extent, the world ocean is stratified in a statically stable way, so that
vertical exchange processes are weak. Only in a few small regions in the North Atlantic, the
Mediterranean, and the Southern Ocean, a combination of wind stress forcing, freshwater ad-
vection and surface heat fluxes may succeed in diminishing this stratification. In places where the
vertical density gradient actually vanishes, one observes a strong vertical turbulent mixing to
depths of 2 km and more. This process, occurring only for a few days at a time, and on spatial
scales of only �50 km, is called deep convection (see Marshall and Schott (1999) for a compre-
hensive review).

Convection constitutes a much more efficient vertical heat transfer process than vertical (dia-
pycnal) mixing. Therefore it is essential for ocean general circulation models that both location
and timing of convection are captured. Furthermore, convection events are a crucial part of the
overturning circulation in the North Atlantic that ensures today�s climatic conditions in the North
Atlantic region. But the small spatial and temporal scales of convection prevent a direct repre-
sentation in global ocean models that are part of a climate model (called ocean climate models
here) as their resolution is too coarse. Hence, in ocean climate models, convection is parame-
terized. Convective adjustment (Cox, 1984; Rahmstorf, 1993) and an increased vertical diffusion
coefficient in places where the stratification is weak (Klinger et al., 1996; Molemaker and Dijkstra,
2000) are the most commonly used parameterization schemes. Convection parameterizations have
been studied thoroughly, but the role of the model grid geometry has been considered much less.

In ocean models that are not coupled to a dynamical atmosphere, unstructured grids are often
used. They can be adapted to a given orography in a very efficient way. On the other hand, the
coupling to an atmospheric component with its structured grid is rather complicated. This is a
major disadvantage of unstructured ocean model grids for their application in efficiently coupled
climate models (Randall et al., 2002). In their review of ocean climate modelling, Griffies et al.
(2000) mention two other problems of unstructured grids: the difficulty to represent the correct
geostrophic balance, and unphysical wave scattering due to grid space variation. Griffies et al.
(2000) state that in most ocean climate models structured grids are implemented. Very often,
generalized orthogonal coordinates are used, which means that the pole problem can be avoided
by shifting the grid pole to the centre of a land mass. Structured grids without orthogonal co-
ordinates exist, too: grids with triagonal and with hexagonal grid cells. The latter are called
icosahedral–hexagonal on the sphere (where some few pentagonal grid cells have to be included).
Very recently, these grids have been tested by atmosphere modellers (Ringler et al., 2000; Ma-
jewski et al., 2000; Tomita et al., submitted). The results are similar to those obtained with
spherical orthogonal coordinates (often used in atmosphere models), but the theoretical projec-
tion of computation times looks definitely better for icosahedral–hexagonal grids. This is one of
the reasons why Randall et al. (2002) recommend these grids for climate modelling, both for
atmosphere models and for ocean models.

In this paper, we investigate how the grid geometry influences the spreading of convection, i.e.
the spatial enlargement of convective regions, in ocean climate models. For this purpose, we use a
simplified two-layer model with a conceptual representation of ocean dynamics and compare the
features of rectangular grids with those of a grid with hexagonal grid cells (i.e. icosahedral–
hexagonal grids on the sphere).
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Hecht et al. (2000) state in favour of such conceptual experiments that the ‘‘evaluation of
schemes may be facilitated through the consideration of simpler [. . .] test problems, designed to
challenge the performance of algorithms in fundamental, important ways.’’ In Hecht et al. (2000),
a new test problem for ocean tracer transport is presented. The rotation of the grid by 45� is the
essential test ingredient. The authors find a sensitivity to the orientation of the model grid. In our
paper, we also address the question of horizontal (an)isotropy.

The interaction between the convective adjustment scheme and horizontal eddy diffusion has
been studied in a conceptual way by Cessi and Young (1996). They show that there is a strong
sensitivity to initial conditions and that simulation runs with similar initial conditions can lead to
solutions with very different average properties. In Cessi (1996) an instability on the grid scale is
described. The instability is caused by the convective adjustment scheme.

The paper is organized as follows: it starts in Section 2 with the description of the two-layer
ocean model used for our investigation. Section 3 is devoted to numerical experiments in which
the spatially averaged effect of grid geometry is examined. This is done by using the atmospheric
boundary condition for heat flux as a hysteresis parameter. The sensitivity to the direction of
advection is studied in Section 4. For this purpose, a homogeneous advective field is added to the
equations. Section 5 contains results with a hexagonal grid for both test experiments (hysteresis
and directional sensitivity). The effect of isopycnal mixing is investigated in Section 6. Conclusions
are given in Section 7.
 D
CO
RR
EC
TE2. Description of the model with square grid cells

We study the mechanisms of discretization effects that occur when convection spreads in ocean
climate models. By spreading of convection we mean the spatial enlargement of an area of con-
vective grid cells. To address general features of the problem, the model we use is strongly sim-
plified. Nevertheless, it captures convective mixing and eddy-diffusion; including advection is an
additional option. Since the local, parameterized convection process and its modification by
horizontal coupling through eddy-diffusion (and advection) is the focus of our interest, we use the
temperature and the salinity as prognostic variables and neglect the momentum budget. The
model possesses two vertical layers, and its horizontal scale is of the same magnitude as the basin
scale. It has a horizontal grid resolution of Dx ¼ 250 km and 16 · 16 grid points. We assume that
the volume of the lower grid point is twice the volume of the upper one. This ratio mimics the
increasing layer thickness (with increasing depth) in ocean models. The dynamics at the grid
points is determined by convective mixing (achieved through convective adjustment: CA) and
lateral eddy-diffusive mixing D. In the upper layer, surface fluxes (freshwater and heat) and op-
tional advection A (described in Section 4) are added. Omitting the horizontal indices, the
prognostic equations read
UNo

ot
T ð1Þ ¼ 1

sr
ðTr � T ð1ÞÞ þ DT ð1Þ fþAT ð1Þg ½þCA� ð1Þ

o

ot
Sð1Þ ¼ Fsalt þ DSð1Þ fþASð1Þg ½þCA� ð2Þ
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ot
T ð2Þ ¼ DT ð2Þ ½þCA� ð3Þ

o

ot
Sð2Þ ¼ DSð2Þ ½þCA� ð4Þ
PR
OO

FT ð1Þ and Sð1Þ are the temperature and salinity of an upper grid point at time t, while T ð2Þ and Sð2Þ

represent the respective lower grid point. For the surface fluxes, we use mixed boundary condi-
tions: a constant freshwater flux Fsalt in combination with the temperature of the upper grid point
being relaxed towards a restoring temperature Tr. Mixed boundary conditions are widely used to
represent the thermally strong coupling between the ocean surface layer and the atmosphere,
while a similar salinity feedback is absent. For the freshwater flux Fsalt, we use the estimate
)1 · 10�4 psu d�1. Thus, the surface layer is slowly freshened which corresponds to climatic
conditions at high latitudes (where precipitation exceeds evaporation). The temperature restoring
timescale sr is chosen to be five months. This timescale can be derived from observational data, see
Kuhlbrodt et al. (2001). A Euler forward scheme with a time step Dt of one day is applied. After
each iteration, a simple convective adjustment (CA) scheme is carried out: if the vertical density
difference q1 � q2 becomes zero or larger, the two grid cells will be mixed completely. Here, a
linear approximation of the density equation is used
qðT ; SÞ ¼ q0ð1þ bðS � S0Þ � aðT � T0ÞÞ ð5Þ

EDThe index 0 denotes reference values (that are irrelevant here, since we only use the density dif-

ference); a and b are the expansion coefficients for temperature and salinity. We use the values
a ¼ 0:00017 K�1 and b ¼ 0:0008 psu�1. Since the volume of the lower cell is twice the volume of
the upper one, the final mixed temperature of the two cells reads in its discretized form
CTTmix
tþDt ¼

T ð1Þ
tþDt þ 2T ð2Þ

tþDt

3
ð6Þ
EThe local grid cells are coupled horizontally through eddy-diffusion (in Section 4, an advective

field A is added). Horizontal coordinate indices are i and j; they refer to longitude and latitude,
respectively. The diffusion term DT ð1Þ reads
RRDT ð1Þ ¼ jhr2
hT

ð1Þ

� jh

ðDxÞ2
ðT ð1Þði� 1; jÞ þ T ð1Þði; j� 1Þ þ T ð1Þðiþ 1; jÞ þ T ð1Þði; jþ 1Þ � 4T ð1Þði; jÞÞ ð7Þ
UN
COThe eddy-diffusion constant jh is set to 3.0 · 103 m2 s�1 which is a typical value for ocean cli-

mate models of coarse resolution (Braconnot et al., 1997). The parameter values of the model are
shown in Table 1. No flux boundary conditions are applied.

Laplacian diffusion is used here which is one of the simplest eddy diffusion schemes. Today
higher order schemes (like biharmonic diffusion) are applied more and more often in ocean
models. Therefore, one may ask why they are not taken into account in this study. But concerning
the efficiency of coupled climate models, higher order schemes have two disadvantages: high CPU
costs and unphysical long-range coupling. The computation time required for biharmonic diffu-
sion is increased by the fact that this scheme is not positive-definite and therefore needs a cor-
rection term. Every eddy diffusion parameterization has the drawback of unphysical long-range
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Table 1

Parameter values of the conceptual two-layer model

Parameter Denotation Value

Grid resolution Dx 250 km

Time step Dt 1 day

Restoring time scale sr 5 months

Salt flux Fsalt )1· 10�4 psu d�1

Eddy diffusion constant jh 3 · 103 m2 s�1
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Hence we apply the Laplacian diffusion scheme here and discuss whether another grid geometry
(namely hexagonal grid-cells) can reduce the discretization effects.

The ocean can be in a state of bistability with respect to convection, which has been shown by
Lenderink and Haarsma (1994) in simple ocean general circulation models and by Kuhlbrodt
et al. (2001) in conceptual box models. By contrast, here we are rather interested in the transient
behaviour during one period of convection. Hence, with our model, we do not perform long
simulations with constant parameters (maximum integration time: 160 days), and we do not
distinguish between two stable states but between two different local transients: one that is per-
manently convective (CA at every time step) and another one that is initially non-convectivc but
may become convective during the simulation. The onset of convection is characterized by a jump
of the values of the variables.
 E
RE
CT3. Average behaviour: hysteresis curves with artificial steps

The first effect to be studied is the average behaviour of an area in the ocean model with
convective and non-convective grid points, when temporarily strong buoyancy forcing prevails at
the surface. Thus, a transition of non-convective elements to convection is favoured. We use two
alternative types of initial conditions (IC) for each pair (i; j) of horizontal coordinates––convective
IC and non-convective IC
CO
RT ð1Þ

con ¼ T ð2Þ
con ¼ 4 �C ð8Þ

Sð1Þ
con ¼ Sð2Þ

con ¼ 35 psu ð9Þ
T ð1Þ
non ¼ 0 �C ð10Þ

Sð1Þ
non ¼ 33:7 psu ð11Þ
T ð2Þ
non ¼ 4 �C ð12Þ

Sð2Þ
non ¼ 35 psu ð13Þ
N

The IC are randomly distributed with the ratio
UR0 ¼
n0;con

n0;non þ n0;con
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Fig. 1. Hysteresis curves for R0 ¼ 0:5 (upper curve) and R0 � 0:27 (lower curve). The restoring temperature Tr is the
hysteresis parameter. We average over 200 realizations with randomly distributed initial conditions (but fixed R0).
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wise decrease and increase of the surface restoring temperature Tr. After two time steps, Tr is
changed by 0.25 �C. We use a time step of one day. The hysteresis curve starts at Tr ¼ 0 �C,
turns at Tr ¼ �15 �C, and ends at Tr ¼ �5 �C. We average over 200 realizations of the hysteresis
run.

In Fig. 1, the ratio R between convective and all grid cells is shown depending on the restoring
temperature Tr. Two hysteresis curves for different initial ratios R0 are presented: one for R0 ¼ 0:5
and one for R0 � 0:27 (68 convective elements). In both cases, the curve jumps to a value R < R0

within one step of the hysteresis parameter, because of single convective elements that have only
non-convective neighbours do not remain convective after the first time step with the initial R0

chosen. Convection is suppressed by eddy-diffusive transport from neighbour grid cells. Naturally,
this effect is larger for R0 � 0:27, since the probability of convective elements having no convective
neighbour is larger. The decrease of the restoring temperature does not lead to a continuous
increase of R, but the increase occurs stepwise. In both cases (R0 ¼ 0:5 and R0 � 0:27), two steps to
the left of the steep slope at )8 �C can be distinguished. At lower restoring temperatures (around
)8 �C), R quickly approaches the value 1 in both curves of Fig. 1, and R ¼ 1 remains until the
restoring temperature reaches )15 �C where the direction of restoring temperature change is re-
versed. The system remains in a totally convective state, while the restoring temperatures are
increasing again. Hence, the system exhibits hysteretic behaviour. The hysteresis curves end at
Tr ¼ �5 �C, since we do not want to study the transition back to non-convective conditions here.

The steps between Tr ¼ �0:5 �C and Tr ¼ �2 �C and between Tr ¼ �2 �C and Tr ¼ 5 �C in-
dicate that discretization effects are at work. They are caused by thresholds of local patterns in the
model grid. This effect is similar to the one described by Vellinga (1998) who attributed the
multistability of a model ocean to a CA-related local bistability. The latter gives rise to a finite
number of thresholds at which single grid points switch between the non-convective and the
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RRconvective state. In Fig. 2, the distribution of convective grid points before and after the major

steps is shown; black squares denote convection. In our case, even for averaged hysteresis curves
with randomly distributed IC, the discretization effect is visible: the hysteresis curves exhibit a
staircase-like behaviour. Thus, it cannot be argued that weather fluctuations of the atmosphere or
the ocean would cause discretization effects in ocean climate models to disappear (‘‘average them
out’’). By contrast, discretization effects might lead to systematic errors on the average.

If one takes a closer look at the change of the convective patterns in Fig. 2, one will see that the
two jumps of the hysteresis curves in Fig. 1 refer to two different transitions
UN
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(1) At Tr ¼ �2 �C, direct neighbours of convective cells and some grid point pairs within non-
convective areas have become convective. Thus, a threshold for direct neighbours of convec-
tive grid points has been overcome. The grid point pairs become convective because they ini-
tially (at T ¼ 0 �C) had a convective IC but non-convective neighbours, suppressing
convection during the first steps of the hysteresis curve. When Tr is decreased, switching to
convection becomes possible. The same holds for some few switching grid points at the grid
boundary. Possibly these three small pattern switches are not fully identical, but together they
obviously make up the step in the hysteresis curve.

(2) At Tr ¼ �5 �C, the new convective grid points correspond to a checkerboard pattern that can
sometimes be found in ocean climate models. In this pattern, the convectivc (and non-convec-
tive) grid points are distributed like the black (or white) fields on a checkerboard.

Based on a statistical analysis, the two patterns responsible for the two steps can be distin-
guished. First, we define the number Ndir of direct, convective neighbours of a grid cell that has
just become convective. Numerically, it is found for arbitrarily many realizations that
PNdirðTr ¼ �2 �CÞ ¼ 1 NdirðTr ¼ �5 �CÞ ¼ 0
OR
RE
CT
ED

hold for both initial ratios R0 and every new convective grid cell. The step between Tr ¼ �0:5 �C
and Tr ¼ �2 �C is related to additional convection in grid cells with exactly one convective
neighbour cell. But this result does not yet tell anything about the pattern responsible for the
second step. In order to find out whether a checkerboard pattern can be discovered, every grid cell
with the indices (i� 2; j), (i; j� 2), or (i� 1; j� 1) is defined as one of the eight checkerboard
neighbours of the grid cell with the indices (i; j). The definition is illustrated in Fig. 4.

Fig. 3 shows probability distributions of the number Nchess of convective checkerboard neigh-
bours for the two initial ratios R0. In the case R0 ¼ 0:5, the majority of newly convecting cells has 4
or more convective checkerboard neighbours. In the case R0 � 0:27 however, about 8% of the new
convective grid cells have no convective checkerboard neighbour. We conclude that the check-
erboard pattern becomes the more important the more convective cells already exist. Boundary
grid cells are excluded from the analysis of the patterns.

The mechanism of the described discretization effect can be studied and explained with even
simpler models: in Lind et al. (accepted) and Titz (2002), a lattice of coupled bistable maps was
used in order to study phenomena like the staircase shape of hysteresis curves (and the sensitivity
of advection which we show in the next section). It turned out that such discretization effects can
be described by a local bistability that is represented by one prognostic equation and the re-
spective diffusive coupling operator.
C
UN

4. Sensitivity to the direction of advection

Advection plays an important role during the development of a convective area in the ocean.
But in the context of our study it may hide certain discretization effects if geostrophic adjustment
is incorporated in the model. Here we investigate whether there might exist a significant sensitivity
to the direction of advection. Therefore a homogeneous, unidirectional advective field is added to
our model equations. In other words, the advantage of conceptual clarity is paid for with a less
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are used.
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realistic velocity field. The prognostic equations of the surface variables are extended by an ad-
vective term A. For discretization, the centered differences scheme is used
COAT ð1Þ ¼ vh � rhT ð1Þ

� 1

2
uðT ð1Þði� 1; jÞ � T ð1Þðiþ 1; jÞÞ þ 1

2
v T ð1Þði; j
�

� 1Þ � T ð1Þði; jþ 1Þ
�

ð14Þ
NThe horizontal coordinates u and v of the velocity vector correspond to the polar coordinates h
and jvj, the angle and the amplitude of the advective velocity vector
Uu ¼ jvj cos h

v ¼ jvj sin h
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boundary condition for the advection term of a boundary element (i ¼ 1; 26 j6 15) reads
EAT ð1Þ;boundary �

1

2
uðT ð1Þði; jÞ � T ð1Þðiþ 1; jÞÞ þ 1

2
vðT ð1Þði; j� 1Þ � T ð1Þði; jþ 1ÞÞ ð15Þ
OR
RE
CTThus, the quantity advected from the boundary (underlined) is set to be identical to the element

(i; j), so that the boundaries do not influence the dynamics via advection.
For a ratio R0 ¼ 0:5 and a realistic range of the angle and the amplitude of the advective ve-

locity, the ratio R after 40 days is simulated. 200 realizations of the experiment are done. The
average result is shown in Fig. 5. When jvj has crossed a threshold, the convective area may
become larger. The final ratio R does not only depend on the amplitude of the advective velocity
but also on its angle h. This double dependence is obvious in Fig. 6 that displays the contour lines
of R. Differences in the final value of R for the same jvj can amount to up to 10%. Previously, this
kind of horizontal anisotropy was found e.g. by Hecht et al. (2000) who studied advection
schemes with rotated grid orientation. They found that a standard wind-driven gyre as a test case
is simulated differently with the grid tilted by 45 �C. In addition, our results indicate that local
bistability increases the anisotropic effect strongly.
C
UN

5. Hexagonal grid cells versus square grid cells

Model grids with hexagonal grid cells (Fig. 7) have been used for the first time by atmosphere
modellers (Sadourny et al., 1968; Williamson, 1968). The sphere can be covered with hexagons
and a few pentagons in a very homogeneous way (Baumgardner and Frederickson, 1985; Tomita
et al., 2002), avoiding the pole problem, while in the plane, hexagons can be used exclusively.
Together with triangles and squares, hexagons are the only regular polygons that can tile a plane,



RR
EC
TE
D
PR
OO

F
267

268

269

270

271

272

273

274

0.625
0.600
0.575
0.550
0.525

0.0 0.5 1.0 1.5 2.0 2.5 3.0

θ

0.00

0.02

0.04

0.06

0.08

0.10

0.12

|v|

Fig. 6. Contour plot of the sensitive dependence of R on h and jvj in Fig. 5. The angle h for which R has a maximum is

not fixed but depends itself on jvj.

Fig. 7. Sketch of a grid with hexagonal grid cells. Each grid cell has six neighbour cells. On the right hand side, the

velocity vector ~vv and the corresponding advection angle h are shown. They are used in the advection experiments of

Section 5.2.
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COand hexagons have the highest symmetry of the three polygons. This guarantees a good horizontal

isotropy, which manifests itself in good test results concerning wave propagation. Equivalents to
the common staggered difference grids (Arakawa grids) exist on hexagonal grids; see for example
Popovi�cc et al. (1996). Icosahedral grids have been tested with the shallow-water equations (Heikes
and Randall, 1995a,b; Thuburn, 1997; Tomita et al., 2001; Ringler and Randall, 2002) and with
the atmospheric general circulation (Ringler et al., 2000; Majewski et al., 2000; Tomita et al.,
submitted). The propagation of quasi-geostrophic modes was studied analytically on several
difference grids (Popovi�cc et al., 1996). Ni�cckovi�cc et al. (2002) investigated the geostrophic ad-
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justment process on selected hexagonal grids with a simple two-dimensional linearized model of
the atmosphere.

In this section of the paper, we show that the good horizontal isotropy and the larger number
of direct local neighbour grid cells (six instead of four) can improve the model behaviour. Es-
pecially for coupled ocean-atmosphere climate models, hexagonal grid cells may be a useful al-
ternative to square grids. Randall et al. (2002) propose that a icosahedral–hexagonal grid could be
used for both the ocean model and the atmosphere model, and in coastal areas, hexagonal grids
could be additionally refined, in a similar way as rectangular grids.

In the following, the previous experiments are repeated on the hexagonal grid and compared
with those on the square grid. The same distance between neighbouring grid points is used, so that
the area covered by the hexagonal grid is 13% smaller.

5.1. Hysteresis curves with hexagonal grid cells

The hysteresis experiments are repeated on the hexagonal grid. Again, no flux lateral boundary
conditions are used. The discretized eddy-diffusion term is adapted to the grid geometry
D
P

DT ð1Þ ¼ jhr2
hT

ð1Þ

� 2jh

3ðDxÞ2
ðT ð1Þði� 1; jÞ þ T ð1Þði; j� 1Þ þ T ð1Þðiþ 1; jÞ þ T ð1Þði; jþ 1Þ

þ T ð1Þði� 1; j� 1Þ þ T ð1Þði� 1; jþ 1Þ � 6T ð1Þði; jÞÞ ð16Þ
NC
OR

RE
CT
E

The sign of the fifth and sixth right-hand side term alternates depending on j (see Fig. 7).
In Fig. 8, the hysteresis curves for the hexagonal grid are compared with the previous result

(Fig. 1). The two curves look almost the same, except for small Tr-values. We have already
mentioned that the difference between R0 and R at the starting point of the hysteresis curves is
caused by ‘‘disappearing’’ isolated convective elements. In the hexagonal grid, some of those el-
ements ‘‘survive’’. Since every grid cell has six neighbours instead of four, there are more possi-
bilities how convective and non-convective grid cells are arranged in patterns. The probability of
having a convective neighbour cell is larger, increasing the number of ‘‘surviving’’ convective cells.
In contrast to the square grid, there is no step at Tr ¼ �2 �C.

Since the hysteresis curve performed with the hexagonal grid exhibits smaller steps, this grid
seems to behave in a smoother way with respect to the spreading of convective cells.

5.2. Less anisotropy with hexagonal grid cells

Now the sensitivity to the direction of the advective velocity is examined. For the implemen-
tation of advection on the hexagonal grid, a discretized advection term is necessary. Three instead
of two horizontal velocity vector components are used now (see Fig. 7). The velocity components
are expressed by means of the square grid�s velocity amplitude jvj
Uv0� ¼

ffiffiffi
2

3

r
jvj cos h ð17Þ
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r
jvj cosðhþ 120�Þ ð18Þ

v240� ¼
ffiffiffi
2

3

r
jvj sinðh� 30�Þ ð19Þ
TThus, the advective term for the surface temperature T ð1Þ reads
ECAT ð1Þ ¼ 1

2
v0�ðT ð1Þði; j; up; 0�Þ � T ð1Þði; j; down; 0�ÞÞ þ 1

2
v120�ðT ð1Þði; j;up; 120�Þ

� T ð1Þði; j; down; 120�ÞÞ þ 1

2
v240�ðT ð1Þði; j; up; 240�Þ � T ð1Þði; j;down; 240�ÞÞ ð20Þ
NC
OR

Rwhere the indices ‘‘up’’ and ‘‘down’’ refer to the upstream and downstream values of temperature
in the grid (see Fig. 7).

When the experiment with advection is repeated on the hexagonal grid, less sensitivity to the
direction of the advective velocity is found (see Fig. 9). Nevertheless, the general behaviour re-
mains the same. The different symmetry properties of the hexagonal grid are clearly visible (three
maxima instead of two).

The hexagonal grid is preferable because its horizontal isotropy is clearly better than the be-
haviour of the square grid. A similar effect would be caused by taking into account more
neighbour grid cells on the square grid, but this is computationally much more expensive. Note
that the hexagonal grid has more grid points per unit area (for the same horizontal distance
between neighbouring grid points) and that the isotropy-reducing effect still works with a lower
resolution and a computation time that is equivalent to the square grid.
U
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6. The effect of isopycnal mixing

During the last years, purely horizontal tracer mixing has been replaced more and more by
schemes like the GM scheme (Gent and McWilliams, 1990) that take isopycnal mixing into
consideration. It turned out that isopycnal mixing may be a useful (although not fully convincing)
alternative with regard to the occurrence of deep convection events. Therefore, we repeat our
hysteresis experiments (without advection, see Section 3) with a simplified isopycnal mixing
scheme: if CA has taken place at a certain grid point, the subsequent eddy-diffusion of the surface
layer at this grid point is performed with the surrounding grid points in the lower layer that always
have approximately the same density as surface grid points after convective mixing. There are no
other diffusive fluxes. This is no exact isopycnal mixing scheme, but it serves as an approximation
here. For an upper layer grid cell of the square grid where CA has just occurred, the discrctized
diffusion scheme reads
 RDT ð1Þ � jh

ðDxÞ2
ðT ð2Þði� 1; jÞ þ T ð2Þði; j� 1Þ þ T ð2Þðiþ 1; jÞ þ T ð2Þði; jþ 1Þ � 4T ð1Þði; jÞÞ ð21Þ
CO

In the grid with hexagonal grid cells, the scheme is computed correspondingly. The diffusion
scheme for the lower layer grid point is left unchanged.

The results in Fig. 10 for both the square grid and the grid with hexagonal grid cells show that
isopycnal mixing improves the hysteresis curve substantially in our model. There are no such big
steps in the curve like in Fig. 1. Only on the steep slope of the curve, some few steps are left (see
zoom in Fig. 11), and again, the hexagonal grid exhibits a smoother behaviour.
UN
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Strongly non-linear, local processes challenge climate modellers in many ways. There is no
simple, straight path to avoid the problems that these processes cause in climate models––
problems like the difficulties with many parameterizations. One of such local, parameterized
processes is ocean convection. Apart from the question which parameterization scheme is optimal,
it is not irrelevant for the representation of the dynamics which model grid is chosen. In our study
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that is based on a conceptual two-layer model, we compare the spreading of convection in a
square grid with results obtained using a hexagonal grid.

It turns out that the local discretization effect manifests itself in the average behaviour of an
entire ocean region. This effect is studied in hysteresis experiments in which the surface boundary
condition for heat flux is employed as a hysteresis parameter, and the initial convective activity is
randomly distributed. The discretization effects are visible as steps in an averaged hysteresis curve.
Cessi and Young (1996) have shown the strong sensitivity of the convective adjustment scheme to
initial conditions. In this paper, we demonstrate how small scale pattern switches are associated
with steps in the hysteresis curve. The first of two major steps is related to direct neighbour cells of
convective cells becoming convective, while the second step corresponds to a kind of checkerboard
pattern.

Convection in a grid with square grid cells is quite sensitive to the direction of advection. This is
an anisotropy which might yield substantial systematic errors in ocean climate models. The errors
could be hidden due to the more complex velocity patterns in less idealized velocity fields. The
anisotropy is shown here in numerical experiments in which different values for the horizontal
angle of a homogeneous velocity field cause clearly different developments of convective activity.
Hecht et al. (2000) found a similar result for a test experiment with a horizontal ocean gyre and
rotated grids. In their study, it turned out that the representation of the western boundary current
depends strongly on a proper and step-free representation of the coastline. Here, the effect of the
grid anisotropy is rather surprising, since the lateral boundaries do not affect the results.

A model grid with hexagonal instead of square grid cells reduces the height of the steps in the
hysteresis curves and significantly improves horizontal isotropy. Even for the––already im-
proved––case with mixing of isopycnal type, the difference between the two grid geometries is
recognisable. Such a mixing scheme reduces the discretization effect seen in the hysteresis ex-
periments.

From the restricted viewpoint of these conceptual, numerical experiments, we recommend the
hexagonal grid geometry (i.e. icosahedral–hexagonal on the sphere) for ocean climate modelling.
For ocean models alone, unstructured grids may be the more useful alternative, since they allow
for a better representation of complex orographies. In climate models however, hexagonal grids
have another advantage: the flux coupler (between atmosphere and ocean or land surface) in
GCMs can be programmed much more efficiently if the icosahedral–hexagonal grid is used in all
modules of the model (Randall et al., 2002). If higher resolution was locally needed, this could be
done within the framework of hexagonal grid cells (L. Bonaventura, personal communication).
Therefore we strongly suggest to perform test experiments with comprehensive ocean models
using a icosahedral grid in order to assess the potential value of this grid for ocean climate
modelling.
 C
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